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Abstract

This paper investigates an extended version of Crawford�Sobel�s (1982) communi-
cation game in which the principal can control the quality of the expert�s information.
We prove that the optimal quality of information is always bounded away from the full
information and characterize the optimal information structure that maximizes play-
ers�ex-ante payo¤s. Based on this, we show that our mechanism provides a superior
ex-ante payo¤ for the principal, compared to both Crawford�Sobel�s most informa-
tive equilibrium and optimal delegation. We then study multi-stage communication.
This modi�cation results in further ex-ante Pareto improvement since it allows for the
step-by-step re�nement of the expert�s information, preserving truth-telling communi-
cation at every stage. Finally, we construct a mechanism in which approximately full
information is revealed for a large sub-interval of the state space.

JEL classi�cation: C72, D81, D82, D83

Keywords: Communication, Information, Cheap Talk

1 Introduction

Situations in which principals do not have enough information and have to consult ex-
perts before implementing a policy can be found almost everywhere. Auctioneers consult
experts about an object�s value before setting auction rules, managers consult �nancial
and marketing analysts before making corporate decisions, and politicians consult advisors
on special subjects.

Despite the apparently di¤erent nature of these situations, several common features
characterize virtually every process of communication. The �rst is a con�ict of interest
between the involved parties. As a result, the expert may want to withhold true information
or provide it only partially, since releasing all information could be harmful for her. One
can expect that the larger the con�ict of interest, the less useful will be the information
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provided by the expert. The second feature is the imperfect primary information of the
expert. Even the most knowledgeable expert may not be completely informed. Moreover,
quite often the principal has the power to control the �ow of information available to the
expert. For example, governments (principals) usually collect reports from oil companies
(experts) to estimate the amount of oil in oil�elds before making a decision about a lease
sale. Depending on the company�s report, a government decides whether to sell an oil�eld
separately (if it consists of several parts) or as a whole piece. It may conduct an auction
or approach just one company. In the former case, the government sets auction rules: its
type, a reserve price, etc. This behavior constitutes an incentive for companies to distort
their information in a favorable way, since the government�s policies are in�uenced by their
estimates. For its part, the government can restrict the company�s quality of information
by specifying the number and locations of test drills. Finally, the communication process
between parties can be conducted on a multi-stage basis �the government can request a
new report after each test drill. Thus, the principal a¤ects the precision of the expert�s
information before communication at every stage, whereas the expert can update her
report afterwards.1

The �rst analysis of strategic communication is due to Crawford and Sobel [6] in their
seminal paper. They introduce a model of a perfectly informed expert and an uninformed
principal whose payo¤s depend on a random state of nature. After a private observation
of the true state, the expert sends a costless message to the principal. On the basis of the
message received, the principal implements an action, determining the parties� payo¤s.
Crawford and Sobel show that full information revelation is never possible unless play-
ers� interests perfectly match. In addition, when a con�ict of interest arises, the quality
of the disclosed information falls, eventually resulting in an equilibrium with no useful
information conveyed.

Crawford and Sobel�s characterization of the equilibria is predicated upon two assump-
tions. First, the expert is perfectly informed about the realization of the state of nature.
Second, the communication process consists of one stage only. This paper studies the
e¤ects of relaxing both of these assumptions. In many cases, even the most profession-
al experts may have only insu¢ cient or noisy information. Furthermore, a principal can
directly restrict their access to information. In addition, instead of a one-stage communi-
cation process, the principal can gradually improve information precision of the expert in
every stage and request a new report, conditional on the expert�s updated information.

We study the simplest model which incorporates both discussed features: communica-
tion through multiple stages and imperfect information of the sender, the quality of which
is controlled by the receiver at every stage.

Our major contribution can be summarized as follows. We demonstrate that by prop-

1The Mineral Management Service (MMS) of the U.S. Department of the Interior does not perform any
direct data-collection activities. Instead, it issues permits to industry for collecting prelease geological and
geophysical data. In general, companies wishing to collect data on the Outer Continental Shelf prior to a
lease sale must obtain a permit from the MMS. The permits set forth the speci�c details for each data-
gathering activity, including the area where the data are collected, the timing of the data-gathering activity,
approved equipment and methods, and other similar detailed information relevant to each speci�c permit.
After a permit is granted, the MMS monitors all �eld data collection activities to ensure compliance
with the terms of the permit. It is empowered to select and obtain data that are collected by private
�rms. The MMS uses the obtained data for several purposes, including evaluation of tracts�market values,
determination of bidding procedures, leasing, and post-lease operations.
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erly restricting the quality of the expert�s information, the principal can foster expert�s
incentives to communicate. This results in a higher quality of the information transmit-
ted, compared to Crawford�Sobel (hereafter, CS) uniform-quadratic model. Thus, more
information may be obtained from a less informed expert. We characterize the optimal
information structure of the expert and show that the trade-o¤ between the imperfect
information of the expert and her incentives to reveal it results in ex-ante Pareto improve-
ment. Moreover, our model leads to a superior outcome for the principal than optimal
delegation (whenever the informative communication exists).2

In generalizations of our base setting, we demonstrate how to extend the analysis to a
wider class of players�preferences and distribution functions. In the more general setting,
the principal prefers communication with an imperfectly informed expert to that with a
perfectly informed expert whenever informative communication is feasible, and to optimal
delegation as long as players�interests are su¢ ciently close.

The main result for multi-stage communication is that the combination of multi-stage
communication with imperfect information of the expert is so powerful that the principal
can achieve (almost) full information revelation over a large interval of states. We introduce
a mechanism through which the expert truthfully discloses all available information at each
stage of the communication process. This allows the principal to implement a policy as
close as needed to his ideal policy when the number of communication stages is arbitrary
large. The result basically relies on the following intuition: step-by-step updating of the
expert�s information at every stage can be organized in such a way that the expert has
a possibility to induce only those actions which are either optimal for the policymaker or
essentially di¤erent from the expert�s ideal policy, given expert�s current information.

The paper proceeds as follows. Section 3 highlights an example, which illustrates that
the optimal information structure is coarse and involves a �nite number of partition el-
ements. Section 4 presents the formal model of one-stage communication. The general
analysis of the one-stage model is provided in Section 5. Section 6 extends the analysis
to the multi-stage case. Section 7 introduces an extension of the multi-stage model and
discusses results. Section 8 concludes the paper.

2 Literature Review

The fact that quality of information of the principal is not monotone in that of the expert
was �rst recognized by Fischer and Stocken [8]. They, however, restrict the set of possible
biases in players�preferences b, introduced by Crawford and Sobel [6], to that of the discrete
form b = 1

2c , where c is an integer. In addition, they analyze pure-strategy equilibria only.
Their main result for the �uniform-quadratic�setting3 is that the optimal structure of the
informational partition is uniform of size c, that is, equally spaced. This is not a general

2Delegation of decision rights of a policy maker to an expert has been suggested as an e¢ cient alternative
to communication (see, for instance, [7], [10]). If parties� interests (and so ideal policies) are su¢ ciently
close, then by delegating his rights, the decision maker can bene�t by letting the expert himself make
decisions. Also, in most cases, the decision maker can delegate decision rights only partially by applying
some rules to restrict policies that can be chosen by the expert. Optimal delegation imposes the policy
restrictions that maximize expected payo¤ of the decision maker. Because this work highlights a di¤erent
mechanism of communication through which the policy maker can acquire higher utility, it is natural to
compare the principal�s expected payo¤s in these mechanisms.

3That is, for the uniform distribution of the state and quadratic preferences of players.
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feature of the model for other values of b. In general, as shown below, there exist equilibria
with non-uniform partitions, which provide a higher expected payo¤ to the principal. In
this paper, we characterize the optimal information structure for all b. Moreover, we study
the bene�ts of multi-stage communication.

Another approach to improve the receiver�s quality of information is to establish com-
munication through multiple stages. Aumann and Hart [2] consider two-person games with
two-sided cheap talk in which one side is better informed than the other, and complete-
ly characterize the equilibrium payo¤s. Their general analysis is restricted to the class
of games with incomplete information with discrete types and a bimatrix structure of
players� strategies and payo¤s. Krishna and Morgan [12] show that even with only two
stages there exists an equilibrium that almost always ex-ante Pareto dominates all of the
equilibria identi�ed by Crawford and Sobel. Moreover, there are informative equilibria in
multi-stage communication even if the con�ict of interest between players is so large that
no informative equilibria exist in the CS model.4 Battaglini [3] considers a model with
multi-dimensional signals and multiple imperfectly informed experts. He demonstrates
that when experts have di¤erent preferences, the number of experts is large, and the prin-
cipal has a limited ability to commit, then it is possible to construct an equilibrium in
which the quality of extracted information is arbitrarily close to complete information.5

An issue of endogenous quality of information to mechanism design is also studied by
Bergemann and Pesendorfer [4]. They consider an auction in which the seller determines
the precision of bidders�valuations and to whom to sell at what price. In this case, optimal
information structures in the optimal auction are coarse and represented by the �nite
number of monotone partitions.6

In the light of the literature, the main contribution of our paper is that control of
the quality of expert�s information strictly improves communication whenever informative
communication is achievable. This result holds for a wide class of players�preferences and
distributions of the state. Also, we show that the principal can obtain arbitrarily precise
information about a state with only one expert through multiple stages of communication.

3 An Example

We start with the uniform-quadratic variant of the communication model introduced by
Crawford and Sobel [6]. Two players, the uniformed receiver (R) and the better informed
sender (S), communicate on some state of nature, which is represented by a random
variable �, uniformly distributed on the unit interval � = [0; 1]. We can treat the sender as
an expert (she) and the receiver as a principal (he). The expert sends a costless message m
to the principal, who then implements some action a, which a¤ects payo¤s of both players.

4These equilibria have a non-monotonic structure, that is, a sender of a high type can be associated
with a lower action.

5The assumption of the principal�s limited ability to commit can be omitted, if the game is played
through an arbitrary, but �nite number of periods, where a new state of nature and new experts�signals
are drawn in each period.

6An interesting property of the optimal structure is that the partitions are asymmetric across agents
even for symmetric distributions of object�s values.
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Players�state-relevant utility functions are quadratic:

UR (a; �) = � (a� �)2 ; and US (a; b; �) = � (a� b� �)2 ; (1)

where a parameter b > 0 re�ects the bias in the players�interests.
First, consider the case of the perfectly informed expert. Crawford and Sobel demon-

strate that all the equilibria are characterized by �nite monotone partitions. That is, for
any b there exists at most NCS (b) < 1 number of intervals on the state space such
that the expert sends one message for each interval (wk; wk+1], which is associated with
a corresponding action ak =

wk+wk+1
2 .7 Also, there are exactly NCS (b) equilibria with

1; 2; :::; NCS (b) intervals, where the equilibrium with NCS (b) intervals is Pareto superior
to all other equilibria.

For example, if b = 1
5 , then N

CS (b) = 2, and the expert sends one message if � � 1
10 ,

and another message otherwise. This equilibrium is not very informative for values of
� > 1

10 . As a result, the principal�s expected payo¤ U
CS
R ' � 1

16 insigni�cantly exceeds his
payo¤ � 1

12 in the case of no communication.
However, if the principal controls the expert�s information structure in a such way that

the expert knows only whether � is higher or lower than 1
2 , then she must estimate the

average utility across all states, given available information. This shifts her preferences in
a way favorable for the principal. Then, the expert truthfully reveals her information that
provides the principal�s expected utility UR = � 1

48 , which is essentially higher than that
in the case of the perfectly informed expert.

Moreover, there exists an equilibrium with three messages, namely, for � less than 1
5 ,

between 1
5 and

4
5 , and higher than

4
5 , which provides expected utility UR ' �

1
52 . A �ner

information structure violates the sender�s incentives to communicate truthfully, which
results in distortion of information and lower principal�s payo¤s.8

4 The Model

Consider a uniform-quadratic setup of the CS model, in which the principal takes control
over the quality of the expert�s information about the state.9 We call this modi�cation
the CWIIE model (Communication With an Imperfectly Informed Expert). The key mod-
i�cation of our model is a preliminary stage, in which the receiver speci�es the sender�s
information structure at zero cost. In particular, the receiver partitions � into a �nite
number n of intervals Wk = (wk; wk+1], k 2 K = f0; 1; :::; n� 1g, w0 = 0, wn = 1. Equiv-
alently, a partition is described by a strictly increasing sequence (wk)

n
0 of its boundary

points. We call a partition uniform of size n if (wk)
n
0 =

�
k
n

�n
0
.

