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Abstract

Many economic and social networks share two common organizing features: (1) a core-

periphery structure; (2) positive correlation between network centrality and payo¤s. In this

paper, we build a model of network formation where these features emerge endogenously. In

our model, the unique equilibrium network architecture is a periphery-sponsored star. In this

equilibrium, one player, the center, maintains no links and achieves a high payo¤, while all

other players maintain a single link to the center and achieve lower payo¤s. With heterogeneous

groups, equilibrium networks are interconnected stars. We show that small minorities tend to

integrate while large minorities are self-su¢ cient. Although any player can be the center in a

static equilibrium, evolution selects the agent with most valuable resources as the center in the

long run. In particular, even small inequalities in resources can lead to large payo¤ inequality

because of the endogenous social structure. Our main results are robust to the introduction of

transfers and bargaining over link costs.
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�The social capital metaphor is that the people who do better are somehow better

connected. Certain people or certain groups are connected to certain others, trusting

certain others, obligated to support certain others, dependent on the exchange with cer-

tain others. Holding a better position in the structure of these exchanges can be an asset

in its own right. This asset is social capital�

Ronald S. Burt, 2005

1 Introduction

Networks in�uence behavior in many economic contexts, and network structure can play an im-

portant role in determining agents� access to various resources.1 Remarkably, a wide variety of

economic and social networks share two common organizing features. First, these networks exhibit

a core-periphery structure. A small number of central agents or �hubs�agglomerate a dispropor-

tionate amount of connections, while most other agents maintain few relationships. Hubs channel

information and rumors, broker knowledge between otherwise disconnected agents, and bridge other

resources between agents in the periphery. Examples of this core-periphery structure include net-

works of individuals, such as networks of scienti�c collaboration (Moody, 2004; Newman, 2004;

Goyal et al. 2005), friendship (Adaic and Adam, 2003), community support (Tardy and Hale,

1998), informal networks of advice in the workplace (Krackhardt and Hansen, 1993, Cross et al.,

2001), as well as interlocking directorates of corporations (Mizruchi, 1996). Similar core-periphery

structures have been observed at the level of organizations, like the R&D alliances in knowledge-

intensive industries (Powell et al., 1996; Gulati and Gargiulo, 1999) and international trade (Snyder

and Kick, 1979). Barabasi and Albert (2003) summarize evidence on the emergence of hubs in many

large networks.

A second empirical regularity is the positive correlation between network position and various

measures of performance and payo¤s. A body of evidence shows that central agents do better than

peripheral agents in many environments. Burt (2000) surveys the literature in sociology on the

performance of well-connected individuals, and shows that in managerial networks promotion rates

and high evaluation are positively related to centrality. Cross and Cummings (2004) argue that the

higher performance of central agents in an organization�s communication network is due to better

access to non-redundant information. Balwin et al. (1997) show that in a sample of MBA students,

1Connnections are a leading source of information about employment opportunities (Granovetter, 1974; Mont-
gomery, 1991; Topa, 2001; Calvo-Armengol and Jackson, 2004), consumption products (Katz and Lazersfeld, 1955;
Reigen and Kernan, 1986), and health alternatives (Feldman and Spencer, 1965). Fund managers form portfolios
based on advice from other investors (Hong et al. 2004). The adoption of new technologies in agriculture is strongly
a¤ected by learning spillovers (Foster and Rosenzweig, 1995; Conley and Udry, 2004). R&D alliances are important
in the development of successful innovations (Powell et al, 1996). Network e¤ects play an important role in deter-
mining attitudes toward welfare (Bertrand et al. 2000), engagement in criminal behavior (Glaeser et al., 1996) and
the accumulation of human capital (Katz et al., 2001).
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centrality is positively related to academic performance. Similarly, in labor markets, centrality is

associated with �nding better paid jobs (Lin 2001). Across organizations, Powell et al (1999) and

Ahuja (2000) show that centrality is positively related to volume of patenting, earnings, and higher

chances of survival.2

This paper builds a theory of endogenous network formation that leads to (1) the emergence

of core-periphery structures, and (2) a positive relationship between network position and payo¤s.

Our model is based on network externalities: agents maintain links both to obtain direct bene�ts,

and also to access indirect bene�ts via the networks of the people they link to. We show that when

maintaining links is costly, such externalities lead to agglomeration bene�ts, the emergence of hubs

and an associated payo¤ inequality.

In Section 2, we present the basic network formation model. The key assumptions of the model

are that network bene�ts exhibit strongly decreasing returns to scale, and that there are frictions in

communication. We provide microfoundations for these assumptions using two stylized examples.

In the �rst example, agents seek a partner with whom to complete a task by asking their close

neighbors in the network, who in turn can refer to their neighbors, and so on. In the second

example, agents have imperfect information about the state of the world, but can obtain noisy

signals about the information of others through the social network. In both examples, network

externalities exhibit decreasing returns at the individual level: with a large neighborhood, access

to additional people has little e¤ect on the likelihood of �nding a partner, or on the precision of

the estimate. Frictions in communication imply that bene�ts decrease with the distance between

players; we require these bene�ts to vanish beyond some �nite threshold distance.

Our �rst main result is presented in Section 3. We show that in the network formation model

explained above, the unique Nash equilibrium network architecture is the periphery-sponsored star.

Figure 1 demonstrates the shape of the equilibrium network. In words, there is a single player, the

center, who maintains no links, and all other players maintain one link to the center. It is easy to

see that the periphery-sponsored star is an equilibrium of the model. Establishing that there are no

other equilibrium architectures is more challenging. To see the logic behind this result, �rst note

that limits to communication induce agents to form links that keep them close to one another. As

a result, in any equilibrium there must exist agents who have a large number of close connections.

In such a network, due to strong decreasing returns, all agents �nd it optimal to maintain at most

one link: connecting to a well-connected individual provides access to a high payo¤, which makes

forming a second link suboptimal.

This characterization of equilibrium shows that our model can explain the endogenous emer-

gence of hubs: any equilibrium network has a well-de�ned center. Importantly, the equilibrium

architecture is unique, which is consistent with the core-periphery structure being so pervasive in

2While there is no clear evidence on causality, researchers often argue that having better connections can in itself
lead to higher payo¤s.
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Figure 1: Periphery-sponsored star.

a variety of networks. The model also generates the positive correlation between network position

and payo¤s documented in the data. The equilibrium payo¤ of the center is higher that the payo¤

of peripheral agents for two distinct reasons. First, the center is closer to all agents in the economy

in terms of network distance, which increases her payo¤ in the presence of communication frictions.

Second, the center maintains no links, while peripheral agents all maintain a single costly connec-

tion. Interestingly, this payo¤ inequality can make the equilibrium network ine¢ cient because the

bene�t function is concave.

The basic model predicts that there exists a single hub in the entire economy. In Section

4 we show that the model can also generate multiple hubs if we introduce heterogeneity across

players. Formally, we assume that there are a number of groups in the population, and maintaining

links within a group has a lower cost than maintaining a link across groups. Intuitively, these

subcommunities may correspond to di¤erences in geography, race, or other characteristics. In this

setup, we �nd that any equilibrium has an �interlinked star� architecture. Subcommunities are

organized into stars, which may be separate or connected to one another. This architecture appears

to be a good description of co-authorship networks, where sub-disciplines within a discipline are

organized in subnetworks with strong core-periphery features, which are loosely connected to each

other (Newman, 2004).

We study comparative statics in the case with two subcommunities. We �nd that when the

two groups are about the same size, separation is more likely, whereas smaller minority group is

more willing to integrate. We also show that when the cost di¤erence between the two types of

connections is low, the forces of integration are so strong that a single star obtains. In contrast,

when the network is very good in channeling indirect bene�ts, interlinked but di¤erent stars are a
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more likely outcome. Hence, in response to improvements in network technology, subcommunities

can either �get closer or drift apart� (as in Rosenblat and Mobius, 2004), depending on whether

these improvements a¤ect the relative cost of links or the communication e¢ ciency of the network.

In the basic model, all agents are identical. Therefore, while the equilibrium architecture is

unique, the identity of the central agent is not: for every agent i in the economy there exists

an equilibrium with i as the center. This result suggests that history and luck are important

determinants of centrality. In Section 5 we investigate the determinants of centrality further by

assuming that there exists an agent with a special quality that makes her more bene�cial to link

to. In this setup, there is still a multiplicity of static equilibria, and any player can be the center.