The timing of the game is as follows. At the �rst stage, the receiver speci�es a partition

 = fWkgn�10 , and a message set M . At the second stage, a realization of the state �

7Formally, Crawford and Sobel de�ne equilibrium strategies in a slightly di¤erent way. They require
m (�) to be uniformly distributed on [wk; wk+1], if w 2 (wk; wk+1), and a (m) =

wk+wk+1
2

for all m
2 (wk; wk+1).

8Like Crawford and Sobel, we use the term ��ner�informally, implying a partition with a larger number
of elements.

9Later, we will analyze generalizations of this setting in terms of players�preferences, distributions of
the state, and the number of stages of communication.
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occurs, and the sender privately observes an element of the partition Wk, which contains
�. We denote this sender as a k-type. Thus, the sender�s imperfect information about a
state is determined by the uniform distribution over Wk, and a measure of the sender�s
imprecision about the state is P (Wk) = Pr (� 2Wk) = wk+1�wk. At the third stage, the
sender transmits a costless message m 2 M to the receiver. In general, the sender may
mix over messages with a conditional distribution � (mjk). After receiving the message, the
receiver updates his beliefs about the state and implements an action a that determines
the players�payo¤s.

Let �M (�a) = fm : a (m) = �ag. We say that an action �a is induced by a k-type, ifR
�M(�a)

� (mjk) dm > 0, and is purely induced if
R
�M(�a)

� (mjk) dm = 1.

Notice that the described information structure assumes monotonicity of partitions.
That is, � 2Wk, �0 2Wj , j > k implies that � < �0. This feature of the model is consistent
with the argument of feasibility: it is di¢ cult for the principal to implement an information
system such that the expert�s information has a form of �a true state is either high or low,
but not intermediate�. In addition, all characterized equilibria in the CS model have the
information structure of the monotone partitional form.

4.1 Equilibrium

Given information structure 
, a perfect Bayesian equilibrium (hereafter, equilibrium)
(� (mjk) ; a (m) ;
) consists of a signaling strategy � : 
 ! �M , which speci�es a prob-
ability distribution � (mjk) over the space of messages for each type k, the principal�s
action�s rule a :M ! R, and a belief function G :M ! ��, which speci�es a probability
distribution over � for each message m.

The action�s rule a (m) maximizes the receiver�s utility UR (ajm) = E [UR (a; �) jm]
given his belief function G (�jm), which is constructed on the basis of Bayes�rule.10 Given
the action�s rule a (m), the signaling strategy maximizes the sender�s type-relevant utility
function

US (a; bjWk) = E� [US (a; b; �) j� 2Wk] = �
1

P (Wk)

wk+1Z
wk

(a� �)2 d�.

That is, the sender�s strategy � (mjk) satis�es

if �m 2 supp � (:jk) , then �m 2 argmax
m2M

US (a (m) ; bjWk) , and (2)Z
M

� (mjk) dm = 1, for all k 2 K.

Notice that US (a; bjWk) can be written as

US (a; bjWk) = US (a; b; �wk)�D (Wk) , (3)

where �wk = E [�j� 2Wk] =
wk+wk+1

2 is a conditional mean of the state given the sender�s

10Due to the strict concavity of the principal�s utility function over actions, he never mixes between
actions.
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type, and D (Wk) =
1
12 (wk+1 � wk)

2 is a conditional residual variance of �.
Similarly, the principal�s type-relevant utility function UR (ajWk) can be represented

as
UR (ajWk) = UR (a; �wk)�D (Wk) . (4)

The action�s rule a (m) is the solution of the principal�s problem given his belief function
G (�jm):

a (m) = argmax
a2R

UR (ajm) = argmax
a2R

1Z
0

UR (a; �) dG (�jm) .

The density of the belief function g (�jm) = G0 (�jm) is constructed on the basis of
Bayes�rule

g (�jm) =
n�1X
k=0

� (mjk)
g (m)

1Wk
(�) ,

where 1Wk
(�) is the indicator function and g (m) =

n�1P
k=0

P (Wk)� (mjk).

Then, we can represent UR (ajm) as

UR (ajm) =
n�1X
k=0

gk (m)UR (ajWk) , (5)

where gk (m) =
P (Wk)�(mjk)

g(m) , and UR (ajWk) = US (a; 0jWk) is the principal�s type-relevant
utility function.

The receiver�s expected utility is

UR =

Z
M

UR (a (m) jm) g (m) dm =
n�1X
k=0

wk+1Z
wk

Z
M

� (mjk) (a (m)� �)2 d�dm

=

Z
M

n�1X
k=0

P (Wk)� (mjk)UR (a (m) jWk) dm.

The following section provides the general analysis of the model.

5 One-Stage Communication

This section characterizes the optimal information structure in the one-stage version of
the model. We demonstrate that if the con�ict of interest between parties is such that CS
communication is informative, then the principal prefers communication with the imper-
fectly informed expert to both CS communication and optimal delegation. These results
hold in more general settings.

To highlight the main intuition behind better communication with the imperfectly
informed expert, consider the above example of b = 1

5 . The most-informative two-element
CS partition is determined by the sender of the marginal type w1 = 1

10 , who is indi¤erent
between induced actions a0 and a1 (See Fig. 1). For lower types � < w1, the action a0 is
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strictly better than a1, and vice versa.

Figure 1: A CS equilibrium and a replicated equilibrium in the CWIIE model.

However, if sender�s information is only whether a state is lower or higher than w1,
then she estimates the average utility across all states in the partition�s element. The type-
relevant utility function US (a; bjWk) is strictly concave in a and symmetric with respect to
the optimal policy aSk = �wk + b. Note that aSk < a

S (wk+1), where aS (wk+1) = wk+1+ b is
the optimal policy of the CS type wk+1. That is, if the sender knows that � 2W0 = (0; w1],
then she strictly prefers action a0 to a1. Similarly, if the sender knows that � 2 W1 =

(w1; 1], then she strictly prefers action a1 to a0. Through sending corresponding messages,
the sender conveys all available information regardless of her type. Since speci�ed actions
are the receiver�s best response to the sender�s strategy, we construct an equilibrium, which
replicates the CS equilibrium in terms of disclosed information. Moreover, since utility
functions US (a; bjWk) and actions a0 and a1 are continuous in w1, a partition (0; w0; 1) is
still incentive-compatible for all w0 in some neighborhood of w1. Thus, the principal can
e¤ectively modify the CS information structure without violating sender�s incentives to
communicate truthfully.

5.1 Equilibrium Characterization

In this subsection, we outline the basic characteristics of equilibrium strategies. It follows
from (3) and (4) that for any sender�s type, players�preferences over actions are purely
determined by means �wk. That is, US (a; bjWk) � US (a0; bjWk) if and only if US (a; b; �wk) �
US (a

0; b; �wk), and UR (ajWk) � UR (a0jWk) if and only if UR (a; �wk) � UR (a0; �wk). Thus,
type-relevant utility functions US (a; bjWk) and UR (ajWk) inherit all important properties
of state-relevant functions: strict concavity over actions, single-crossing, and symmetry
with respect to optimal actions aS ( �wk) = �wk + b and aR ( �wk) = �wk. This gives the no-
crossing property: aS ( �wk) > aR ( �wk), k 2 K. Based on these observations and using the
same technique as that developed in Lemma 1 in Crawford and Sobel [6], it follows that
the number of induced actions in equilibrium is �nite. All proofs can be found in the
Appendix.

Lemma 1 In any equilibrium, the number of induced actions is �nite. Further, the dis-
tance between any two actions is not less than 2b.

Formally, the number of actions is �nite, since the strict concavity of US (a; bjWk)

guarantees that the sender of each type induces at most two actions. However, the result
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of this lemma is stronger: it demonstrates that �niteness of the number of actions comes
from the bias in the players�interests rather than from the cardinality of the type space.
Thus, an increase in �neness of an information structure eventually does not bring further
informational bene�ts, since the sender chooses among a �nite set of actions. As a result,
for a substantially �ne partition, the sender�s signaling strategy is no longer invertible,
which leads to losses in information.

Thus, we may restrict the message space to a �nite set M 0 = fmigI�10 , where mi 2
�M (ai), i 2 I = 0; 1; :::; I � 1. Then, conditional distributions � (mjk) can be replaced by
conditional probabilities �i;k, where �i;k =

R
�M(ai)

� (mjk) dm is a conditional probability to

send a message mi, i 2 I, by the sender of a type k 2 K.
From (5), the principal�s best response ai = a (mi), i 2 I, is

ai = E [�jmi] = E [ �wkjmi] =

n�1X
k=0

P (Wkjmi) �wk =
1

2

n�1P
k=0

�i;k
�
w2k+1 � w2k

�
n�1P
k=0

�i;k (wk+1 � wk)
, (6)

and the expected utility is

UR =
I�1X
i=0

P (mi)UR (aijmi) =
I�1X
i=0

n�1X
k=0

P (Wk)�i;kUR (aijWk) ,

where P (mi) =
n�1P
k=0

P (Wk)�i;k and UR (ajmi) =
n�1P
k=0

P (Wk)�i;k
P (mi)

UR (ajWk).

The solution of a k�type sender�s problem is

mi 2 argmax
m2M 0

US (a (m) ; bjWk) , if

US (ai; b; �wk) � US (aj ; b; �wk) for all j 2 I.

The family of inequalities US (ai; b; �wk) � US (aj ; b; �wk), i; j 2 I, k 2 K, can be written
as

1) ai + aj � wk + wk+1 + 2b for all aj > ai, and (7)

2) ai + aj � wk + wk+1 + 2b for all aj < ai.

The following lemma characterizes the sender�s equilibrium strategies.

Lemma 2 Any equilibrium signaling strategy (�i;k) satis�es the following conditions:
(A) �i;k > 0 implies �j;k = 0 for all j < i� 1 and j > i+ 1;
(B) �I�1;n�1 = 1, and �i;n�1 = 0 for all i < I � 1;
(C) �i;k > 0 implies �j;s = 0 for all s < k, j > i, and s > k, j < i,
(D) �i;k > 0 and �i+1;k > 0 imply �i+1;k+1 > 0 for all k < n� 1, and
(E) �i;k > 0 and �i;k0 > 0 imply �i;s = 1 for all s such that k < s < k0.

The �rst condition states that mixing is possible only between two messages that
induce adjacent actions. The second requires the highest-type sender to purely induce the
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highest action. The third condition is the �monotonicity condition,�which implies that
if a sender of some type induces an action, then no sender of a higher type can induce a
lower action, and vice versa. Condition (D) argues that if the k�type sender induces two
actions, then a (k + 1)�type must induce the higher action also. Finally, condition (E)
states that if some action is induced by types k and k0, then this action is purely induced
by all types between k and k0.

Although Lemma 2 characterizes equilibrium strategies, it still leaves a lot of freedom
in terms of players�expected payo¤s. To narrow the set of payo¤s, we need to formulate
a model-speci�c revelation principle, which is described in the next section.

5.2 Revelation Principle

The lack of the principal�s ability to commit to actions results in the failure of the standard
revelation principle, which restricts the set of all equilibria outcomes to that of truth-
telling direct equilibria. Two examples from contracting with imperfect commitment are
due to Bester and Strausz [5] and Krishna and Morgan [11]. In both cases, the sender
is characterized by a binary type, whereas three actions are induced in equilibria. No
direct mechanism can replicate these equilibria in terms of induced actions and outcomes.
Nevertheless, Bester and Strausz prove that for a �nite set of states any incentive-e¢ cient
mechanism (i.e., that which provides equilibrium payo¤s on the Pareto frontier) is payo¤-
equivalent to some direct mechanism. Similarly, Krishna and Morgan demonstrate that in
the case of a continuum of types, any equilibrium outcome of an indirect mechanism can
be replicated in a direct mechanism.

The following lemma proves that we can restrict attention to direct equilibria only;
that is, the cardinality of the message space can be chosen to be equal to that of the type
space, or I = n.

Lemma 3 Any equilibrium in the CWIIE model is payo¤ equivalent to some direct equi-
librium.

To demonstrate the result of the above lemma, we show that there is no equilibrium in
the model, in which the number of induced actions exceeds the number of types. Basically,
in order to have an indirect equilibrium, there must be a type which induces two actions,
such that the higher action is induced by this type only. However, this contradicts property
(D) of Lemma 2.11

Further, consider direct truth-telling, or incentive-compatible equilibria, in which
the expert of each type k = 0; :::; n � 1 discloses all available information by sending a
type-speci�c message mk. Given this signaling strategy, the receiver�s best-response is the
action�s rule ak = E [ �wkjmk] = �wk. Thus, a partition 
 is called incentive-compatible
if there exists an incentive-compatible equilibrium.

From the sender�s problem (7), the sender prefers to induce an action ak instead of

11 In Krishna and Morgan�s [11] example of an indirect equilibrium, the main incentive for a highest-
type sender to induce lower actions is a higher transfer for sending lower messages, which is su¢ cient
compensation for an undesirable policy implemented afterwards. Lack of such transfers in our setup narrows
the set of equilibria.

10



ak+1 (and all a > ak+1), if

ak + ak+1 = �wk + �wk+1 =
wk + wk+1

2
+
wk+1 + wk+2

2
� wk + wk+1 + 2b; (8)

which can be simpli�ed to wk+2 � wk � 4b. Similarly, the condition to induce ak instead
of ak�1 implies wk+1 � wk�1 � 4b. Therefore, a necessary and su¢ cient condition for a
partition to be incentive-compatible is

wk+2 � wk � 4b; k = 0; 1; :::; n� 2. (9)

This family of inequalities is called the incentive-compatibility (IC) constraints.
The following lemma proves that any pure-strategy equilibrium is payo¤ equivalent to

some incentive-compatible equilibrium under a slightly modi�ed partition. It is constructed
from the initial one by the collapsing partition�s elements that induce identical actions.

Lemma 4 For any pure-strategy equilibrium, there exists an incentive-compatible equilib-
rium, which is payo¤ equivalent.

Now, we turn to mixed-strategy equilibria.

5.2.1 Mixed-strategy equilibria

In addition to pure-strategy equilibria, there exist multiple types of mixed-strategy equi-
libria even for the same information structure. The table below illustrates three examples
of these equilibria. Notice that for the same partition, the last two equilibria in the table
contrast in the number of induced actions: three in the former one and two in the latter
one.

(wk) (�i;k) a (mi) UR '

(0; 12 ; 1)
3=4 0
1=4 1

0:25; 0:65 � 1
43

(0; 0:07; 0:81; 1)
0:873 0 0
0:127 0:962 0
0 0:038 1

0:035; 0:435; 0:845 � 1
30

(0; 0:07; 0:81; 1)
1 0:983 0
0 0:017 1

0:404; 0:876 � 1
21

Nevertheless, mixing between messages is detrimental, which is demonstrated by the
following �no-mixing�lemma.

Lemma 5 For any mixed-strategy equilibrium, there exists an incentive-compatible equi-
librium, which is payo¤ superior.

The superior equilibrium is constructed in two steps. First, we derive all sender�s types
that play mixed strategies and reassign the corresponding probabilities as follows. If some
type induces two actions, we assign probability one to the lower action. Second, given
the modi�ed signaling strategy, we collapse the partition elements that induce identical
actions and adjust the receiver�s beliefs and actions to a new signaling strategy.

11



The derived lemmas constitute a model-speci�c �revelation principle�, which relates
to the result of Bester and Strausz �any optimal equilibrium payo¤ can be replicated in
an incentive-compatible equilibrium.

5.3 Optimal information structure

To �nd the optimal incentive-compatible partition, we �rst determine the maximal size
of the incentive-compatible partition n (b) and all sequences of boundary points (wi)

n(b)
0 ,

which satisfy boundary conditions w0 = 0, wn(b) = 1, and the IC constraints (9). It can
be shown that if b 6= 1

2c for some even integer c, then

n (b) = 2h 1
4b
i+ 1; (10)

where hxi is the largest integer smaller than or equal to x. If b = 1
2c for some even integer

c, then n (b) = c. For example, for b = 1
5 , n(

1
5) = 2h54i + 1 = 3. Notice that for b = 1

4 ,
the �nest partition has two elements, so communication is informative, in contrast to the
CS model. However, for b > 1

4 no informative communication is feasible. The next result
describes the structure of the optimal partition.

Proposition 1 For any b, there exists b� (c) 2 ( 12c ;
1

2(c�1)), where c = n (b), such that if
b > b� (c), then the optimal partition is uniform of size c � 1. For b � b� (c), the optimal
partition is one of size c such that: 1) if 1

2(c+1) < b � 1
2c , then the optimal partition is

uniform, and 2) if 1
2c < b � b

� (c), then the IC constraints (9) are binding for all boundary
points wk.

According to this proposition, the optimal partition belongs to one of two classes: either
a possibly non-uniform of size n (b), or the uniform of size n (b) � 1. For the bias b = 1

5 ,
which is used in Example 1, we have c = n(15) = 3 and the cuto¤ level b� (3) ' 0:202.
The principal�s expected payo¤s under the three-element partition

�
0; 15 ;

4
5 ; 1
�
with the

binding IC constraints and the two-element uniform partition
�
0; 12 ; 1

�
are � 1

52 and �
1
48 ,

respectively. Thus, the receiver�s losses due to non-uniform structure of the three-element
partition are o¤set by bene�ts due to its �neness. Nevertheless, for b = 0:22, principal�s
payo¤s are � 1

27 and �
1
48 for the three- and two-element partitions, respectively. This is

because a larger bias results in the less uniform structure of the �nest incentive-compatible
partition (0; 0:12; 0:88; 1) due to the IC constraints. In contrast, there is no a such e¤ect
for the uniform partition of a smaller size, which is still incentive-compatible.

Thus, we can establish the Pareto dominance of the CWIIE model over CS communi-
cation.

Theorem 2 If the sender�bias is b � 1
4 , then there exists an equilibrium in the CWIIE

model, which is Pareto superior to all equilibria in the CS model.

Compared to the CS model, an essential increase in the receiver�s payo¤s is driven by
two factors. The �rst factor is the maximal number of partitions�elements. It grows as 1b in
the CWIIE model in contrast to 1

b1=2
in the CS model.12 The second factor is the di¤erence

12For example, for b = 1
30
, NCS (b) = 4 in the CS model and n (b) = 15 in ours. This results in the

principal�s expected utilities UCSR = � 1
93
and UR = � 1

2700
in the CS and CWIIE models, respectively.
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in lengths of partition elements. Due to the speci�c structure of equilibria, intervals of any
CS partition essentially di¤er in their lengths, which results in higher informational losses
for large values of a state.13 On the other hand, for any equilibrium CS partition, a uniform
partition of the same size is incentive-compatible in our model, which decreases a residual
variance of �.

5.4 Imperfect Information versus Delegation

Delegation is broadly considered as a pervasive alternative to communication. Instead of
relying on expert�s non-veri�able information, the policymaker can delegate his power to
the expert and gain from informational e¢ ciency (see, for example, [1], [7], [10], [13]).
However, informational bene�ts are impaired by losses because the expert�s decisions are
biased. Nevertheless, in a variety of situations, an aggregate e¤ect leads to ex-ante Pareto-
improvement as compared to communication. Another useful feature of delegation is its
ease in implementations: generally, there are no costs to empower the expert with a right to
carry out policies. Due to these factors, more and more �rms decentralize their structures
(see [7]). The following example demonstrates how delegation can bring larger payo¤s to
the principal than those in the case of CS communication. However, these payo¤s are
smaller than those in the case of communication with the imperfectly informed expert.

Example 2. Consider the uniform-quadratic setup with the sender�s bias b = 1
5 . In

the CS communication, the most informative equilibrium provides the principal�s ex-ante
payo¤ UCSR ' � 1

16 .
If the principal delegates his rights completely, that is, without restrictions on the

set of sender�s feasible policies, then for any state �, the sender implements her optimal
policy aS (�) = � + b, which has a constant bias b relative to the receiver�s optimal policy
aR (�) = �. This brings ex-post utilities to the sender and the receiver UDS (�) = 0 and
UDR (�) = �b2 = � 1

25 , which are equal to corresponding ex-ante utilities. Therefore, the
expected payo¤of the principal exceeds that in CS communication. However, if the receiver
partitions the state space into two equal intervals, then his expected payo¤ in the incentive-
compatible equilibrium under this partition is UR = � 1

48 , which is larger than that under
delegation.

Before testing the generality of these results, note that the full or complete delegation
is not necessarily optimal in the space of all delegation sets, that is, the sets of actions
that can be delegated to the sender. Melumad and Shibano [13] prove that the optimal
delegation set for the uniform-quadratic settings is an interval [0; y0], where the upper
bound y0 = 1� b if b � 1

2 and y
0 = 1

2 otherwise. Also, Dessein [7] shows that in the same
model, delegation is always bene�cial for the principal as opposed to CS communication
whenever communication is informative.

Delegation and communication with the imperfectly informed sender utilize di¤erent
factors for the payo¤s�improvement. Delegation allows for the receiver to acquire bene�ts
from the expert�s informational advantage. If endowed with power, the sender conducts
a policy which is close enough to the receiver�s optimal policy. Communication with the

13A length of a (k + 1)-th interval of a CS partition exceeds that of a k-th interval by 4b, for all k.
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Figure 2: Payo¤s in the CWIIE model, optimal delegation, and the CS model.

imperfectly informed expert smooths misalignment between players� preferences which
arises from senders of �boundary� types in the CS model. This results in the ine¢ cient
structure of informational partitions, where communication is less informative for high
values of the state. As a result, there is no clear intuition about what e¤ect is more
bene�cial for the principal.

Now, we show that if informative communication is feasible (b � 1
4), then commu-

nication with the imperfectly informed sender strictly dominates delegation in terms of
receiver�s expected payo¤. This result is formalized by the following theorem.

Theorem 3 If the informative communication is feasible, then there exists an equilibrium
in the CWIIE model which provides a higher expected payo¤ to the principal than optimal
delegation.

Fig. 2 demonstrates the principal�s expected payo¤ under the optimal partition in the
CWIIE model, optimal delegation, and the most informative equilibrium in the CS model.

Compared to other models, an interesting feature of the CWIIE model is the disconti-
nuity of payo¤s in the sender�s bias b due to the �regime switching�e¤ect. When b falls,
this e¤ect takes place at ~b (n) = 1

2n for even n, and the uniform partition of the even size n
becomes incentive-compatible. This leads to a switch from the uniform partition of the odd
size n � 1 to the uniform of size n. As a result, the ex-ante payo¤s jump from � 1

12(n�1)2

to � 1
12n2

. In terms of the analysis above, a continuous change in the sender�s bias can
have a discontinuous impact upon equilibrium payo¤s. However, the relative change in the
payo¤s lim

b"~b(n)
UR (b) and lim

b#~b(n)
UR (b) converges to 0 as n!1.

In contrast, there is no discontinuity at b� (n), the point of a switch from the uniform
partition of the even size n� 1 to the non-uniform one of the odd size n. For almost all b
such that the partition of even size n�1 is incentive-compatible,14 there exists a partition

14Namely, for all b 6= 1
2m

for some even m.
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of the odd size n, which is also incentive-compatible (namely, for which the IC conditions
(9) are binding). However, this partition is non-uniform for b > 1

2n and provides payo¤
UnR (b), which is continuous with respect to b.

15 Thus, the switch between partitions at
b� (n) such that UnR (b

�) = � 1
12(n�1)2 is not accompanied by a discontinuous change in

payo¤s.

5.5 Generalizations

This section examines the robustness of the previous results to changes in the speci�cation
of the model, namely players�utility functions and distributions of the state. First, we
consider the generalized form of the players� utility functions similar to that used by
Dessein [7]. The receiver�s utility function UR (a; �) has a unique maximum for a = � and
can be written as

UR (a; �) = U1 (�; �) + U2 (ja� �j) ; (11)

where U2 (:) is twice continuously di¤erentiable, and U 02 (0) � 0, U 002 (x) < 0. If U 02 (0) = 0,
we additionally require U 0002 (:) to be continuous in the neighborhood of 0.

Similarly, the sender�s utility function US (a; b; �) has a maximum for a = � + b and
can be written as

US (a; b; �) = V1 (� + b; �) + V2 (ja� b� �j) ; (12)

where V 02 (x) � 0 and V 002 (x) < 0. For future references, we will refer to (11) and (12) as
symmetric preferences.

Given these conditions, it can be shown that for any Wk = (wk; wk+1], the sender�s
type-relevant utility function US (a; bjWk) = E [US (a; b; �) j� 2Wk] is symmetric in a with
respect to aS = �wk + b. Similarly, the receiver�s utility function UR (ajWk) is concave
in a and symmetric with respect to �wk. This implies that the receiver�s best-response
to the truth-telling signaling strategy m (k) = mk is a (mk) = �wk. Therefore, the IC
constraints (9) also hold, and the optimal information structure is the same as determined
by Proposition 1 up to values b� (c). Essentially, communication can be informative only
if the bias b � 1

4 . Based on these observations, the generalization of Theorem 2 can be
proved straightforwardly.

Theorem 4 If � is uniformly distributed and preferences are symmetric, then for b � 1
4 ,

there exists an equilibrium in the CWIIE model which is Pareto superior to all equilibria
in the CS model.