However, a myopic best response dynamics with persistent randomness (as in Kandori et. al., 1993

and Young, 1993) selects a unique equilibrium in the long run, in which the center is the player

with the special quality. We conclude that even though luck and history matter in the short term,

qualities become more important over long horizons. Importantly, even an arbitrarily small quality

advantage can lead to centrality and a signi�cant payo¤ advantage. Hence, small di¤erences in

endowments can be ampli�ed and lead to large inequality due to the endogenous social structure.

Our �ndings are consistent with the positive empirical relationship between human capital and

social capital (Helliwell and Putnam, 1999; Glaeser et al., 2002).

One limitation of our basic model is that the cost of any connection is fully borne by the agent

maintaining the link. In section 6 we relax this assumption and allow agents to share link costs by

means of transfers, as in Bloch and Jackson (2005). This extension is intended to capture the idea

that agents may bargain to determine how their joint surplus is shared. Agents may also choose

to invest in multiple links in an attempt to become central. The transfers can represent monetary

payo¤s, for example in a network of �rms, but may also capture non-pecuniary bene�ts in social

networks. In this context, link formation incentives are determined by the joint surplus over links.

We show that the star architecture continues to be the unique equilibrium outcome if the payo¤

function satis�es an additional condition.3 Loosely, we require that the incentives to form a link

between two parties are increasing in the number of neighbors of either party. Importantly, the

analogue of this �monotone surplus condition�always holds in the basic model without transfers.

The intuitive role of the condition is to rule out fragmented networks and encourage agglomeration,

leading to the star architecture.

This paper builds on and contributes to the growing literature on endogenous networks. In their

in�uential work, Jackson and Wolinsky (1996) study a cooperative model of network formation.

More closely related to our work are Bala and Goyal (2000) and Galeotti, Goyal, and Kamphorst

(2005) who both study non-cooperative models of network formation. Bala and Goyal (2000) allow

for a general bene�t structure and show that, in the absence of frictions in communication, there are

3We analyze the model with transfers using two re�nements of the pairwise Nash equilibrium concept introduced
by Jackson and Wolinsky (1996) to study models with two-sided network formation.
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a large number of pure strategy Nash equilibria, but a unique strict Nash equilibrium architecture,

the center-sponsored star. In this equilibrium, the center obtains the lowest payo¤ in the population,

in contrast with the evidence on performance and network position discussed above. Galeotti, Goyal

and Kamphorst (2005) focus on a constant returns to scale bene�t function with two groups. They

show that for some parameters, the periphery-sponsored interlinked star can be the unique strict

Nash equilibrium in the restricted case when there are very small frictions in communication. The

logic is that when there are almost no frictions, a single link to any other player is su¢ cient to

reap all bene�ts. In contrast, in our model, sparse networks emerge due to decreasing returns

independently of the size of frictions and without the need to rely on strict Nash equilibrium.

Neither of these papers discuss the selection of the center and the role of two-sided links and

transfers. In addition, relative to this work, our model is more directly motivated by empirical

evidence.

Other work on network formation includes Kranton and Minehart (2001) who model the en-

dogenous formation of buyer-seller networks. Goyal and Joshi (2002) analyze the formation of

R&D collaboration networks between �rms in an oligopoly. Goyal and Vega-Redondo (2005) and

Hojman and Szeidl (2005) study the interplay between network formation and equilibrium selection

in coordination games. Jackson and Dutta (2003) and Jackson (2005) provide an overview of this

growing literature.

2 A Model of Network Formation

Consider a simultaneous-move game in which N players decide on maintaining links to one another.

Each link represents an economic or social connection between two players. A strategy for player

i is a vector si 2 f0; 1gN�1, where sij = 1 if player i decides to link j and 0 otherwise. Any

strategy pro�le de�nes an undirected graph or network denoted by g = (s1; :::; sN ) where agents

are the nodes and links are the edges of this graph. Links are costly but give rise to the bene�ts

of having direct or indirect access to other players. The cost of forming a link is c > 0. Links are

undirected in providing access to others, that is, a link between any two players is a conduit that

allows resources to �ow in both directions. We allow bene�ts to depend on the distance in the

graph between players. Formally, the distance between two players i and j is the number of edges

along the shortest path between i and j in the network g. If no such path exists, the distance is

set to in�nity. In this model, the distance between any two players is endogenous and need not be

related to a exogenous measure separation such as geographic distance or cultural di¤erences.4 For

each player i, denote the number of links i maintains by li =
P
j2N s

i
j and the number of players

who are exactly at distance k from i in the network g by nik. The payo¤ of player i in the network

4The extension in Section 4 illustrates how network distance responds endogenously to such exogenous measures
of separation.
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formation game is de�ned as

�i(si; s�i) = f
�
a1 � ni1 + a2 � ni2 + :::+ ad � nid

�
� c � li; (1)

where f(:) is a strictly increasing and concave real valued bene�t function. Here d is the commu-

nication threshold : agents who are more than d far away yield no bene�t. The positive weights

a1, a2,..., ad measure the relative importance of neighbors at di¤erent distances. We assume that

a1 � a2 � ::: � ad, so that more distant neighbors yield (weakly) less bene�ts. We also normalize
a2 = 1. This assumption is inconsequential, but makes it easier to state our results. Important

special cases include a1 = a2 = ::: = ad = 1 in which case direct and indirect neighbors are equally

important, and as+1 = � � as with 0 < � < 1, that is, geometric discounting of bene�ts by distance.
In the sequel we will sometimes refer to the sum ni = a1 � ni1 + a2 � ni2 + :::+ ad � nid as the e¤ective
number of agents or e¤ective neighbors that i has access to.

By assuming that f(:) is increasing and the discount weights are positive we restrict attention

to the case of positive spillover from connections: The addition of an arbitrary link to the network

weakly increases the bene�ts of all players. Allowing for congestion in the model is an interesting

extension that we do not focus on in this paper.

2.1 Key assumptions

Throughout the paper, we make the following two assumptions about the payo¤ structure.

Assumption 1. (Limits to communication.) The communication threshold d is �nite.

Assumption 1 states that distant neighbors in the network yield no bene�t, which we �nd

reasonable in many contexts. For the second assumption, we introduce the de�nition that f(:)

exhibits (M; c)-strong decreasing returns if it is strictly increasing, concave, and for all m > M the

following inequality is satis�ed:

f(2m)� f(m) < c: (2)

Assumption 2. (Strong decreasing returns.) The bene�t function f(:) exhibits (M; c)-strong

decreasing returns for some M � 0.
For example when f(:) is bounded, it is easy to see that for any c there exists anM such that f(:)

exhibits (M; c)-strong decreasing returns. Hence the commonly used exponential utility function

f(n) = �e�An as well as power utility f(n) = n1�=(1 � ) for  > 1 satisfy strong decreasing

returns for some M . Intuitively, f(:) exhibits strong decreasing returns if it grows slower than the

log.5 Note that if the weights a1; :::; ad are proportionally changed, the de�nition of f(:) and the

threshold M in the concept of strong decreasing returns need to be modi�ed accordingly. This

is the reason for normalizing a2 = 1. We discuss the implications and intuitive content of these

assumptions in Section 3.

5Note that f(n) = A � log(n) has (0; c)-strong decreasing returns as long as A < c= log 2.
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2.2 Micro-Foundations for Key Assumptions

In this section, we motivate our key assumptions by building two examples where strong decreasing

returns and limits to communication arise endogenously.

2.2.1 Advice-Seeking and Knowledge Exchange in a Network

Network ties between individuals or organizations are often helpful in overcoming problems that

agents would not be able to solve in isolation. For example, the developer of a project may face

a problem he is not familiar with. At the same time, the developer may have skills that he does

not need for the current problem, but that might be useful for other developers. Such situations

can emerge in technology intensive industries, in academic research, as well as in agriculture. For

example, Allen (1984) shows that engineers in R&D labs are �ve times as likely to use a personal

source of information than an impersonal source like a scienti�c journal.

Formally, consider an economy where agents form costly links to one another, and then each

agent i faces a problem yi. There are K di¤erent types of problems, i.e., yi 2 f1; :::;Kg, and each
problem occurs with probability 1=K. Each agent i is endowed with the ability �i 2 f1; :::;Kg to
solve a speci�c type of problem. The ex ante probability that agent i is able to solve problem y is

assumed to be 1=K for each y. An unsolved problem yields a low payo¤ of �1, a solved problem
gives 0. Agents can consult their neighbors to �nd a solution to their problem.6 Since a solution is

time sensitive, we assume that the agents can only reach neighbors within a distance of d, where

d � 2. There is also a friction in the communication process: the probability of learning the ability
of a neighbor at distance � 2 f0; :::; dg is p�, where p� 2 (0; 1] is decreasing in �. The case p� � 1
corresponds to frictionless communication.