As in the case of the quadratic preferences, given any CS partition, the uniform par-
tition of the same size in the CWIIE model is incentive-compatible. Due to risk-aversion
of the principal, it provides the superior expected utility.

Before we compare principal�s payo¤ in our model with that in delegation, notice that
for the class of interval delegation sets (i.e., a expert�s policy must belong to a single
interval) and b � 1

2 , the optimal delegation set is still of a form [0; 1 � b]. Then, we can
generalize the result of Theorem 3: communication with the imperfectly informed expert
performs better than optimal delegation, when the bias b is su¢ ciently small.

15The exact formula for UnR (b) can be found in the Appendix.
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Theorem 5 If � is uniformly distributed and preferences are symmetric, then there is b�

such that for all b < b�, there exists an equilibrium in the CWIIE model, which provides a
superior outcome to the receiver compared to that in optimal delegation.

This result is weaker than Theorem 3 for the case of the quadratic preferences since
it does not guarantee that the CWIIE model performs better than delegation whenever
informative communication is feasible. An example demonstrates that this result cannot be
strengthened because of the risk-aversion of the principal.16 In communication, an induced
action is unbiased on average, but there is a chance that it is far from the optimal action
� (if a state is close to a boundary of a partition element). This increases informational
losses for essentially concave utility functions. Delegation, however, provides a permanent
bias b, which is more preferable by the highly risk-averse principal. Nevertheless, when
the bias is small, the optimal information structure becomes su¢ ciently �ne to reduce the
variance between optimal and induced actions, which results in better performance of the
CWIIE model over delegation.

Another approach to generalize model�s settings is to extend the case of the unifor-
m distribution function of the state. In particular, we restrict attention to the class of
distributions with a positive and continuously di¤erentiable density and supported on a
bounded interval. In this case, the result of Theorem 2 is completely robust.

Theorem 6 Suppose preferences are quadratic. For any distribution function of � with
a positive and continuously di¤erentiable density on a bounded support, there exists an
equilibrium in the CWIIE model which is superior to all informative equilibria in the CS
model.

In general, any informative CS partition is characterized by high informational losses
for large values of �. Thus, it can be modi�ed by the principal in a such way that it is
incentive-compatible in the CWIIE model and �more uniform�, which reduces a residual
variance of �.

Similarly, the theorem below compares principal�s payo¤s in the CWIIE model with
that in complete delegation. It demonstrates that the result of Theorem 3 for general
distributions holds, if the sender�s bias is small.17

Theorem 7 Suppose preferences are quadratic. For any distribution function of � with a
positive and continuously di¤erentiable density on a bounded support, there is ~b such that
for all b < ~b, there exists an equilibrium in the CWIIE model, which provides a superior
payo¤ to the receiver compared to that in the complete delegation.

16Consider the principal�s utility function U1 (w;w) = 0, U2 (w) = � jwj7, and the bias b = 0:126. Then
the optimal partition in the CWIIE model is the uniform three-element one. It is informative and provides
expected utility UR ' �4:5 � 10�7. However, optimal delegation gives UDR = �3:9 � 10�7, which is superior
to that in the CWIIE model.
17The problem of optimal delegation for general distributions and quadratic preferences is solved by

Alonso and Matouschek [1]. They provide necessary and su¢ cient conditions for delegation sets to be
optimal for cases of complete delegation, centralization (the delegation set that contains only the principal�s
preferred actions given prior information), and interval delegation. However, when the players�preferences
are su¢ ciently close, one can expect that principal�s incentives to restrict sender�s actions are small, and
the optimal delegation set and players�outcomes converge to that of the case of complete delegation.
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When the sender�s bias converges to zero, a size of intervals in the �nest incentive-
compatible partition converges to 2b regardless of the distribution. Equivalently, the num-
ber of elements n (b) in the �nest incentive-compatible partition grows as 1

2b , exactly as
in the case of the uniform distribution. This implies that the principal�s expected utili-
ty in the most informative equilibrium falls as � 1

12�n(b)2 or �
b2

3 , in contrast to �b
2 in

delegation.

6 Multi-Stage Communication

In general, communication between players may not be restricted to a single stage. More-
over, the example of oil lease sales demonstrates that the principal can determine the
precision of the expert�s information in every round, and request a new report afterwards.
In this context, our central result is that by proper updating the expert�s information from
stage to stage, the principal can disclose approximately full information in some interval
of the state space due to expert�s truth-telling communication in all stages.

Krishna and Morgan [12] describe multi-stage communication in the CS model without
updating sender�s information. In this case, the set of equilibrium outcomes is identical
to that in the one-stage communication game. Since the expert knows all information
before the communication starts, she sends the sequence of messages that induces the
most preferable action. However, without information update from stage to stage, the
receiver infers the same information about the state as in the one-stage case. Thus, the
set of induced actions is also not a¤ected, and any equilibrium in an multi-stage game
is equivalent to that in the one-stage game. This argument can be directly reapplied to
the case of an imperfectly informed expert without information updating. In contrast,
if the expert�s information is insigni�cantly updated at every stage, the outcome of the
multi-stage communication di¤ers signi�cantly from the one-stage case.

To introduce such updating in the model, the receiver speci�es a communication
schedule: a family of sets fW s

kg
ns�1;T
k=0;s=1, where ns sets fW

s
kg
ns�1
k=0 form a partition of � at

every round of communication s = 1; :::; T <1. Once chosen, a communication schedule
becomes common knowledge.

In every stage s, the sender observes an index is of the partition�s element W s
is
, which

contains �, and transmits a message ms 2M to the receiver. Thus, the imprecision of the

sender�s information about the state is determined by a measure of the set Ms =
sT
�=1

W �
i�
.

The sender�s signaling strategy � is a mapping from the space of all sequences (is)
T
1 to

a probability distribution over the message set �
s=1;:::;T

M . After receiving a sequence of

messages (ms)
T
1 , the receiver updates his posterior beliefs about the state and implements

an action a. An example below illustrates how multi-stage communication results in the
Pareto improvement.

Example 3. Take the sender�s bias b = 0:21. In the one-stage game, the uniform
two-element partition is optimal and provides receiver�s ex-ante payo¤ � 1

48 .
Now, consider communication through two stages such that the receiver determines

the communication schedule W 1
0 = (0; 84], W

1
1 = (0:84; 1], W

2
0 = (0; 0:42], W

2
1 = (0:42; 1]

and implements actions a (m0;m0) = a00 = 0:21, a (m0;m1) = a01 = 0:63, and a (m1; :) =

a1 = 0:92.
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Suppose that at the �rst stage the sender observes i1 = 1, which means that � is
uniformly distributed over the interval W 1

1 . Given this information, the sender�s utility
function US

�
a; bjW 1

1

�
is maximized at a0 = w1+w0

2 +b = 1:13. Also, her current information
will not be updated in the next round since W 1

1 �W 2
1 . Then, the message m1 induces the

action a1 for any message in the second stage.18 The message m0 can induce actions a00
and a01, depending on the message in the next stage. Since US

�
:; bjW 1

1

�
is increasing for

all a < a0 and max (a00; a01) < a1 < a0, then the sender strictly prefers to transmit the
message m1.

If i1 = 0, then the sender infers that � 2 W 1
0 , and her current information will be

updated in the next stage. Then, the message m1 induces the action a1, which provides
the expected payo¤ US

�
a1; bjW 1

0

�
' �1

7 . In contrast, sending message m0 in this stage
and truthful communication in the next stage results in the expected payo¤

E[US
�
a (m0;mk) ; bjW 2

k )
�
= � 1

w1

w2Z
0

(a00 � b� �)2d� �
1

w1

w1Z
w2

(a01 � b� �)2d� ' �
1

17
.

Thus, the sender still has no incentives to distort information.
In the second round, let i2 = 1. If i1 = 1, then according to the analysis above, the

sender induces the action a1 in the �rst stage by sending the message m1. If i1 = 0,
then she infers that � 2 W 1

0 \W 2
1 = (0:42; 0:84], and her optimal action becomes a00 =

w2+w1
2 + b = 0:84. Given the message m0 in the �rst round, messages m1 and m0 in the

second round induce actions a01 and a00, respectively. Because a00 < a01 < a00, it follows
that sending message m1 is strictly preferable to m0.

If i2 = 0, then the sender deduces that � 2 W 2
0 . Given the message m0 in the �rst

stage, the sender can induce actions a00 and a01 only. Notice that US
�
a00; bjW 2

0

�
=

US
�
a01; bjW 2

0

�
, since the distance between sender�s optimal policy a000 = w3+w2

2 + b = 0:42

and actions a01 and a00 is the same. Thus, the sender still cannot deviate from revealing
her information. It can be easily seen that induced actions are the receiver�s best-response
to the sender�s truth-telling strategy.

The expected utility of the receiver in this equilibrium is approximately � 1
79 , which

exceeds that in the most informative equilibrium in the one-stage game. This is because
conveyed information in the described equilibrium is equivalent to that in the one-stage
communication under a partition (wk) = (0; 0:42; 0:84; 1) and the truth-telling signaling
strategy. However, truth-telling is not the equilibrium strategy, since it violates the IC
constraints (9): w3 � w1 = 0:58 < 0:84 = 4b.

6.1 The revealing mechanism

Now, we present our major result for the multi-stage communication. There exists a com-
munication schedule, through which the receiver can reveal (almost) all information in the
interval [4b; 1].

First, restrict attention to two-element partitions W s
0 = [0; ws] and W s

1 = (ws; 1] at
each stage s = 1; :::; T . Equivalently, such communication schedule is determined by a
sequence of boundary points (ws)

T+1
0 , where we let w0 = 1 and wT+1 = 0.

18Another interpretation of this action�s rule is that communication stops as the sender conveys m1.
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Second, consider a decreasing communication schedule, that is, such that a sequence
(ws)

T+1
0 is decreasing. Given a state �, de�ne ~s = min fs : is = 1g to be the �rst stage, in

which the sender observes a higher index. If is = 0 for all s, then put ~s = T + 1. For a
decreasing communication schedule, is = 1 for all s � ~s; since W s

1 � W s+1
1 for all s, and

the sender�s information is not updated after the stage ~s. Thus, the space of all sequences
(is)

T
s=1 consists of T + 1 non-decreasing sequences I0 = (0)

T
1 and Ik = f(is)

T
1 : is = 1 for

s � k; is = 0 for s < kg, k = 1; :::; T .
Consider a decreasing communication schedule, depicted in Fig.3, such that

wT�1 � 4b; 0 < wT < wT�1, w0 = 1, and wT+1 = 0. (13)

Then, the sequence ( �ws)
T+1
1 , where �ws =

ws+ws�1
2 , s = 1; :::; T + 1, is also decreasing.

Figure 3: A decreasing communication schedule

De�ne �i = (wi;wi�1], i = 1; :::; T + 1. At the end of the communication process, the
receiver�s beliefs about � can be expressed as �(�ij (ms)

T
s=1), which means a belief that �

is uniformly distributed on �i with probability � (�ij:).
Given this setup, the main result is characterized by the following theorem.

Theorem 8 For any decreasing communication schedule (�s)
T+1
s=0 which satis�es (13),

there exists an equilibrium such that:
1) ms (Is) = is, s = 1; :::; T ,

2) a
�
(ms)

T
s=1

�
= �wj, where j = T + 1, if ms = 0 for all s, and j = min fs : ms = 1g

otherwise, and
3) �(�j j (ms)

T
s=1) = 1 and �(�ij (ms)

T
s=1) = 0, �i 6= �j.

Condition 1 describes the truth-telling signaling strategy of the sender. Condition 2
is the receiver�s best-response, given his posterior beliefs. Condition 3 outlines principal�s
posterior probabilities of � 2 �i for both non-zero-probability and zero-probability mes-
sages of the sender.

Corollary 1 By choosing a decreasing communication schedule (ws)
T
1 such that wT�1 =

4b, 0 < wT < 4b, and max
s=1;:::;T�1

jws � ws�1j ! 0 as T !1, the receiver discloses approxi-
mately full information in the interval [4b; 1] in the above equilibrium.
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Corollary 2 For b < 1
4 , there exists a communication schedule and an equilibrium under

this communication schedule in the model of multi-stage communication, which is Pareto
superior to any equilibria in the model of one-stage communication.

By slight updating information at all stages except the last two, the sender seems to
get a small piece of information at every stage. This argument is misleading, however. If
the sender observes is�1 = 0 in stage s � 1 and is = 1 in stage s, then she infers that
� 2W s�1

0 \W s
1 = (ws; ws�1]. Hence, her information about the state becomes very precise.

The main argument is that given this updated information and the receiver�s beliefs, the
sender�s best feasible action is the one which will be implemented after revealing her
information truthfully. In contrast, if is = 0, the sender�s information is still essentially
vague and will be improved in the future. Due to risk-aversion and su¢ ciently imprecise
information, the sender�s expected payo¤ from transmitting a distorted message m1 (and
inducing the action a = �ws) is quite low, and this signaling strategy is strictly dominated
by providing truthful information at this and all future stages. The crucial condition is that,
given is = 0, the quality of sender�s information must be su¢ ciently imperfect, which is
achieved by choosing the a su¢ ciently coarse structure of partitions in the last two stages
(wT�1 � 4b).

7 Extensions and Discussion

In this section, we discuss several issues: the principal�s utility in the multi-stage model as
the number of stages increases without bound; a comparison of e¢ ciency of multi-stage
communication versus one-stage communication; and the possibility to commit to actions
in some stages of the communication process.

7.1 The limit of disclosed information

When max
s=1;:::;T�1

jws � ws�1j ! 0 as T !1, approximately full information is revealed in
the interval [4b; 1]. Thus, the principal�s expected utility in the described equilibrium is
determined by boundary points wT�1 and wT in the last two stages

U limR (wT�1; wT ) = �
TX

�=T�1

w�Z
w�+1

�
w�+1 + w�

2
� �
�2
d� = � 1

12
w3T �

1

12
(wT�1 � wT )3.

Given constraint (13), U limR (wT�1; wT ) is maximized at wT�1 = 4b and wT = 2b, which
results in the limit of the expected utility

U limR = �4
3
b3.

The full disclosure of information in the interval [4b; 1] requires in�nitely many stages
of communication. Given the principal�s utility UTR in the game with T stages, a relative
di¤erence between UTR and the limiting utility U

lim
R , that is,

" =

����U limR � UTR
U limR

����
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can serve as the measure of imperfection of disclosed information.
Referring to the case of b = 0:21, the limit of the receiver�s expected utility in the

multi-stage equilibrium is U limR ' � 1
81 . However, Example 3 demonstrates that just two

stages of communication provide U2R ' � 1
79 , so that " =

U limR �U2R
U limR

' 2:5%. In general, it is
routine to show that the number of communication stages T increases as "�1=2.19 Thus, to
decrease ine¢ ciency, say, from 4% to 1%, the number of rounds of communication must
be doubled.

7.2 One-stage versus multi-stage communication

As mentioned above, when the bias in players�preferences b tends to 0, the number of
intervals n (b) of the optimal partition in one-stage communication grows as 1

2b , so that
the length of an interval �w decreases as 2b. Thus, the principal�s expected utility grows
as �n (b) (�w)

3

12 � � b2

3 .
In multi-stage communication, information cannot be fully revealed only if � < 4b,

which implies that the principal�s expected utility increases as a third power of b. As a
result, the e¢ ciency of multi-stage communication relative to one-stage rises in�nitely as
the con�ict of interest falls.

7.3 Commitment

In the previous analysis, we have considered a pure cheap-talk game, that is, uncondi-
tionally on the expert�s information, the principal has full authority over policies. Here,
we introduce an extension of the multi-stage model to a combination of communication
in some stages with delegation in others. The main result is that such combination ex-
tends the interval, in which approximately full information can be revealed, from [4b; 1] to�
5
3b; 1

�
.

In particular, we modify the multi-stage model as follows. The principal speci-
�es a decreasing communication schedule (ws)

T�1
1 for stages s = 1; :::; T � 1 and the

perfect information structure in the interval [0; wT�1]. Also, he implements an action

a
�
(ms)

T�1
1

�
=

wj+wj�1
2 , where j = min fs : ms = 1g. If ms = 0 for all s = 1; :::; T � 1,

then in the last stage T he delegates authority to the expert by determining the delegation
set [0; wT�1]. That is, if � 2 [0; wT�1] and the expert truthfully reveals her information
in stages s = 1; :::; T � 1 by sending message ms = 0, then in the last stage the expert
knows the state perfectly, but she can implement only policies in this interval. Using the
same approach as in Theorem 8, one can show that there exists an equilibrium such that
the expert truthfully reveals information in all stages up to stage T � 1 if wT�1 � 5

3b.
That is, when max

s=1;:::;T�1
jws � ws�1j ! 0 as T ! 1, then approximately full information

can be revealed in the interval
�
5
3b; 1

�
, and the principal�s limiting expected utility rises

from �4
3b
3 to �b3. This implies that there exists an informative communication even when

19Since conveyed information in the multi-stage equilibrium under a communication schedule (ws)
T+1
0

is equivalent to the truthful communication in the one-stage game with the partition (ws)
T+1
0 , the most

informative communication schedule is such that wT�1 = 4b, wT = 2b, and ws = 1� 1�4b
T�1 s, s = 0; :::; T �2,

which results in the receiver�s expected utility UTR = U
lim
R � 1

12
(1�4b)3
(T�1)2 .
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the bias is so large (b 2
�
1
4 ;
3
5

�
) that no informative communication is achievable in the

cheap-talk game.
Notice that the possibility to commit increases the principal�s utility not because of

expert�s informational superiority, but through a di¤erent channel. If the state � < wT�1,
then it will be imperfectly revealed in the last stage of the cheap-talk multi-stage game.
However, communication in the last stage is equivalent to the one-stage communication
game with an imperfectly informed expert, which provides a higher payo¤ than delegation.
Thus, the principal cannot bene�t from the expert�s informational superiority. The pos-
sibility to implement the expert�s favorite policy in the last stage serves as an attractive
�carrot�, which enforces her incentives to communicate truthfully in the previous stages.

8 Conclusion

We have demonstrated that by properly restricting the quality of the expert�s information,
the principal can obtain more information, and get a higher payo¤, than in the CS model
of communication. Moreover, our model leads to a superior expected payo¤ than that
provided by delegation. These results generally remain true for a wide class of preferences
and distributions.

Communication with an imperfectly informed expert in multiple rounds, where the
principal controls the quality of the expert�s information in every round, can elicit almost
all information for a large interval of the state space. This results in an ex-ante Pareto-
improvement compared to one-stage communication. When considering the example of an
oil�eld lease, the government can get more precise geological data from private companies
(which collect data) if it imposes proper restrictions on the number and locations of test
drills, and obtains copies of the reports after each stage of the process of exploration.

Another important aspect of the presented model is the number of equilibria, signif-
icantly exceeding the number of equilibria in Crawford and Sobel. In addition to pure-
strategy equilibria, there exist multiple mixed-strategy equilibria even with the same par-
tition. Nevertheless, despite the fact that all mixed-strategy equilibria are payo¤ inferior
to pure-strategy ones, they can still be superior to equilibria in the CS model. In the
case of the multi-stage communication, the constructed locally revealing equilibrium is
not unique. There exist other less informative babbling and semi-babbling equilibria such
that the sender does not reveal information in some stages of the communication process.

We did not address deliberately the case when the person who determines the quality
of the expert�s information is the expert herself. In this case, if there exists a credible
mechanism of the expert�s commitment, i.e., the expert commits �not to know too much�,
then the result will be the same in terms of disclosed information due to the closeness of
the expert�s and principal�s interests.

9 Appendix

In this section we provide proofs of the lemmas and theorems.

Proof of Lemma 1. Let a and a0 be two induced actions, where a0 > a. Consider types k and
k0 which induce corresponding actions, that is US (a; bjWk) � US (a

0; bjWk) and US (a0; bjWk0) �
US (a; bjWk). Then, it follows from (3) that US (a; b; �wk) � US (a

0; b; �wk) and US (a0; b; �wk0) �
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US (a; b; �wk0).

The single-crossing property of the sender�s state-relevant utility function d2

dad�US (a; b; �) > 0

implies that there exists a state � 2 ( �wk; �wk0) such that US (a0; b; �) = US (a; b; �). Also, this

property leads to (i) a < aS (�) < a0, where aS (�) = �+ b, (ii) a is not induced by any type i such

that �wi > �, and (iii) a0 is not induced by any type i such that �wi < �. The last two properties

along with the single-crossing property of UR (a; �) imply a � aR (�) = � � a0.
In addition, the symmetry of US (a; b; �) with respect to aS (�) implies that a0���b = �+b�a,

or aS (�) = � + b = a+a0

2 . This means that both aS (�) and aR (�) belong to the interval [a; a+a
0

2 ].

Since aS (�)� aR (�) = b, it means that a+a02 � a � b, or a0 � a � 2b.
To complete the proof, notice that the set of induced actions is bounded by aR (0) and aR (1).

Proof of Lemma 2. (A) This property follows from a strict concavity of US (a; bjWk) in

a: By contradiction, let �i;k > 0 and �j;k > 0; where j > i + 1, for some k. This implies that

US (ai; bjWk) = US (aj ; bjWk) � US(al; bjWk) for all l 2 I. Since ai+1 can be represented as a
convex combination of ai and aj , ai+1 = �ai + (1� �) aj for some � 2 (0; 1), this results in a
contradiction US (ai+1; bjWk) > �US (ai; bjWk) + (1� �)US (aj ; bjWk) = US (ai; bjWk).

(B) From (6), the maximal induced action aI�1 � �wn�1 < �wn�1 + b. Since US (a; bjWk) is

strictly increasing in a, for all a < �wk + b, the result follows immediately.

(C) Let �i;k > 0 and �j;s > 0 for some s > k and j < i. �i;k > 0 implies US (ai; bjWk) �
US (aj ; bjWk) ; and �j;s > 0 implies US (aj ; bjWs) � US (ai; bjWs). Combining these inequalities

results in US (ai; bjWs)� US (aj ; bjWs) � 0 � US (ai; bjWk)� US (aj ; bjWk), which contradicts the

single-crossing property US (ai; bjWs)� US (aj ; bjWs) > US (ai; bjWk)� US (aj ; bjWk).

(D) By contradiction, let �i;k > 0, �i+1;k > 0, and �i+1;k+1 = 0 for some k < n�1. Condition
(C) for �i;k > 0 implies �i+1;s = 0 for all s < k. Condition (C) for �i+1;k implies �j;k+1 = 0 for

all j < i+ 1. Since �i+1;k+1 = 0, then �j0;k+1 > 0 for some j0 > i+ 1. Again, using condition (C)

for �j0;k+1, we have �i+1;s = 0 for all s > k + 1: Hence, �i+1;s = 0 for all s 6= k: It follows from

(6) that ai+1 = �wk. Then, �i;k > 0 and �i+1;k > 0 imply US (ai; bjWk) = US (ai+1; bjWk), which

results in a contradiction ai < �wk + b < ai+1 = �wk.

(E) This is a corollary of property (C). If �i;k > 0, then �j;s = 0 for all j < i and s > k.

Similarly, �i;k0 > 0 implies �j;s = 0, j > i , s < k0. Thus, for all s such that k < s < k0, we have

�j;s = 0; j 6= i, that gives the desired result.

Proof of Lemma 3. By contradiction, suppose that there exists an indirect equilibrium, in
which the number of induced actions exceeds the number of types, that is, I > n. This implies

that there exists a type k such that �i;k > 0, �i+1;k > 0, and �i+1;k+1 = 0. Since the highest type

n� 1 does not mix (by property (B) of Lemma 2), it follows that k < n� 1. Then, property (D)
of Lemma 2 is violated, which completes the proof.

Given an equilibrium signaling strategy (�i;k), de�ne a correspondence p : I =) K such that

p (i) = fk 2 K : �i;k > 0g. Thus, p (i) determines the subset of types, inducing action ai. Similarly,
de�ne a function j : K ! I such that j (k) = min fi 2 I : �i;k > 0g, and a correspondence � :
I =) K such that � (i) = j�1 (i) = fk 2 K : j (k) = ig. Function j (k) determines the minimal
action induced by the sender of k-type. Conversely, given an action ai, � (i) determines the set of

types, for which this action is minimal. That is, if k 2 � (i), then �l;k = 0 for all l < i. The next
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lemma describes properties of p (i), j (k), and � (i).

Lemma 6 p (i), j (k), and � (i) satisfy the following properties.

a) j (k) is (weakly) increasing,

b) � (i) is non-empty, strictly increasing, and convex-valued,

c) p (i) is non-empty, (weakly) increasing, and convex-valued. In a pure-strategy equilibrium,

p (i) is strictly increasing, and

d) � (i) � p (i) and max� (i) = max p (i).