It follows that a player with n� neighbors at distance � �nds no solution to her problem with

probability
Qd
�=1 [p� (K � 1) =K]n� . De�ne a� implicitly by p� =

�
K�1
K

�a��1, then the agent�s
expected payo¤ takes the form

f(�ni) = �
dY
�=1

�
K � 1
K

�a�n�
= �

�
K � 1
K

��ni
= � exp

�
�ni � log K � 1

K

�

which is the familiar exponential utility function, where �ni is the number of i�s e¤ective neighbors.

The function f(:) is increasing in �ni, bounded, and converges to 0 as the number of e¤ective

neighbors goes to in�nity. It is easy to show that f(:) exhibits (M; c)-strong decreasing where

M = log
�
1�
p
1�4c
2

�
= log

�
1� 1

K

�
if c � 1=4 and M = 0 otherwise.

6For simplicity, we ignore capacity constraints: each agent can solve as many problems as demanded.
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2.2.2 Network Formation and the Value of Information

A central function of many social networks is the exchange of information. For example, Katz and

Lazarsfeld (1955) show that social connections are a primary source of information for consumers.

Similarly, Feldman and Spencer (1965) demonstrate that nearly two-thirds of new residents in a

community relied on social contacts to choose a physician. Mintzberg (1973) �nds that managers

spend more than half of their time gathering information through personal sources.

To model these ideas, consider an economy where agents exchange information about a single

unobserved underlying state variable � � N(�; �2). Agents wish to learn about � because they have
to choose an action xi 2 R that maximizes expected utility

E
�
U i(xi; �)

�
= E

�
�(xi � �)2

�
:

Once � is drawn, each player i receives a signal zi � N(�; �2). These signals are conditionally

independent across agents.

Agents exchange information with neighbors in the network. The transmission of information is

subject to frictions, perhaps because of perception errors, inaccurate transmissions or technological

constraints. We model frictions by assuming that after communication, each player has access to

noisy versions of the signals of players within a distance of d. Speci�cally, if player i is at a distance

of dij � d from player j, then i receives the following signal from j:

ezij = zj + dijX
k=1

�ikj

where zj is player j�s original signal, and the sum of the �ik terms is the cumulative noise associated

with transmission. The �ikj are i.i.d. and normally distributed with mean zero and variance �
2
� . This

reduced form can be obtained if there are d rounds of communication, where in each round players

communicate with direct neighbors and transmit noisy versions of all the signals they observe.

With a slight abuse of notation, write E[�ji] to denote the conditional expectation of � given the
values of all signals that player i observes, and Var(�ji) for the corresponding conditional variance.
It is easy to see that the optimal action of player i is xi = E[�j�ni], and that maximized utility
equals �Var(�ji). Given our normality assumption, the conditional variance can be computed as

Var(�ji) = 1

� + �
�
a1 +

Pd
�=1 a�n

i
�

� = 1

� + �a1 + ��ni
: (3)

where � = 1=�2 and � = 1=�2 are the precisions of the state and the signal, a� = �2=
�
�2 + ��2�

�
,

and �ni is de�ned as above. If �2� = 0 then a� = 1 for all � � d. If �2� > 0, then a� is strictly

decreasing in �, implying that more distant neighbors add less in terms of signal precision, because
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more noise is accumulated during communication.

From an ex ante perspective, if the network is such that player i is paying for li links, her total ex-

pected payo¤ is given by f(�ni)�cli where the bene�t function f(�ni) is given by (3). It is easy to ver-

ify that f(:) exhibits (M; c)-strong decreasing returns with M = 1
2�

�
1
c �

3
2� +

q�
1
c �

3
2�
�2 � 2�2�

if c �
�
(
p
2 + 3

2)�
��1

and M = 0 otherwise.

3 Network Architecture and Welfare

3.1 Equilibrium Networks

Our goal is to determine the Nash equilibria of the network formation game described in Section

2. We begin by introducing some graph theoretic concepts. Two agents are connected to each

other if there exists a path or sequence of links in the network between them. A component of the

network is a maximal set of connected agents. The network is connected if all agents are connected

to each other. The network in which no player maintains a link is called the empty network. An

equilibrium is non-empty if at least one player maintains a link. The network architecture is a

periphery-sponsored star if, as in Figure 1, one player, the center, maintains no links, and all other

players maintain a single link to the center. The network is an extended star if the center maintains

no links, all other players maintain a single link and are directly or indirectly connected to the

center, and all players are at a distance of at most d from each other. For example, the network in

Figure 2 is an extended star when d � 5.
Recall that f(:) exhibits (M; c)-strong decreasing returns, and letN0 = (2M)2d+2. The following

result characterizes equilibrium networks.

Theorem 1 If a2 > a3 and N > max(N0; 4) then the unique non-empty equilibrium architecture

is a periphery-sponsored star. If a2 = a3 then for N > max(N0; 2d + 1) any non-empty Nash

equilibrium is an extended star.

The proof proceeds using a series of lemmas. We state and prove the main lemmas in this section;

more technical arguments are presented in the Appendix. First we establish that in equilibrium

the network is tight: no two players are very far from each other. This result is a consequence

of Assumption 1 about limits to long distance communication. Tightness implies that there exist

players who have many direct neighbors. Next we establish that in a large network, each player

maintains at most one link. This �one-link property� is a key result that follows because agents

can access substantial bene�ts by forming a single link to some player with many direct neighbors.

By Assumption 2, the bene�t function exhibits strong decreasing returns and hence maintaining a

second link is not optimal. Building on the one-link property, we use graph-theoretic arguments

to show that in equilibrium the network is either a tree, or contains a unique directed circle. We
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Figure 2: Extended star.

complete the proof using a revealed preference argument that is based on comparing the payo¤s of

terminal nodes, i.e., agents to whom no one links.

Lemma 1 In any non-empty equilibrium there exists a player who is at most 2d+1 far away from

any other player.

Proof. In a non-empty equilibrium, there are no isolated players. To see why, note that any

isolated player k has the option to mimic some other player l who maintains at least one link. By

concavity, the bene�t of maintaining those links will be at least as high for k as it is for l. Moreover,

by linking someone l is currently linked to, k gets the additional bene�t of having indirect access

to player l herself. So k strictly prefers to maintain some links.

Pick a player i who has the �highest paying d�1 wide neighborhood�, that is, the player i with
maximal a2 �ni1+a3 �ni2+ :::+ad �nid�1. Note that the indices are shifted relative to each other: i is
the most attractive target from the perspective of an outside player. Suppose there exists an agent

who is more than 2d+1 far from i. This agent is not isolated, so either she maintains a link, or she

is linked to by someone. In both cases, there exists a player j who is at least 2d+1 far from i, and

who maintains a link. Then j will �nd it bene�cial to drop one of her links and maintain instead

a new link to i. To see why, pick a link that j maintains to k. Clearly, k has a d� 1 neighborhood
that is at most as large as that of i. But the d � 1-neighborhood of i does not overlap with the
d-neighborhood of j and hence does not contain j herself. In contrast, the d � 1 neighborhood of
k does contain j, and hence k is less bene�cial to link to than i.

Lemma 2 For N > N0, in any equilibrium all players maintain at most one link.
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Proof. If all players have at most u direct neighbors, then N � u2d+2 because no agent is

more than 2d + 1 away from the maximal player of Lemma 1 . Hence the largest 1-neighborhood

in the economy will have be no smaller than N1=(2d+2). Then the e¤ective number of people any

player j who maintains a link has access to must be at least a2 � N1=(2d+2) = N1=(2d+2), because

j can choose to drop all links and link a player with the largest number of direct neighbors which

already provides her with a2 �N1=(2d+2) e¤ective neighbors. When j herself had the largest number

of direct neighbors, she has access to even more e¤ective neighbors.

Suppose there exists a player i who maintains more than one link. Let L be the set of players

i is linking to, m the total e¤ective number of people she has access to, and for each j 2 L, let
mj be the e¤ective number of people that i has access to only through j. Clearly,

P
j2Lmj � m.

Because L has at least two elements, there is a j such that mj � m=2. But then dropping the link
to j is surely pro�table if

max
N1=(2d+2)�m<N

(f(m)� f(m=2)) < c

which holds by strong decreasing returns.

The one link property restricts the network architecture the following way.

Lemma 3 For N > N0, if there exists a player who maintains no links, then the network archi-

tecture in a non-empty equilibrium is a directed tree, with the player maintaining no links at the

center. If all players maintain a link, then the architecture contains a unique directed circle, and

all agents in the circle are the endpoints of disjoint directed trees.