Proof a) j (k) = i implies �i;k > 0. Property (C) of Lemma 2 results in �i0;k0 = 0 for all

i0 < i and k0 > k, which leads to j (k0) � j (k).
b) For a given i, if �i;k = 1 for some k, then j (k) = i. Hence, k 2 � (i). If �i;k > 0 and

�i+1;k > 0, then property (A) implies �i0;k = 0 for all i0 < i, thus j (k) = i and k 2 � (i). If
�i�1;k > 0 and �i;k > 0, then property (D) implies �i;k+1 > 0, and property (C) gives �i0;k+1 = 0

for all i0 < i: Hence, j (k + 1) = i and k + 1 2 � (i). Thus, � (i) is non-empty. To prove that � (i)
is strictly increasing, by contradiction let i0 > i and k0 � k, for some k0 2 � (i0), k 2 � (i). Then,
k0 2 � (i0) implies j (k0) = i0 and �i0;k0 > 0. Similarly, we have j (k) = i and �i;k > 0. If k0 = k,

then i0 = j (k0) = j (k) = i and we have a contradiction. If k0 < k, then �i0;k0 > 0 and �i;k > 0

contradict condition (C). To show that � (i) is convex-valued, let k0 2 � (i), and k00 2 � (i). Thus,
�i;k0 > 0, �i;k00 > 0. Then, property (E) implies �i;k = 1 for all k such that k0 < k < k00.

c) The �rst part of the statement can be easily proved using the same techniques as those

developed in the � (i) context. The second part follows from the fact that p (i) = � (i) in a pure-

strategy equilibrium, hence p (i) is strictly increasing.

d) For any k 2 � (i), we have j (k) = i. This results in �i;k > 0, so k 2 p (i) and � (i) � p (i).
Now, for a given i0 consider k00 = max� (i0) = max fk 2 K : j (k) = i0g. Therefore, �i0;k00 > 0,

and �i0;k = 0 for all k > k00. If not, i.e., �i0;k > 0 for some k > k00, then condition (C) implies

�i;k = 0 for all i < i0. This means i0 = min (i : �i;k > 0) = j (k), which contradicts k00 = max� (i0).

Thus, �i0;k = 0 for all k > k00, which results in k � k00 for all k 2 p (i0). Thus, max p (i) � max� (i).

Since both � (i) and p (i) are non-empty, there exists k0 (i) = min� (i), k00 (i) = max� (i),

k0p (i) = min p (i), and k
00
p (i) = max p (i), i 2 I. That is, k0p (i) and k00p (i) are the smallest and the

largest types, respectively, which induce action ai. Similarly, k0 (i) and k00 (i) are the smallest and

the largest types for which ai is the minimal action. Property (d) of Lemma 6 implies k00 (i) = k00p (i)

and k0p (i) � k0 (i).
Because p (i) is convex-valued, the receiver�s best-response can be written as

ai =
1

2

P
k2p(i)

�i;k
�
w2k+1 � w2k

�
P

k2p(i)
�i;k (wk+1 � wk)

=
1

2

k00p (i)P
k=k0p(i)

�i;k(w
2
k+1 � w2k)

k00p (i)P
k=k0p(i)

�i;k (wk+1 � wk)
, i 2 I. (14)

Proof of Lemma 4. In a pure-strategy equilibrium, the receiver�s best-response is

ai =
wk0p(i) + wk00p (i)+1

2
=
wk0p(i) + wk0p(i+1)

2
, i 2 I,
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and the expected payo¤ is

UR = �
I�1X
i=0

wk0p(i+1)Z
wk0p(i)

(ai � �)2 d� = �
1

12

I�1X
i=0

�
wk0p(i+1) � wk0p(i)

�3
.

Consider the partition fW 0
igi2I such that W 0

i =
S

k2p(i)
Wk = (wk0p(i); wk0p(i+1)], i2 I, and the

signaling strategy m (i) = mi, i2 I. It easily follows that the receiver�s best-response is not a¤ected
by these transformations.

Since (�i;k) is an equilibrium strategy, then for any i 2 I, we have

ai + al � wk00p (i) + wk0p(i+1) + 2b � wk0p(i) + wk0p(i+1) + 2b for all al > ai.

According to (7), this implies US (ai; bjW 0
i ) � US (al; bjW 0

i ) for all al > ai. Similarly,

ai + al � wk0p(i) + wk0p(i)+1 + 2b � wk0p(i) + wk0p(i+1) + 2b for all al < ai

implies US (ai; bjW 0
i ) � US (al; bjW 0

i ) for all al < ai. Therefore, the described strategies constitute

an incentive-compatible equilibrium under the modi�ed partition. Payo¤ equivalence between the

initial and the constructed equilibria follows straightforwardly.

Now, consider a sequence �ai = 1
2

P
k2�(i)

(w2k+1�w
2
k)P

k2�(i)
(wk+1�wk)

, i2 I. Since � (i) is convex-valued, it follows

that

�ai =
1

2

k00(i)P
k=k0(i)

(w2k+1 � w2k)

k00(i)P
k=k0(i)

(wk+1 � wk)
=
wk0(i) + wk00(i)+1

2
=
wk0(i) + wk0(i+1)

2
: (15)

Lemma 7 In any equilibrium ((�i;k) ; (ai) ;
), we have �ai � ai, i2 I.

Proof For any i2 I, if �i;k0p(i) = �i;k00p (i) = 1, then � (i) = p (i), and

ai =
1

2

P
k2p(i)

�i;k
�
w2k+1 � w2k

�
P

k2p(i)
�i;k (wk+1 � wk)

=
1

2

P
k2p(i)

�
w2k+1 � w2k

�
P

k2p(i)
(wk+1 � wk)

=
1

2

P
k2�(i)

�
w2k+1 � w2k

�
P

k2�(i)
(wk+1 � wk)

= �ai:

If �i;k00p (i) < 1, then property (d) of Lemma 6 implies k00 (i) = k00p (i). If �i;k0p(i) < 1, then by
property (A) of Lemma 2, either �i+1;k0p(i) > 0 or �i�1;k0p(i) > 0. In the former case, condition (C)
of the Lemma 2 implies �i;k = 0 for all k > k0p (i). Thus, k

00
p (i) = k

0
p (i) and p (i) is a singleton. Since

� (i) is non-empty and a subset of p (i), we have � (i) = p (i) and ai =�ai. If �i�1;k0p(i) > 0, then
condition (D) of Lemma 2 requires �i;k0p(i)+1 > 0. By condition (C) of Lemma 2, �l;k0p(i)+1 = 0 for
all l < i. Thus, j

�
k0p (i) + 1

�
= i and k0p (i)+1 2 � (i). Since j (k) is increasing and j

�
k0p (i)

�
= i�1,

there is no k < k0p (i) + 1 such that j (k) = i. Therefore, k
0 (i) = k0p (i) + 1. From (14),

ai =
1

2

�i;k0p(i)(w
2
k0p(i)+1

� w2k0p(i)) +
k00p (i)�1P
k=k0p(i)+1

(w2k+1 � w2k) + �i;k00p (i)(w
2
k00p (i)+1

� w2k00p (i))

�i;k0p(i)(wk0p(i)+1 � wk0p(i)) +
k00p (i)P

k=k0p(i)+1

(wk+1 � wk) + �i;k00(i)(wk00(i)+1 � wk00(i))
:
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Comparing the last expression with (15), it follows that

�ai =
1

2

k00(i)P
k=k0(i)

(w2k+1 � w2k)

k00(i)P
k=k0(i)

(wk+1 � wk)
=
1

2

k00p (i)P
k=k0p(i)+1

(w2k+1 � w2k)

k00p (i)P
k=k0p(i)+1

(wk+1 � wk)
= ai(�i;k0p(i) = 0; �i;k00p (i) = 1).

Finally, we complete the proof by showing that ai is decreasing in �i;k0p(i) and increasing in
�i;k00p (i). A derivative of ai with respect to x =�i;k0p(i) is

dai
dx

=

k00p (i)P
k=k0p(i)+1

�i;k (wk+1 � wk) ( �wk0p(i) � �wk) 
k00p (i)P
k=k0p(i)

�i;k (wk+1 � wk)
!2 .

Since �wk0p(i)� �wk < 0 for all k > k
0
p (i), then

dai
dx < 0. A similar approach for

dai
dy , where y = �i;k00p (i),

results in dai
dy > 0, which implies �ai � ai.

Proof of Lemma 5. Using property (A) of Lemma (2), we may represent the receiver�s
expected utility in an equilibrium ((ai) ; (�i;k) ;
) as

UR ((ai) ; (�i;k) ;
) =

n�1X
k=0

P (Wk)
�
�j(k);kUR

�
aj(k)jWk

�
+ �j(k)+1;kUR

�
aj(k)+1jWk

��
:

Modify the signaling strategy (�i;k) as follows: derive all types �K that induce two actions, and

put �0j(k);k = 1 for all k 2 �K. That is, if the sender of k-type induced two actions in the initial

equilibrium, now she purely induces a lower action.
Notice that US

�
aj(k); bjWk

�
= US

�
aj(k)+1; bjWk

�
for all k 2 �K. The single-crossing property

d2

dadbUS (a; bjWk) > 0 implies

US
�
aj(k)+1; bjWk

�
� US

�
aj(k); bjWk

�
> US

�
aj(k)+1; 0jWk

�
� US

�
aj(k); 0jWk

�
.

Since US
�
aj(k)+1; bjWk

�
= US

�
aj(k); bjWk

�
and UR (ajWk) = US (a; 0jWk), then UR

�
aj(k)jWk

�
>

UR
�
aj(k)+1jWk

�
. Multiplying each term by P (Wk) and summing across all k 2 K result in

UR

�
(ai) ;

�
�0i;k

�
;

�
> UR ((ai) ; (�i;k) ;
). Notice that ai, i 2 I, is not the best-response to

the signaling strategy
�
�0i;k

�
.

By construction, �0i;k = 1 if and only if k 2 � (i). Then, given the strategy
�
�0i;k

�
, the re-

ceiver�s best response is �ai, i 2 I, and UR (�aijmi) � UR (aijmi), i 2 I . Multiplying each

term by P (mi) =
n�1P
k=0

P (Wk)�
0
i;k = wk0(i+1) � wk0(i) and summing across all i 2 I result in

UR

�
(�ai) ;

�
�0i;k

�
;

�
� UR

�
(ai) ;

�
�0i;k

�
;

�
.

Now, consider the partition �
 =
�
�Wi

	
i2I such that

�Wi =
S

k2�(i)
Wk = (wk0(i); wk0(i+1)], i 2 I,

and the signaling strategy (��i;s), i,s 2 I, such that m (i) = mi, i 2 I. A collapse of partition�s
elements does not a¤ect the receiver�s best-response, so the optimal action�s rule is �ai, i 2 I. This
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implies UR
�
(�ai) ; (��i;s) ; �


�
= UR

�
(�ai) ;

�
�0i;k

�
;

�
, and

UR
�
(�ai) ; (��i;s) ; �


�
� UR

�
(ai) ;

�
�0i;k
�
;

�
> UR ((ai) ; (�i;k) ;
) .

We complete the proof by showing that (��i;s) is incentive-compatible. That is, wk0(i+2)�wk0(i) � 4b
for all i = 0; :::; I � 2.

Since �i;k00(i) belongs to the initial equilibrium pro�le for each i 2 I, we have US
�
ai; bjWk00(i)

�
�

US
�
ai+1; bjWk00(i)

�
. This implies

ai + ai+1 � wk00(i) + wk00(i)+1 + 2b = wk00(i) + wk0(i+1) + 2b.

From Lemma 7, ai � �ai and ai+1 � �ai+1. Combining these inequalities results in

wk0(i) + wk0(i+1) + 2b � wk00(i) + wk0(i+1) + 2b � ai + ai+1 � �ai + �ai+1

=
wk0(i) + wk0(i+1)

2
+
wk0(i+1) + wk0(i+2)

2
=
wk0(i)

2
+ wk0(i+1) +

wk0(i+2)

2
,

which gives wk0(i+2) � wk0(i) � 4b.

Lemma 8 If the uniform partition of size n is incentive-compatible, then the incentive-compatible

equilibrium under this partition is payo¤ superior to any incentive-compatible equilibrium under a

partition of the same size.

Proof The ex-ante utility of the receiver in an incentive-compatible equilibrium is

UR = �
n�1P
k=0

wk+1R
wk

(ak � �)2d� =
n�1P
k=0

P (Wk) (US ( �wk; b; �wk)�D (Wk)) =

= �
n�1P
k=0

P (Wk)D (Wk) = �
n�1P
k=0

(wk+1 � wk)3

12
= �

n�1P
k=0

�w3k
12

=
n�1P
k=0

f (�wk) , (16)

where �wk = wk+1 � wk > 0 and f (x) = � 1
12x

3.

Clearly, f (x) is strictly concave for x > 0 and
n�1P
k=0

�wk = 1. For the uniform partition of size

n, �w0k =
1
n for all k. For any other incentive-compatible partition of the same size, the Jensen�s

inequality implies

UR =
n�1P
k=0

f (�wk) < nf

�
1

n

n�1P
k=0

�wk

�
= nf

�
1

n

�
=

n�1P
k=0

f (�w0k) = U
0
R.