Proof. Suppose that player i maintains no links. Then the players who are at distance 1 from

i must all have a single link to i, and maintain no other links. Thus all their other neighbors have

to be agents who maintain links to them. These are the players who are at distance 2 from i. Since

these players again maintain no other links, their only other neighbors are the ones who maintain

a single link to them. And so on. Clearly, in the process we eventually cover all players, because

the network is connected. It follows that the network is a directed tree.

Next assume all players maintain a single link. Then the graph contains a directed circle that

can be found by following any directed path, because the path can be continued at all nodes. Fix

the directed circle: for each element of the circle we can repeat the above argument. Thus each

element of the circle is the endpoint of a directed tree. These trees are disjoint, because all links

maintained by the members of any of the trees stay within that particular tree.

We proceed by examining the incentives of terminal nodes, i.e., players with no incoming links.

Lemma 4 For N > N0, if a2 > a3 then all terminal nodes maintain a single link to the same

unique player.
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Figure 3: Star, directed path and circle network.

Proof. Suppose there exist two players i and j who are both terminal nodes. Because there are

no isolated players, both i and j maintain a single link. Suppose that ni � nj so that i has fewer
e¤ective neighbors and a lower payo¤ than j. Denote the distance between i and j by �. Consider

the deviation where i drops her single link and maintains a link to j�s direct neighbor instead. By

doing so, i will access nj +a2�a� e¤ective neighbors. This is because i will access nj2+1 agents at
distance 2, where the +1 stands for player j. On the other hand, we need to subtract a� because

nj also included the bene�t of j from indirectly knowing i if � � d. If � > d, we use the convention
a� = 0. Clearly, this deviation is pro�table as long as a2 � a� > 0. When a2 > a3 the deviation is
always pro�table except when � = 2, but then the unique direct neighbor of i and j is the same by

de�nition.

The lemma implies that in the case where a2 > a3, the network consists of a star, a single

directed path and a directed circle. Figure 3 illustrates such a network architecture. To conclude,

we need to show that the path and the circle are of zero length. We do this by showing (in the

Appendix) that players in the path would �nd it bene�cial to �leapfrog�those directly in front of

them.

Lemma 5 If N > max(N0; 4) and a2 > a3, then the unique non-empty Nash equilibrium architec-

ture is a periphery-sponsored star.

If a2 = a3, then Lemma 4 no longer holds. In that case, a leapfrogging argument is used to

prove that any two players in the network are at most d far away from each other. We then show

12



that in a directed circle there always exists a player who bene�ts more from her incoming links

than from the link she maintains. Given that this player is indirectly connected to everybody, she

would �nd it optimal to maintain no links. This establishes that there are no directed circles, and

leads the �nal lemma required to prove Theorem 1.

Lemma 6 If a2 = a3 and N > max(N0; 2d+1), then a non-empty equilibrium is an extended star.

Moreover, if the maximum distance in the equilibrium is d1, then it must to be that a2 = ::: = ad1 =

1.

How important are our two key assumptions for obtaining Theorem 1? First note that even

if limits to communication and strong decreasing returns fail to hold, the periphery-sponsored

star continues to be an equilibrium. The key content of these assumptions is that they guarantee

uniqueness. Interestingly, uniqueness can be obtained even without limits to communication if

we replace (M; c)-strong decreasing returns with the somewhat stronger (1; c)-strong decreasing

returns assumption. To see why, note that limits to communication is used to establish Lemma 1,

which is then used to show the players maintain at most one link. However, this one-link property

can also be obtained directly under (1; c)-strong decreasing returns.7 The logic is that any player

maintaining two or more links has a link that provides at most half of her total bene�t. But by

assumption f(b)� f(b=2) < c for any total bene�t level b � 2, hence the cost of the �weakest link�
outweighs the bene�t. Given the one link property, it is easy to show that a non-empty equilibrium

is connected, and as long as a3 < a2, the rest of the proof extends without modi�cation. As a

result, under (1; c)-decreasing returns, requiring a cuto¤ d limiting communication is not essential

for our main theorem, although a weak form of discounting is needed.

3.2 Inequality, E¢ ciency and Welfare

The star architecture is asymmetric, since the center has a very di¤erent role from the players in

the periphery. This asymmetry also manifests itself in terms of payo¤s. The payo¤ advantage of

the center relative to a player in the periphery is

[f((N � 1)a1)� f(a1 + (N � 2)a2)] + c:

The �rst term in this expression measures the additional payo¤ the center derives from having

direct access to the entire population. This term is large when a1=a2 is large, that is, when the

communication technology is poor, and disappears with seamless communication. The second term

derives from the fact that the center has access to all agents while maintaining no links. This term

is small when link costs are small. It follows that improvements in network technology, whether

7Both examples in section 2 allow for this possibility.
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they a¤ect a1=a2 or c, result in a more egalitarian payo¤ distribution.8

Is the inequality in the equilibrium network associated with ine¢ ciency? To answer, �rst

note that the periphery-sponsored star is always Pareto e¢ cient, because the center achieves the

maximal payo¤ possible in this economy, and each player in the periphery achieves the maximum

possible subject to the high payo¤ of the center. Hence there always exists a welfare function that

is maximized by the Nash equilibrium network.

However, given that our network game is fully symmetric, it is natural to focus on a utilitarian

welfare function with equal weights on all players:
PN
�{=1 �

i(g). Since the costs of links are separable,

this de�nition of social welfare is not a¤ected by how the costs of links are distributed. Using this

welfare function Jackson and Wolinsky (1996) show that when f(:) exhibits constant returns to

scale, for intermediate costs of connections the star is the only e¢ cient architecture. We show that

with decreasing returns the results may be very di¤erent, for two reasons.

Example 1 Suppose that N is even and let f(n) = �1=(1 + n), c = 1: Then the unique e¢ cient
network architecture has N=2 components, each with two players. The average payo¤ in the e¢ cient

network exceeds average payo¤ in the star by a term bounded away from zero for all N .

The intuition can be seen by noting that in the network with N=2 components, the per capita

link cost is only 1=2, whereas in a connected network it would be (N � 1)=N . When f(:) is

su¢ ciently concave, bene�ts do not grow at a fast enough pace to compensate for the higher per

capita cost of links. This reasoning suggests that the e¢ ciency of the star architecture requires a

lower bound on the curvature of f(:).

Example 2 Suppose that N is even and a1 > a2 = a3. Then for any concave bene�t function,

the network that consists of two identical and interlinked stars has a higher average payo¤ than the

star.

Here, the basic intuition is that averaging a concave function f(:) yields a higher value when the

arguments are more equal. The distribution of e¤ective neighbors in the interlinked stars case is

more equal, and hence the average payo¤ is higher. This example demonstrates that inequality in

payo¤s directly leads to an ine¢ cient equilibrium independently of any restriction on the curvature

of f(:). The next theorem shows that inequality and curvature are an exhaustive list of the elements

that prevent the equilibrium network from being e¢ cient.

Theorem 2 Assume that f 0(n) > 2ca21=n
2 for n > a1 and that N > f�1(c+ f(0)), then

(i) If a1 = a2 and a3 = 0, the unique e¢ cient network architecture is the star.

8This argument ignores the case when c is very large and the unique equilibrium is the empty network. In this
case, a decrease in c can make the the periphery-sponsored star become an equilibrium, inducing an abrupt rise in
inequality. Further decreases in the cost of communication are indeed associated with lower inequality.
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(ii) For N > maxfN0; 3a1� 2g the average payo¤ advantage of the e¢ cient network relative to the
star is bounded above by 2c(1� 1=a1)=N and the number of components in an e¢ cient network is

bounded by a constant independently of N .

Part (i) shows that when f(:) is not too concave and payo¤ inequality is limited by a1 = a2,

the star is e¢ cient. Since the bene�t function used in Example 1 satis�es f 0(n) > 1=4n2 for n > 1,

the result of the theorem is relatively sharp. To understand why the slope of f(:) must scale with

1=n2 (or more), consider a star of size m. Since a star has m � 1 links, the average cost paid by
an agent is cm�1m , which has a slope equal to c=m2. Hence, if bene�ts grow at some rate slower

than c=m2, it is more e¢ cient to split agents in smaller stars than keep them together in a single

component. Note that this argument does not rely on strong decreasing returns, hence (i) holds

for any f(:) satisfying f 0(n) > 2ca21=n
2.

Part (ii) shows that even in the presence of payo¤ inequality, the equilibrium is approximately

e¢ cient for N large. This is a consequence of strong decreasing returns, which make the bene�t

function relatively �at in the limit, bounding the e¤ect of inequality in e¤ective neighbors on

inequality in payo¤s.

3.3 Discussion

The results in this section show that in our network formation model, core-periphery structures

emerge endogenously as a unique outcome, and that central agents achieve higher payo¤s. Both of

these predictions are consistent with the evidence about the organization of economic and social

networks discussed in the introduction.

However, our basic setup has a number of limitations. In terms of assumptions, we have not

allowed for heterogeneity in costs and bene�ts. We have also ignored the role of consent in link

formation and the possibility of sharing link costs. In terms of results, our equilibrium rules out

multiple centers, and our model is silent about the identity of the center. In the following sections,

we consider three extensions of the basic model to address these issues.

4 Heterogenous Costs Yield Interlinked Stars

In this section we relax the assumption that all players in the network are homogenous. Assume

that there are �T types or groups of agents indexed by t = 1; :::; �T . Let the cost of maintaining a

link between agents who are the same type be c, and denote the cost of maintaining a link between

agents of di¤erent types by C, where C > c. The groups capture di¤erences along socioeconomic

characteristics like age, sex, race, geography, native language or intellectual background. The key

underlying assumption is that it is easier to maintain a link between two people who are more alike

along these dimensions.
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Figure 4: Interlinked stars.

For simplicity, throughout this section we assume that f(:) exhibits (1; c)-strong decreasing

returns, and that there are more than 4 agents of each type. We say that an equilibrium contains

a mixed component if the equilibrium network has a component that has two di¤erent types of

agents.

Theorem 3 If a2 > a3, then any equilibrium that contains a mixed component has all players

except for at most 5 �T + 2d + 2 organized in periphery-sponsored stars. These stars may be linked

to each other, but there is at most one star for each type t and only one mixed component.

In any equilibrium that contains no mixed component, for each t, either all type t agents organize

a separate periphery-sponsored star, or all of them are isolated.

The proof is in the Appendix. The result shows that with heterogeneity, architectures more

complex than the periphery-sponsored star may emerge in equilibrium. But except for a small

number of players, a more complex equilibrium is still organized from building blocks that have a

star architecture. Hence heterogeneity leads to a network of interconnected stars. One potential

equilibrium with two types is shown in Figure 4.

To get some intuition about the proof, recall that (1; c)-strong decreasing returns directly imply

the one-link property for every component. In contrast, if we were to use tightness to derive the

one-link property as in Lemma 2, we would require lower bounds on the size of each component.

The �universal�one-link property implies that the characterization result of Lemma 3 holds for all

components in an equilibrium. As a result, each component is a combination of a circle and some

directed trees.
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Figure 5: Scienti�c collaboration network (Newman, 2004)

Next we introduce the concept of a bridge: a player who maintains a link to some player of

a di¤erent type. For example, player H in the equilibrium network of Figure 4 is a bridge. We

generalize the revealed preference argument of Lemma 4 for bridges by showing that any two such

agents who are independent in a well de�ned sense have to link to the same player. This implies in

particular that there cannot be multiple mixed components, because each of them would contain an

�independent�bridge. Moreover, in the single mixed component, all non-independent bridges must

be organized in a single path. We conclude the proof by showing that all not too small homogenous

components are stars by Theorem 1, and that the mixed component consists of subtrees connected

to the �bridge path�which are homogenous stars because of a leapfrogging argument similar to

Lemma 5.

While Theorem 3 does not rule out the possibility of a periphery-sponsored star, a richer set of

networks can emerge. Equilibrium networks exhibit a modular structure, with agents of the same

type organized around local centers with only a few links (if any) maintained between di¤erent

communities. These predictions match important stylized features of some social networks.9 As an

example, Figure 5, taken from Newman (2004), illustrates a small network of coauthorship. The

nodes of the network are scientists of a private research institute belonging to di¤erent disciplines.

A link between two scientists indicates that they coauthored an article. It is clear from the picture

9Sociologists use the term homophily to refer to the extent to which individuals that communicate are similar
(Lazarsfeld and Merton, 1964). Evidence on the role of homophily in networks can be found in Borjas (1992) and
McPherson et al. (2001), among others.
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that most collaborations stay within the same discipline, and that those disciplines which are more

narrowly de�ned (e.g. Mathematical Ecology as opposed to Agent-Based Models) have a small

number of prominent central agents who participate in many collaborations. Consistent with our

model, the example suggests that there are relatively few bridges bridging disciplinary boundaries.

Networks of scienti�c collaboration in the social sciences have similar structural characteristics:

they are organized as interlinked �thematic�communities, each of which has central and peripheral

researchers.10

4.1 Two Types

Under which circumstances should we expect a periphery-sponsored star, interlinked stars or frag-

mentation? What is the role of changes in the communication technology in shaping network

structure? To answer these questions we now specialize to the case of two types ( �T = 2). We

call a network an interlinked star if each type is organized in a periphery-sponsored star, and the

center of one of these stars either links the center of the other, or links an intermediate bridge who

links the center of the other star. For example, the network in Figure 4 is an interlinked star. We

say that the network is fragmented if each type is either organized in a (separate) star, or has all

players isolated.

Corollary 1 If �T = 2 and there are more than 4 players of each type, then any equilibrium is

either a periphery-sponsored star, or an interlinked star, or is separated.

The proof is in the Appendix. Building on Theorem 3, it is easy to show that in a mixed

component, there are either one or two periphery-sponsored stars. The case with a single star can

be handled using an easy revealed preference logic. With two stars, one star has to consist entirely

of type 1, the other entirely of type 2 players, as in Figure 4. We conclude with a leapfrogging

argument as in Lemma 5 to show that the path between the two centers is short.

The tractable two-type framework allows us to explore comparative statics. For simplicity,

assume geometric discounting by distance, so that ai = a1�i for i � d, but note that the comparative
statics results extend for arbitrary discounting with intuitive modi�cations. We also assume that

f(Ni) > C, which rules out fragmented equilibria. Let �N stand for the absolute value of the

di¤erence between the size of the two groups. We will look at comparative statics holding �xed

total group size N , and varying one of the parameters C, � and �N at a time.

Corollary 2 Assume that �T = 2, Ni > 4 and f(Ni) > C for i = 1; 2. Then there exist functions

C(:), �(:), n0(:) and n1(:) such that

(i) For C < C(c;�N; �) the only non-empty equilibrium is a periphery-sponsored star.

(ii) For � � �(c; C;�N) the only connected equilibrium is an interlinked star.

10See Moody (2004) and Goyal et al. (2005).
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(iii) For N large enough, if �N � n0(c; C; �) then the interlinked star is not an equilibrium. If
f(:) is unbounded, then for �N � n1(c; C; �) separate stars are not an equilibrium.

The proof is in the Appendix. Corollary 2 can be used to study the e¤ects of communication

technology on network structure. By part (i), an improvement in network technology associated

with a reduction in the communication cost C will increase the likelihood of a connected equi-

librium. However, within the set of connected networks, di¤erent technological advances have

opposing e¤ects. A fall in C makes single stars a more likely outcome. On the other hand, (ii)

shows that an increase in � favors interlinked stars. Intuitively, a fall in cost di¤erence brings

groups together; whereas improvements in communication allow them to continue maintaining a

distance. This dichotomy of getting closer versus drifting apart as a response to di¤erent techno-

logical improvements has been pointed out by van Alstyne and Brynjolfsson (1996), Gasper and

Glaeser (1998), and, more recently, by Rosenblat and Möbius (2004).

The result also shows how group size a¤ects the shape of equilibrium networks. Assume that

� is close to one, so that by (ii), a single star is not an equilibrium. In this case, (iii) shows that

groups of relatively equal size are organized in separate and disconnected stars. On the other hand,

if one group is substantially smaller, the equilibrium will be connected. These results are intuitive:

large minority groups have little incentive to integrate, while small minorities integrate partially by

forming an interlinked star. This is at the heart of Lazear�s (1999) explanation for the di¤erences

in the assimilation of immigrants in 1900 vis a vis 1990.11 Our model also suggests that in the case

of partial integration, some agents may act as translators (player H in Figure 4). In the case of

immigration, immigrants�children are likely to play this role.