Lemma 9 If a partition of size n is incentive-compatible, then the uniform partition of size n�1
is incentive-compatible also.

Proof Since a partition (wk)n0 is incentive-compatible, we have wn = 1 � wn�2 + 4b � ::: �
w1+

n�1
2 4b � n�1

2 4b for odd n, and wn = 1 � wn�2+4b � ::: � w0+ n�1
2 4b = n�1

2 4b for even n. In

both cases, 2
n�1 � 4b. Then, for the uniform partition (w0k)

n�1
0 , we have w0j+2�w0j =

j+2
n�1 �

j
n�1 =

2
n�1 � 4b.

Lemma 10 Among all partitions of an odd size n such that 1
2n < b �

1
2(n�1) , the highest ex-ante
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payo¤ in the incentive-compatible equilibrium is reached under the partition with all IC constraints

(9) binding.

Proof We prove the lemma using the Karamata�s inequality.20 Let sequences (xk)n1 and (yk)
n
1

be non-increasing, so x1 � x2 � ::: � xn and y1 � y2 � ::: � yn. If all the following conditions

satis�ed: x1 � y1; x1 + x2 � y1 + y2; x1 + x2 + x3 � y1 + y2 + y3; :::; x1 + x2 + ::: + xn�1 �
y1 + y2 + :::+ yn�1, and x1 + x2 + :::+ xn = y1 + y2 + :::+ yn, then we say that (xi)

n
1 majorizes

(yi)
n
1 . The Karamata�s inequality states that if (xi) majorizes (yi), and a function f(x) is continuos

and concave, then
nP
i=1

f (xi) �
nP
i=1

f (yi).

From (16), the receiver�s ex-ante payo¤ in the incentive-compatible equilibrium is UR ((wk)
n
0 ) =

n�1P
k=0

f (�wk), where �wk = wk+1 � wk > 0, and f (x) = � 1
12x

3, which is continuous and strictly

concave for x > 0.

Consider the sequence (yk)
n
0 , for which the IC conditions are binding, so yk = 2kb for even k,

and yk = 1 � 2b (n� k) for odd k. We need to show that if 1
2n < b �

1
2(n�1) , then UR ((yk)

n
0 ) �

UR ((wk)
n
0 ) for any partition (wk)

n
0 , which satis�es (9).

The IC conditions (9) can be written as

wk+2 � wk = wk+2 � wk+1 + wk+1 � wk = �wk+1 +�wk � 4b; k = 0; 1:::; n� 2:

For the sequence (yk)
n
0 , we have �yk = yk+1 � yk = 1� 2b (n� k � 1)� 2bk = 1� 2b (n� 1)

for even k. The condition b < 1
2(n�1) implies �yk > 0. Similarly �yk = 4b � �yk�1 = 4b � 1 +

2b (n� 1) = 2b (n+ 1) � 1 for odd k, and b > 1
2n >

1
2(n+1) implies �yk > 0. In addition, for odd

k, �yk ��yk�1 = 2b (n+ 1)� 1� 1+ 2b (n� 1) = 2 (2bn� 1) > 0. Thus, by permuting (�yk)n�10

we get a non-increasing sequence (Yk)
n
1 = (Y1; Y2; :::; Yn�1

2
; Yn+1

2
; :::; Yn), where Yk = 2b (n+ 1)� 1

for k 2 S1 = 1; 2; :::; n�12 , and Yk = 1 � 2b (n� 1) for k 2 S2 = n+1
2 ; :::; n. Note that S1 has one

element less than S2, since n is odd. Also, the IC conditions imply that Yk + Yj = 4b, k 2 S1,
j 2 S2.

Now, consider a sequence (wk)
n
0 , which satis�es (9). We need to show that a non-increasing

permutation (Xk)
n
1 of (�wk)

n�1
0 majorizes (Yk)

n
1 .

First, for even k, we have wk � wk�2 + 4b � ::: � w0 +
k
24b = 2kb = yk. Similarly, for odd

k, wk � yk. Therefore, �wk = wk+1 � wk � yk+1 � yk = �yk for odd k, and �wk � �yk for

even k. Thus, a non-increasing permutation (Xk)
n
1 of (�wk)

n�1
0 can be represented as (Xk)

n
1 =

(X1; X2; :::; Xn�1
2
; Xn+1

2
; :::; Xn), where Xj � Yk for all j; k 2 S1, and Xj � Yk for all j; k 2 S2.

This means that
P
k2S01

Xk �
P
k2S01

Yk for any S01 � S1, and
P
k2S02

Xk �
P
k2S02

Yk for any S02 � S2.

Also, the IC conditions require that for any k 2 ~S2 = S2 � fng = n+1
2 ; :::; n � 1, there must

exist q (k) 2 S1 such that Xq(k) +Xk � 4b, which we de�ne as follows. Denote in to be the index
of the smallest element �win of the sequence (�wk), which implies �win = Xn. Then, for all Xk,

k 2 ~S2, if Xk = �wi, then Xq(k) = �wi+1 for i < in, and Xq(k) = �wi�1 for i > in. Notice that

k 6= k0 for any k; k0 2 S2 implies q (k) 6= q (k0).

20See, for example, [9]
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Clearly, X1 � Y1; X1 +X2 � Y1+Y2; :::; X1+:::+Xn�1
2
� Y1 + :::+ Yn�1

2
. Also,

X1 + :::+Xn�1
2
+Xn+1

2
=

P
k2S1�q(n+12 )

Xk +Xq(n+12 )
+Xn+1

2
�

P
k2S1�q(n+12 )

Xk + 4b

�
P

k2S1�k(n+12 )
Yk + 4b =

P
k2S1�q(n+12 )

Yk + Yq(n+12 )
+ Yn+1

2
= Y1 + :::+ Yn�1

2
+ Yn+1

2
:

The argument can be reapplied iteratively for all k 2 ~S2. Since
nP
k=1

Xk =
nP
k=1

Yk = 1, this

completes the proof.

Proof of Theorem 1. We can rewrite n (b) as follows: if 1
2(c+1) < b <

1
2(c�1) for some odd c,

then n (b) = c, otherwise, for b = 1
2(c�1) , n (b) = c� 1. Then, by Lemma (9), the uniform partition

of size c � 1 is incentive-compatible, and provides the ex-ante payo¤ (in the incentive-compatible
equilibrium)

U c�1R = �
c�2P
k=0

(wk+1 � wk)3

12
= �

c�2P
k=0

1

12 (c� 1)3
= � 1

12 (c� 1)2
.

From Lemma 8, the incentive-compatible equilibrium under this partition is superior to all equi-

libria under partitions of the same size. Also, this equilibrium is superior to to all equilibria under

partitions of a smaller size (for a partition of size c0 < c� 1, the superior payo¤ U c0R = � 1
12(c0)2

is

reached in the incentive-compatible equilibrium under the uniform partition, which is smaller than

U c�1R ).
Now, consider two cases: 1

2(c+1) < b �
1
2c and

1
2c < b �

1
2(c�1) . In the �rst case, the uniform

partition of size c is incentive-compatible, hence it is optimal and brings ex-ante utility to the
receiver UR = � 1

12c2 . In the second case, Lemma (10) implies that among all partitions of size
c = n (b), the superior partition is that with binding IC constraints (9). It provides the receiver�s
ex-ante payo¤

U cR = �
1

12

�
4b2
�
c2 � 1

�
(4bc� 3) + 1

�
. (17)

For b = 1
2c , we have U

c
R = 1

12c2 , and the principal�s expected payo¤ is equal to that under the

uniform partition of size c. For b = 1
2(c�1) , U

c
R =

1
3(c�1)2 =

1

12( c�12 )
2 , which is a payo¤ under the

uniform partition of size c�1
2 .

Since n (b) = c for all b2
�
1
2c ;

1
2(c�1)

�
, taking the derivative of (17) with respect to b gives

d

db
U cR (b) = �2b

�
c2 � 1

�
(2bc� 1) :

Thus, d
dbU

c
R (b) < 0 for b > 1

2c . Moreover, U
c
R

�
1
2c

�
= 1

12c2 > U c�1R = 1
12(c�1)2 > 1

3(c�1)2 =

U cR

�
1

2(c�1)

�
. Hence, there exists a unique b� 2 ( 12c ;

1
2(c�1) ), such that U

c
R (b

�) = U c�1R , which

completes the proof.

Proof of Theorem 2. Formally, it is straightforward to prove that for any equilibrium
partition in the CS model, the uniform partition of the same size is incentive-compatible in the

CWIIE model and provides a superior ex-ante payo¤ to the receiver. However, Theorem 3 below

proves that for b � 1
4 , there exists an equilibrium in the CWIIE model which provides a higher

expected payo¤ to the principal than optimal delegation. Due to Dessein [7], delegation performs

better than CS communication for b � 1
4 , which completes the proof.

Proof of Theorem 3. Informative communication is feasible, if b � 1
4 . Melumad and Shibano
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[13] prove that for b � 1
2 , the optimal delegation set is the interval [0; 1� b]. In this case, expert�s

actions are

aS (�) =

�
� + b if � � 1� 2b
1� b if � > 1� 2b ; (18)

which provides the ex-ante payo¤ to the receiver

UDR (b) =
1R
0

UR
�
aS (�) ; �

�
d� = �

1�2bR
0

(� + b� �)2d� �
1R

1�2b
(1� b� �)2d� = �b2 + 4

3
b3. (19)

By Lemma (9), a uniform partition of size n (b) � 1 = 2h 14b i is incentive-compatible. Then,
receiver�s ex-ante utility under this partition is UR (b) = � 1

12�(2h 1
4b i)

2 = � 1
48�h 1

4b i2
. Since h 14b i �

1
4b � 1, we obtain UR (b) � �

1

48( 1
4b�1)

2 = � b2

3(1�4b)2 , and

UR (b)� UDR (b) � �
b2

3 (1� 4b)2
+ b2 � 4

3
b3 =

2

3
b2
1� 14b+ 40b2 � 32b3

(1� 4b)2
.

The function A (b) = 1 � 14b + 40b2 � 32b3 has three roots. Only one of them, namely, b0 =
1
8

�
3�

p
5
�
' 1

11 is in the interval
�
0; 14
�
. Since A (0) = 1, it follows that UR � UDR > 0 for all

b < b0.

For b 2 [b0;
1
4 ], consider three cases. If b 2 [ 16 ;

1
4 ], then the uniform partition of size 2 is

incentive-compatible, and provides the expected payo¤ to the receiver UR = � 1
12�22 = �

1
48 in the

pure-strategy equilibrium. Then, D (b) = UR (b)�UDR (b) = � 1
48 + b

2� 4
3b
3. D(b) is increasing in b,

so, it reaches the minimum 1
1296 for b =

1
6 . This implies that UR (b)�U

D
R (b) > 0 for all b 2 [ 16 ;

1
4 ].

For b 2 [ 18 ;
1
6 ), the uniform three-element partition is incentive-compatible, and bring ex-ante

payo¤� 1
108 in the incentive-compatible equilibrium. Then, D (b) = UR (b)�U

D
R (b) = � 1

108 + b
2 �

4
3b
3 > 0 for all b 2 [ 18 ;

1
6 ), since D

�
1
8

�
= 13

3456 . Finally, for b 2 [b0;
1
8 ), the uniform 4-element

partition is incentive-compatible, which results in UR = � 1
192 . Using the same technique as for

b � 1
6 , one can show that D (b) > D

�
1
12

�
= 5

5184 , which completes the proof.