To illustrate the proof of Corollary 2, consider the interlinked star of Figure 4. All type 1

(white) players link the white center Amy, and all black players except Hannibal link the black

center Bob. Bob maintains a single link to Hannibal, who is a bridge and who links Amy. The fact

that Bob maintains a link implies, by strong decreasing returns, that there are more type 1 (white)

than type 2 (black) players. Consider the incentives of a type 2 agent in the periphery. If such an

agent prefers to link Bob rather than Amy, it must be that the �xed cost of a link to Amy is high,

because Amy provides access to more e¤ective neighbors than Bob does. This explains (i). Result

(ii) is shown by observing that when � is close to one, in a single periphery-sponsored star any

type 2 agent would prefer to link another type 2 agent to save on link formation costs. Finally, to

understand (iii), consider Bob�s alternative strategy of dropping his link. If this is not bene�cial, it

must be that the gains from having access to type 1 players is substantial, which implies that �N

is large. In a similar fashion, if the two stars are separate, an agent in the periphery of the smaller

11 In 1900, the percentage of immigrants that learned English was 87%. In 1990, this number was down to 69%,
despite the massi�cation and improvements of communication technologies (including television). Lazear �s evidence
shows that immigrants in 1990 were immersed in larger networks than immigrants in 1900, thereby facing a lower
value of assimilation.
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star would not migrate only if the additional bene�ts of the larger star are not too high, that is, if

�N is low.

5 Centrality and Access to Resources

In this section we investigate the determinants of centrality in the long run. It is plausible to

expect that agents who provide access to better or more critical resources should be more central in

a network. Such heterogeneity can arise naturally in the examples of Section 2 if some individuals

are better at solving problems or have access to better information.

This motivates us to extend the basic model of Section 3 by allowing one player to provide more

valuable resources than the others. Denoting this player by 1, our formal assumption is that the

payo¤ of any player i is

�i(si; s�i) = f

0@X
��d

a� � ni� + 1f��dg � a� � !

1A� c � li
where � is the distance between i and 1 and 1f��dg equals one if this distance is not greater than d.
The additional bene�t of having access to player 1 is re�ected in the parameter ! � 0. The model
of Section 3 corresponds to the special case with ! = 0. Throughout this section, we continue to

assume (1; c)-strong decreasing returns. To simplify the analysis, we also assume that d = 2.

Using the argument of Theorem 1, it is easy to show that as long as a1 > a2, for extremely

large ! there is unique non-empty equilibrium, the periphery-sponsored star with player 1 as the

center. Stars with other players in the center cannot be sustained in equilibrium, because agents

would choose to connect directly to player 1. However, for ! positive but not too high, there

continue to be N distinct non-empty Nash equilibria, depending on which player is the center.

Thus the presence of an agent with better skills in itself need not reduce the multiplicity of static

equilibria. Nevertheless, over the long term one might expect that the network with 1 as the center

will be relatively more robust to evolutionary changes. To explore this idea formally, we study

stochastically stable equilibria under a perturbed best response dynamics in the spirit of Kandori,

Mailath and Rob (1993) and Young (1993).12

The main idea behind these dynamics is that most of the time, players are randomly called to

adjust and choose a myopic best response to current play. However, with a small probability the

agent called to best respond makes a stochastic mistake, and randomly chooses one of the available

strategies. This stochastic mistake is called a �mutation.�Our goal is to determine which networks

prevail in the long run as the probability of mutations becomes vanishingly small.13 Intuitively,

12This sort of evolutionary analysis has been used in other models of endogenous network formation by Goyal and
Vega-Redondo (2005) and Hojman and Szeidl (2005).
13See Fudenberg and Levine (1998) for further discussion and justi�cation of a best response dynamics.
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such equilibria will be the most robust to small perturbations. For example, in 2� 2 coordination
games the only stochastically stable set corresponds to the risk dominant equilibrium, which is the

unique best response when both opponent strategies are equally likely.

Formally, we introduce a family of Markov process Z�t over the state space of pure strategy

pro�les �Ni=1f0; 1gN�1.

De�nition 1 For each � � 0 and initial state Z�0, the evolutionary dynamics P � of the process Z�t
is de�ned as

� On each date t � 0 a single player is randomly selected to adjust. Selection probabilities are
independent across players and time periods, and bounded away from zero and one for each

player.

� If player i is selected to adjust, with probability 1�� she chooses a best response to the current
state of the system. If the best response is not unique any best response is equally likely to be

chosen. That is, sit 2 argmaxsi2fo;1gN�1 �i
�
si; s�it

�
and s�it+1 = s

�i
t .

� With probability � player i mutates by dropping at most one of her current links and forming
at most one new link. Any of her current links is equally likely to be dropped (if at all) and,

similarly, she is equally likely to form any new link (if at all).

Some terminology related to stochastic stability will be useful (see Fudenberg and Levine, 1998).

The dynamic with � = 0 is called the unperturbed or mutationless process. The recurrent classes

of the unperturbed process P 0 are the limit sets of the dynamics. The basin of attraction of a

limit set 
, denoted by D(
), is the set of states from which the unperturbed dynamics reaches 


with probability one. The unperturbed process is not ergodic; in particular all N + 1 strict Nash

equilibria of our network model are limit sets.

The dynamic P � with � > 0 is called the perturbed process. This is an irreducible Markov process

which therefore has a unique invariant distribution �� for each � > 0. Our goal is to determine the

limit distribution �� � lim�!0 ��: It is easy to see that this limit distribution will be concentrated
on the limit sets of the unperturbed dynamics. A limit set 
 is said to be stochastically stable if

��(
) > 0. If for some limit set 
 we have that ��(
) = 1, we say that 
 is uniquely selected in

the long run. Our earlier intuition suggests that in the current model, the star with player 1 as the

center is likely to be selected in the long term. The next result con�rms this intuition.

Theorem 4 Assume that f(:) exhibits (1; c)-strong decreasing returns, d = 2 and N satis�es

f(d(N � 1)=3e)� f(1) > c.
(i) For N odd, the unique long term equilibrium for any ! > 0 is the periphery-sponsored star

with player 1 as the center.

(ii) For N even, the star with 1 as the center is uniquely selected for ! > 1= (a1 � a2).
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Part (i) of the result says that in some cases, even an arbitrarily small additional bene�t ! > 0

can lead to centrality over the long run. Since central agents fare substantially better, this result

suggests that small di¤erences in endowments can be ampli�ed and lead to large payo¤ inequality

in the endogenous network formation process. Part (ii) has essentially the same content except that

the additional bene�t ! associated to player 1 has to exceed a threshold due to integer restrictions.

The proof is in the Appendix and relies on the radius-coradius theorem of Ellison (2000). By

that result, we only need to show that the number of mutations required to transit from the limit

set E1 (the star with 1 as the center) to the basin of attraction of any other limit set exceeds

the number of mutations required to come back. The argument is best illustrated by assuming

that the other limit set is also a star E2, with player 2 as the center.14 Suppose that the system

starts from E1 and consider the sequence of m consecutive mutations where m players replace their

link to player 1 with a link to player 2. After these mutations, the network has two interlinked,

periphery-sponsored stars: the one with 1 as center has N �m players, the other with 2 as center

has m+1 players. We can compute the radius as the smallest value m such that a player currently

linking 1 would optimally migrate and link 2. Comparing the payo¤s from staying and migrating

yields m = 1 + b(N � 3 + (a1 � 1)!) =2c, where the brackets represent lower integer value. The
analogue exercise reverting the roles of players 1 and 2 yields m0 = 1 + d(N � 3� (a1 � 1)!) =2e.
This number is smaller because player 1 provides access to more valuable resources, implying that

fewer mutations are required to escape the basin of attraction of E2 than to escape the basin of

E1. Formally, m � m0 and the inequality is strict if either N is odd or (a1 � 1)! > 1:15

6 Transfers

In this section we extend our basic network formation game to allow for transfers. A full character-

ization of equilibria in the setup with transfers is beyond the scope of this work. Our goal here is

simply to explore conditions under which the periphery sponsored star continues to be the unique

equilibrium architecture.

Formally, let the strategy of player i be a vector ti 2 RN�1, where tij is the amount that i is
o¤ering to pay for a link between i and j. A link will be formed between i and j if and only if

tij + t
j
i � c. When this inequality holds strictly, the additional resources beyond the cost of the link

14Although not required for our proof, it can be shown that the only limit sets are the strict Nash equilibria of the
model.
15The assumption that f(d(N � 1)=3e)�f(1) > c holds implies that a player who has access to d(N � 1)=3e others

through her single link will not �nd it optimal to drop her link when she has a bene�t of at least one player through
an incoming link. This assumption rules out the possibility that the shortest path between E1 and E2 goes through
the empty network. While relaxing the assumption would yield a similar selection result, the argument becomes
signi�cantly more involved, and requires the use of the radius-modi�ed coradius theorem of Ellison.
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c are wasted. Once links are created, a network emerges, and the payo¤ of a player i is given by

�i(ti; t�i) = f(a1n
i
1 + a2n

i
2 + :::+ adn

i
d)�

X
j: 9 link (i;j)

tij : (4)

In the rest of the section, we refer to this network formation game simply as the �transfers game.�

The cost sharing protocol described here is equivalent to the direct transfer network formation

game proposed by Bloch and Jackson (2005). In contrast with our basic model with one-sided link

formation, this protocol allows players to reject links. For example, player i can set tij to be a very

large negative number, preventing the link from being formed even if j is willing to pay the entire

cost c or more. As we discuss below, the possibility of rejecting links plays an important role in

the analysis.

Jackson and Wolinsky (1996) argued that in models with two-sided links and simultaneous

announcements, Nash equilibrium fails to rule out some action pro�les that appear implausible.

Intuitively, in a Nash equilibrium, a new and mutually bene�cial link between players i and j

need not form, because it requires the consent of both parties. Jackson and Wolinsky proposed a

re�nement of Nash equilibrium, pairwise stability, which allows links that bene�t both parties to

be formed. Pairwise stability is often considered to be minimum requirement in network models

with transfers.16 In our model, pairwise stability is a relatively weak requirement. With strong

decreasing returns, additional links are often costly; hence a new link between i and j may be of

mutual interest only when either i or j can sever some existing links. To capture this idea, we

introduce two new equilibrium concepts which are both re�nements of pairwise stability. The �rst

re�nement is the following.

De�nition 2 A pro�le t is a pairwise Nash equilibrium with a unilateral status quo if

1) it is a Nash equilibrium, and

2) for any action eti of i and action etj of j where etjk = tjk for all k 6= i, if
�i(eti;etj ; t�i�j) > �i(ti; t�i);

then �j(etj ;eti; t�i�j) < �j(tj ;eti; t�i�j).
Beyond Nash equilibrium, this de�nition requires a pro�le to be robust to all deviations where

player i makes arbitrary changes to ti, proposes a link to j by modifying the transfer tji , and j

is better o¤ accepting the link given the changes i made in her other links. A key aspect of this

de�nition is that j, when deciding on accepting the proposed (i; j) link, assumes that i has already

implemented the other changes in her strategy, and hence computes the potential gain of accepting

relative to the pro�le (tj ;eti; t�i�j). We say that the equilibrium has a "unilateral status quo"

16See Jackson (2005) and Calvo-Armengol and Ilkilic (2004) for a discussion.
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precisely because if j rejects i�s proposal, their outside option or �status quo�payo¤s are computed

in the network where player i has unilaterally severed some of her other links. Such outside options

are sensible if it is very costly to re-establish a connection that has been severed, or when agents

exhibit some degree of naivete and do not question the credibility of implausible threats. With

unilateral status quo, agents never �nd it optimal to reject links in the sense of setting a negative

transfer tji < 0.

De�nition 3 A pro�le t is a pairwise Nash equilibrium with �xed status quo if

1) it is a Nash equilibrium, and

2) for any action eti of i and action etj of j where etjk = tjk for all k 6= i, if
�i(eti;etj ; t�i�j) > �i(ti; t�i);

then �j(etj ;eti; t�i�j) < �j(tj ; t�j).
In a pairwise equilibrium with �xed status quo we require the proposed (i; j) link to be bene�cial

to j relative to the old pro�le (tj ; t�j). As discussed above, the fact that i can severe some links

while o¤ering a new link to j implies that she might make player j worse o¤ in the new pro�le

than she was in the original pro�le t. In a pairwise equilibrium with �xed status quo, j would then

choose to reject the link proposed by i, which is why allowing agents to turn down link o¤ers is a

natural assumption in our framework. Note that in general, the pairwise equilibrium with unilateral

status quo and the pairwise equilibrium with �xed status quo are not re�nements of each other;

they capture di¤erent notions of equilibrium. As we show in Theorem 5 below, in our application,

pairwise equilibrium with unilateral status quo appears to be a stronger notion.

Given the exploratory nature of our analysis of the transfers game, in the rest of this section

we focus on the case where f(:) satis�es (1; c=2)-strong decreasing returns. The main advantage of

this assumption is that it implies a variant of the one-link property irrespective of population size.

Our analysis rests on an additional condition about the payo¤ structure.

De�nition 4 If the function

f(a1 + n) + f(a1(n+ 1))� f(a1n)

is increasing in n for n � 1, then we say that f(:) satis�es the monotone surplus condition (MS)
with respect to a1.

To understand the intuitive role of this condition, recall that in our original network formation

game, a player choosing between connecting to one of two separate stars always �nds it optimal

to maintain a link to the center of the larger one. This property need not hold in the game with

transfers. Intuitively, as link costs can be shared, the choice over the link to be formed is determined
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by the surplus the link creates for the two parties involved. For example, a link with the center of

the smaller star may create a higher surplus if that center bene�ts substantially from an additional

neighbor. Formally, the surplus from a new link between the isolated player and the center of a

star with n neighbors equals

f(a1 + a2n)� f(0) + f(a1(n+ 1))� f(a1n)� c;

where the �rst two terms are the gain of the previously isolated player, the next two terms are the

gain of the center, and the last term is the cost of the new link. Noting that a2 = 1, the surplus

from connecting to a center with more neighbors will be higher if and only if this expression is

monotone increasing in n, which is the condition stated in the de�nition above. This argument

also shows how (MS) can be extended for more general bene�t speci�cations than what we focus

on here.

Example 3 f(n) = �A=(k + n) satis�es (MS) with respect to a1 as long as a1 < k2. Moreover,
f(n) also satis�es (1; c=2) strong decreasing returns when 2Ac < (2 + 1=k)(1 + 1=k).

The example shows that while (MS) holds for a class of functions, it restricts the bene�t structure

further beyond strong decreasing returns. The next result shows that when (MS) holds, the core-

periphery structure continues to be the unique equilibrium.17

Theorem 5 (i) If f(:) satis�es (1; c=2) strong decreasing returns and (MS), a�+1=a� is weakly

decreasing for 1 � � � d� 1, and N > 4d, then any nonempty pairwise equilibrium with unilateral

status quo has the architecture of a single star, in which players in the periphery pay at least c=2

for their link.

(ii) If f(:) satis�es (1; c=2) strong decreasing returns and (MS), d = 2 and N > 4 + 4a1, then

any nonempty pairwise equilibrium with �xed status quo is either a single star, or two interlinked

stars connected through their centers.

At the heart of the result is a key implication of (MS): if two players compete in attracting

neighbors in order to become central, the player with more e¤ective neighbors will be able to

outbid his competitor. The proof formalizes this intuition using the idea that even in the presence

of transfers, there is a natural sense in which links are directed. A link between players i and j is

said to be directed from i to j if tij � c=2, that is, if i pays at least half of the total link cost. In the
case of equality, the direction of the link can be assigned arbitrarily. With this notion of directed

links, using (1; c=2)-strong decreasing returns, it is easy to show that all players �maintain� at

most one link. Thus each connected component of a pairwise equilibrium will have the tree and

circle architecture described in Lemma 3. As in the proof of Lemma 6, directed circles are never a

17 It is easy to construct an example where (MS) fails and multiple small stars are also an equilibrium.
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feature of an equilibrium network. The key step in the proof is to establish a variant of Lemma 4

about terminal nodes. In part (i), (MS) allows us to show that the for any pair of terminal nodes,

one has incentives to replicate the strategy of the other. The di¢ culty is that when a terminal

node i proposes to connect to j, this change might reduce j�s indirect neighborhood. In a pairwise

equilibrium with unilateral status quo, i�s threat to drop her old link is considered credible, and

hence the indirect payo¤ e¤ect does not enter j�s calculation of the surplus. In part (ii), the same

switching result obtains for any two terminal nodes at least d+1 = 3 far away from each other: In

that case, there are no indirect payo¤ e¤ects. This result implies that any pair of terminal nodes

are at most 3 away. Combining the fact that the network is a directed tree with standard counting

arguments allows us to complete the proof for both (i) and (ii).

7 Conclusion

This paper shows that limits in communication and strong decreasing returns lead to a core-

periphery structure in endogenously organized networks. In a homogeneous population, a star

architecture obtains uniquely, with the central agent having the highest payo¤. This payo¤ in-

equality may render the equilibrium network ine¢ cient. With heterogeneous groups, equilibrium

networks feature subcommunities organized around local centers in a chain of interconnected stars.

If one agent has more valuable qualities, noisy evolution selects the equilibrium with this agent is

the center. Finally, when agents are allowed to bargain over link costs, under intuitive conditions

the star continues to be the unique equilibrium.