Proof of Theorem 4. For symmetric preferences, the �arbitrage condition�in the CS model
and the IC conditions (9) in the CWIIE model are the same as in the case of the quadratic
preferences. Hence, for any b � 1

4 , the most informative equilibrium in the CS-model has a partition
of size NCS (b) = h� 1

2 +
1
2 (1 +

2
b )
1=2i(�), where hxi(�) is the smaller integer greater than or equal

to x. Notice that

NCS (b) = h�1
2
+
1

2
(1 +

2

b
)1=2i(�) � h1

2
+
1

2
(1 +

2

b
)1=2i � 1

2
+
1

2
(1 +

2

b
)1=2;

where hxi is the largest integer smaller than or equal to x. Then, 2NCS (b) b � 2b( 12+
1
2 (1+

2
b )
1=2) =

b(1 + (1 + 2
b )
1=2) = v (b). Since v( 14 ) = 1, and v

0 (b) = 1 + 1+bp
b(2+b)

> 0, then 2NCS (b) b < 1 and

the uniform partition of size n = NCS (b) is incentive-compatible.
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The receiver�s expected utility in the most informative CS equilibrium is

UCSR =
n�1X
k=0

wk+1Z
wk

U1 (�; �) + U2

�����wk + wk+12
� �
����� d� = EU1 + n�1X

k=0

wk+1�wk
2Z

�wk+1�wk
2

U2 (jtj) dt

= EU1 + 2
n�1X
k=0

wk+1�wk
2Z
0

U2 (t) dt = EU1 +
n�1X
k=0

f (�wk) ;

where EU1 =
1R
0

U1 (�; �) d�, �wk = wk+1�wk, and f (�wk) = 2
�wk
2R
0

U2 (t) dt. Then, for x > 0, we

have f 0 (x) = d
dx

x
2R
0

2U2 (t) dt = U2
�
x
2

�
, and f 00 (x) = 1

2U
0
2

�
x
2

�
< 0. The receiver�s ex-ante utility in

the incentive-compatible equilibrium in the CWIIE model under the uniform partition of size n is

UR = EU1 +
n�1X
k=0

wk+1Z
wk

U2

�����wk + wk+12
� �
����� d� = EU1 + 2 n�1X

k=0

wk+1�wk
2Z
0

U2 (t) dt (20)

= EU1 + 2n

1
2nZ
0

U2 (t) dt = EU1 + nf

�
1

n

�
= EU1 + nf

 
1

n

n�1X
k=0

�wk

!
:

Since f (x) is strictly concave and �wk+1 = �wk + 4b 6= �wk from the CS �arbitrage condi-

tion�, then the Jensen�s inequality implies f
�
1
n

n�1P
k=0

�wk

�
> 1

n

n�1P
k=0

f (�wk) or UR > UCSR .

Proof of Theorem 5. If preferences are symmetric, we use Proposition 4 from Alonso
and Matouschek [1], which implies that the optimal delegation set is the same as for quadratic
preferences, hence, it is the interval [0; 1� b]. Similarly, the sender�s policy is determined by (18).
This results in the receiver�s ex-ante utility

UDR � EU1 =
1Z
0

U2
���aS (�)� ���� d� = 1�2bZ

0

U2 (b) d� +

1Z
1�2b

U2 (j1� b� �j) d�

= U2 (b) (1� 2b) + 2
bZ
0

U2 (�) d�.

Now, consider the CWIIE model. If b 6= 1
2n for any integer n, then the partition of size

n (b) = 2h 14b i+1 is incentive-compatible. From Lemma 9, the uniform partition of size c = n (b)�1 =
2h 14b i �

1
2b �1 is incentive-compatible also. If b =

1
2n for some integer n, then the uniform partition

of size n = 1
2b is incentive-compatible, and so is the uniform partition of size 1

2b � 1. From (20),
the receiver�s ex-ante utility under the uniform partition of size c is

UR (c) = EU1 + 2c

1
2cZ
0

U2 (�) d� = EU1 + E

�
U2 (�) j� <

1

2c

�
:
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Since U2 (:) is decreasing, it follows that UR is increasing in c. Then,

UR (c) � UR
�
1

2b
� 1
�
= EU1 + 2

�
1

2b
� 1
� 1

2( 1
2b

�1)Z
0

U2 (�) d� = EU1 +
1� 2b
b

b
1�2bZ
0

U2 (�) d�:

Thus,
�
UR � UDR

�
b

1�2b �
b

1�2bR
0

U2 (�) d� � U2 (b) b � 2b
1�2b

bR
0

U2 (�) d� = � (b). Clearly, � (0) = 0.

Taking a derivative of � (b) with respect to b gives

�0 (b) = U2

�
b

1� 2b

�
1

(1� 2b)2
� U 02 (b) b� U2 (b)�

2

(1� 2b)2

bZ
0

U2 (�) d� �
2b

1� 2bU2 (b) :

From the last expression, �0 (0) = 0. Taking the second derivative results in �00 (0) = �U 02 (0) � 0.
If U 02 (0) < 0, then by Taylor�s formula � (b) = � (0) + �0 (0) b + 1

2�
00
�
~b
�
b2 = 1

2�
00
�
~b
�
b2, where

~b 2 [0; b]. Since �00 (0) > 0 and �00 (b) is continuous, then there exists b� such that �00 (b) > 0, and
hence, � (b) > 0 for all b 2 (0; b�). If U 02 (0) = 0, then �00 (0) = 0. Taking the third derivative gives
�000 (0) = �2U 002 (0) > 0. By Taylor�s formula, � (b) = � (0) + �0 (0) b + 1

2�
00 (0) b2 + 1

6�
000 (b�) b3 =

1
6�

000 (b�) b3, where b� 2 [0; b]. Since �000 (0) > 0 and �000 (b) is continuous, then � (b) > 0 for all b in
a some neighborhood of 0.

Proof of Theorem 6. The �arbitrage condition�in the CS model is

wk+1 + b� ak = ak+1 � wk+1 � b, (21)

where

ak = E [�j� 2 (wk; wk+1]] =
1

F (wk+1)� F (wk)

wk+1Z
wk

�dF (�) . (22)

In the CWIIE model, the sender�s type-relevant utility function is

US (a; bjWk) = �
1

F (�k+1)� F (�k)

wk+1Z
wk

(a� b� �)2 dF (�) .

This function is concave and symmetric with respect to aSk = ak + b. Thus, the IC constraints
aSk � ak � ak+1 � aSk can be written as

ak+1 � ak � 2b, k = 0; :::; n� 2. (23)

The condition (21) can be expressed as ak+1 � ak = 2 (wk+1 � ak) + 2b > 2b, since wk+1 > ak =
E [�j� 2 (wk; wk+1]] for f (�) = F 0 (�) > 0. Thus, any CS partition (wk)n0 is incentive-compatible
in the CWIIE model. Moreover, IC conditions (23) are satis�ed for all w0k in some neighborhood

of wk, k = 1; :::; n� 1, since ak, k = 0; :::; n� 1, are continuous in all wk.
The receiver�s ex-ante utility in the incentive-compatible equilibrium is

UR = �
n�1X
k=0

wk+1Z
wk

(ak � �)2 dF (�) : (24)
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Then,

dUR
dw1

= � (a0 � w)2 f (w1)�
da0
dw1

w1Z
0

(a0 � �) dF (�) + (a1 � w1)2 f (w1)�
da1
dw1

w1Z
0

(a1 � �) dF (�) .

From (22), the second and the last terms in the expression above are equal to 0, which implies

dUR
dw1

= f (w1) (a1 � a0) (a0 + a1 � 2w1) = 2f (w1) (a1 � a0) b > 0.

Thus, the partition (0; w01; w2; :::; 1), where w
0
1 is su¢ ciently close to w1, is incentive-compatible

and provides strictly higher ex-ante payo¤.21

Proof of Theorem 7. If �k = wk+1�wk is the length of a partition�s element Wk, then the
receiver�s optimal action (22) can be represented by the Taylor�s formula around wk as

ak = wk +
1

2
�k +

1

12

f 0 ( ~wk)

f ( ~wk)
�2k; (25)

where ~wk 2 [wk; wk+1]. Similarly, ak�1 = wk� 1
2�k�1+

1
12
f 0( ~wk�1)
f( ~wk�1)

�2k�1, where ~wk�1 2 [wk�1; wk].
Then, the IC constraints (23) become

�k�1 +�k +
1

6

f 0 ( ~wk)

f ( ~wk)
�2k �

1

6

f 0 ( ~wk�1)

f ( ~wk�1)
�2k�1 � 4b. (26)

Similarly, expanding the density f (�) by the Taylor�s formula around wk results in

f (�) = f (wk) + f
0 (ŵk) (� � wk) , (27)

where ŵk 2 [0; �]. Using (25) and (27), a sum�s element UkR = �
wk+1R
wk

(ak � �)2 f (�) d� in the

principal�s ex-ante utility (24) can be estimated as

UkR = �
1

12
f (wk)�

3
k +O

�
�4k
�
, (28)

where O
�
�4k
�
has an order �4k. Then, taking the length of the uniform partition�s element �k = cb,

where c 2
�
2; 2
p
3
�
is chosen to satisfy cbN = 1 for some integer N , transforms (26) into

(2c� 4) b+ b2
�
1

6

f 0 ( ~wk)

f ( ~wk)
c2 � 1

6

f 0 ( ~wk�1)

f ( ~wk�1)
c2
�
� 0,

which is satis�ed for a su¢ ciently small b. Also, (28) can be written as

UkR = �
1

12
f (wk) c

3b3 +O
�
b4
�
.

The principal�s ex-ante utility in the case of complete delegation is

UDR = �b2 =
N�1X
k=0

Uk,

21This argument can be reapplied to all equilibrium boundary points wk; 0 < k < n� 1:
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where

Uk = �b2 (F (wk+1)� F (wk)) = �b2
�
f (wk)�k +O

�
�2k
��
= �f (wk) cb3 +O

�
b4
�
.

This implies that for su¢ ciently small b,

UkR � Uk = f (wk)
�
c� c3

12

�
b3 +O

�
b4
�
= f (wk)

�
1� c2

12

�
cb3 +O

�
b4
�
> 0;

and summing across all k = 0; :::; N � 1 results in UR > UDR .

Proof of Theorem 8. We prove the statement by induction. That is, we show that the

sender cannot bene�t by distorting information in any stage, conditional on the truth-telling at all

previous stages.

1) For s = ~s we have is = 1, and i� = 0 for � < s (the last condition is omitted for ~s = 1). The

sender infers that � 2Ms = [ws; ws�1], and the optimal action for her is aS (Ms) = �ws + b. Given

truth-telling in previous stages, we have m� = 0, � < s. Then, if ms = 1, due to the receiver�s

beliefs, we have j = s, and the induced action is as = �ws. On the other hand, if ms = 0, then j > s,

and the induced action is aj = �wj < as < �ws + b, which implies US (aj ; bjM1) < US (as; bjM1).

Hence, m~s = 1.

Also, for all s > ~s, we have is = 1. Since m~s = 1, the induced action is a~s = �w~s for any ms,

s > ~s. Thus, the sender still cannot bene�cially deviate from ms = 1, s > ~s.

2) For s such that is = 0, we have i� = 0 for � < s. Given this information, the sender

infers that � 2 Ms = [0; ws]. Assuming m� = 0 for � < s, the message ms = 1 induces the

action as = �ws =
ws+ws�1

2 , for any m� , � > s. This brings the expected utility to the sender

US (as; bjMs) =
1
ws

wsR
0

US (as; b; �) d� = � 1
ws

wsR
0

�
ws+ws�1

2 � b� �
�2
d� = �(w

2
s

12 +
w2s�1
4 � bws�1 +

b2).

Now, consider the sender�s expected utility from the signaling strategy �m� = i� , � � s. Since
i� = 0 and m� = 0 for � < s (assuming truth-telling in previous stages), we can denote �m� = i� ,

for all � = 1; :::; T .

If s = T , then � 2 MT+1 = [0; wT ]. The message mT = 0 induces the action aT+1 =

�wT+1 =
wT
2 , and the message mT = 1 induces aT =

wT+wT�1
2 � wT+4b

2 = wT
2 + 2b. This gives

US (aT+1; bjMs) � US (aT ; bjMs), since aT + aT+1 =
wT+wT�1

2 + wT
2 � wT

2 + 2b+ wT
2 = wT + 2b.

For s < T , the sender�s ex-ante utility from ( �m� )
T
�=1 is

US
�
a(( �ms)

T
s=1); bjMs

�
=
1

ws

TX
�=s

w�Z
w�+1

US ( �w�+1; b; �) d� = �
1

ws

TX
�=s

(�w� )
3

12
� b2,

where �w� = w� � w�+1 > 0.
Then,

� 1

12ws

TX
�=s

(�w� )
3 � b2 > � 1

12ws

 
TX
�=s

�w�

!3
� b2 = � w3s

12ws
� b2 = �w

2
s

12
� b2.

In addition, ws�1 � 4b implies �w2s
12 �b

2�US (as; bjMs) = �w2s
12 �b

2�(�1) (w
2
s

12 +
w2s�1
4 �bws�1+

b2) = 1
4ws�1 (ws�1 � 4b) � 0, which leads to US

�
a(( �ms)

T
s=1); bjMs

�
> �w2s

12 � b
2 � US (as; bjMs).

Hence, for is = 0, s = 1; :::; T the sender is worse o¤ by sending ms = 1 instead of ms = 0.
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To complete the proof, it easily follows that the described signaling strategy generates beliefs

that � is uniformly distributed on �i = (wi;wi�1], and a
�
(ms)

T
s=1

�
= �wj is a best-response of the

receiver given his beliefs.
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