An interesting question for future research is to model congestion by introducing capacity con-

straints on the number of connections agents can accept. Such an extension may lead to selectivity

in accepting links and push the network towards a more hierarchical structure. A further, more

ambitious research question is to study the interaction between network structure and the type of

activity, such as coordination or cooperation that takes place between connected agents.
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Appendix

Proof of Lemma 5

By Lemma 3, the network is as depicted in Figure 3: there is a player i initiates a single directed

path, which leads to a unique directed circle. Suppose that the network is not a directed circle

itself. If i maintains no links, then we have a star. Otherwise, i links some player j. If the network

outside of i and her direct neighbors contains at most 1 player, then by N > 4 and strong decreasing

returns, either i or j would prefer to drop her single link. So j maintains a link to some k, and

k also maintains a link. As long as j has no other direct neighbors, i would �nd it bene�cial

to drop her link to j and maintain a link to k instead, in e¤ect �leapfrogging� j. By doing so,

the size of i�s 1-neighborhood is unchanged (k replaces j), while the size of her 2-neighborhood

increases (previously it contained k, now it contains j and k�s other direct neighbor), moreover,

by leapfrogging, she would get closer to all other players in the path and the circle. This is a

contradiction.

The only remaining possibility is when j has other direct neighbors besides i and k. Because

this part of the network consists of a single path leading to a directed circle, it has to be that j has

a single other incoming link from some player l, and this link closes the circle. In other words, i is

maintaining a link to the directed circle. Consider the deviation by l of dropping her link to j, and

instead linking i. This deviation essentially increases the size of the circle. After the deviation, all

terminal nodes linking i, who used to be 3-neighbors of l will become 2-neighbors. It follows that

this deviation is pro�table as long as a2 > a3. The contradiction proves that the network consists

only of i and the terminal nodes directly linking her. Finally, in case the network is a directed circle,

each player would �nd it bene�cial to leapfrog the agent she maintains a direct link to, because

N > 4. Note that for N = 3 and N = 4, a directed circle can be an equilibrium network.

Proof of Lemma 6

Because a2 = a3, we have d > 2. It is easy to see that when N > 2d + 1, the circle network is

not an equilibrium. Pick two players, i and j, such that the distance between them in the graph

is maximal. The network is not a circle, therefore one of the two players, player j, is a terminal

player who maintains a single link to k. Consider all other players who link to k. These players

all have to be terminal, because they are exactly as far away from i as j is, which is the maximum

possible distance. If k maintains no links then the network is a star, and in particular any two

players are at most 2 far away from each other. Otherwise, k maintains a single link to some player

l. Now consider the deviation in which j replaces her link to k with a link to l. Following the

deviation, the size of j�s 1-neighborhood is unchanged (l replaces k), while the joint size of her

2-neighborhood and 3-neighborhood has weakly increased. Previously this neighborhood consisted

of all direct neighbors of k and l; now it still contains those players, but potentially more. There
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may be fewer 2-neighbors and more 3-neighbors now, but because a2 = a3, this does not matter.

Moreover, j gets closer to all the rest of the players she used to access via l: Previously j accessed

that part of the graph only via k and l; now she accesses it directly via l. The only case when

this extra step is not gaining more neighbors to j is when (a) she already had access to the whole

network previously, and (b) the a� weights corresponding to all the people she has indirect access

to are equal. Because of (a), her distance from player i was not more than d; hence the maximal

distance d1 in the network satis�es d1 � d.
Next we show that the equilibrium network never contains a circle. This is because there will

always be a player i along the circle who gets more e¤ective neighbors from her incoming link along

the circle than from the link she maintains. If such a player i exists, by the above argument, i has

at least N � 1 e¤ective neighbors, and hence strong decreasing returns (N > N0) implies that she

will optimally drop her link. To see why such a player i exists, for each player j in the circle de�ne

�j �player j�s forward advantage � to be the di¤erence between the e¤ective neighbors from the

link she maintains minus the e¤ective neighbors from her incoming links. More precisely, let � be

the distance between j and some other player k in the network. If distance is attained by path(s)

that contains the link maintained by j, assign a weight wjk = a� to k; otherwise, set wjk = �a�.
The forward advantage of j is �j =

P
k 6=j w

jk. We claim that
P
j in the circle �

j � 0. Note that if

the latter holds there must be at least one player i whose forward advantage is non-positive and

strong decreasing returns implies that this player should drop her link.

To prove the claim note that �j can be decomposed as the sum of two parts: �j;circle =P
k in the circle w

jk and �j;out =
P
k outside the circle w

jk. Clearly, �j;circle � 0; so we just need to show
that

P
j in the circle �

j;out � 0. To see why the latter holds, consider a player k outside the circle and
let l be the player in the circle who is the root of the sub-tree that contains k. Note that wl;k � 0.
Let j1 and j2 be two players in the circle each at distance � � � from l (also in the circle), where �

is the maximum distance between two players in the circle. That is, j1 and j2 are equidistant and

"opposite sides" from l. By construction wj1k + wj2k = 0. It follows that
P
j in the circle w

jk � 0,

and summing over all players k outside the circle gives
P
j in the circle �

j;out � 0.

Proof of Examples in Section 3.2

Example 1. Writing v(m) for the maximal average payo¤ of a connected component withm players,

v(m) � f(a1(m� 1))�
m� 1
m

c (5)

holds because such a component must have at least m � 1 links. For m = 2, equality is achieved.

It is easy to verify that the chosen parameters imply v(m) < v(2) for m 6= 2, which proves that the
unique e¢ cient network involves N=2 isolated pairs. Because supm>2 v(m) < v(2) also holds, the

payo¤ advantage is bounded away from zero for any network size.

Example 2. Note that average link costs are equal in these two networks. Because a2 = a3,
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players in the periphery achieve the same payo¤ in either network. Thus to evaluate e¢ ciency, we

need to calculate the average payo¤ of the two central agents in the interlinked star and compare

that with the average payo¤ of the central agent and a player in the periphery in the single star.

It is easy to see that these pairs have access to the same number of e¤ective neighbors in the

two networks, but the distribution of e¤ective neighbors is unequal in the single star and equal in

the interlinked star. Because the bene�t function is concave, average payo¤ will be higher in the

interlinked star.

Proof of Theorem 2

Any component of size m in an e¢ cient network must have a per capita payo¤ that equals v(m),

the highest per capita payo¤ across all connected networks of size m. As a result, the social welfare

of any network with N agents is at most N �maxm2f1;:::;Ng v(m)
Write v(m) = m�1

m [f(m� 2 + a1)� c] + 1
mf(a1(m � 1)) for the average payo¤ of m agents

organized in a star architecture. The assumption that N > f�1(c+ f(0)) implies that v(N) > v(1)

and hence rules out the case in which the empty network is e¢ cient.

(i) Consider the set of connected networks of size m. When a1 = a2 and a� = 0, � � 3, the star is
an e¢ cient architecture in this set. This is because any component must have at least m� 1 links,
and a star attains the maximal bene�ts as all agents are connected to each other. It follows that

v(m) = v(m).

Using f(a1(m � 1)) � f(m � 2 + a1) < (a1 � 1) (m � 2)f 0(m � 2 + a1) which follows by strict
concavity, it is easy to show that f 0(n) � 2ca21=n2 implies v0(m) > 0 for all m � 2. But then v(m)
is strictly increasing, and the upper bound N �maxm2f1;:::;Ng v(m) = N � v(N), which is attained
by the periphery sponsored star with N agents.

(ii) For each m � 2, let z(m) = m�1
m , z(m) = m�1

2 and de�ne

v(m) = max
z2[z(m);z(m)]

f(m� 1 + 2z(a1 � 1))� cz: (6)

The proof is structured in four steps.

Step 1: v(m) > v(m). Let x be the number of links in an e¢ cient component of size m � 2. Let xi

respectively zi denote the number of direct and indirect neighbors of player i in this component.

Player i�s bene�ts are bounded above by f(zi + a1xi) � f(m� 1 + (a1 � 1)xi), which implies that
total welfare in this component

mv(m) �
P
i
f(m� 1 + (a1 � 1)xi)� cx:

By strict the concavity of f(:), using
P
i xi = 2x,

v(m) < f
�
m� 1 + (a1 � 1)

P
i x

i

m

�
� c xm = f

�
m� 1 + 2(a1 � 1) xm

�
� c xm � v(m),
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since m� 1 � x � m(m� 1)=2 by de�nition.
Step 2: v0(m) >

�
2ca21

(a1�1=2)2 � c
�
=m2 and in particular v(m) is strictly increasing. To understand

the shape of v(m), note that the maximization in (6) is a concave problem and the domain over

which the maximum is taken shifts out as m increases. This implies that v(m) has three regions:

(R1) for m small, v(m) is determined as a corner solution where the maximum in (6) is obtained

for z = z(m); (R2) for intermediate m, the maximum is obtained as an interior solution; (R3)

for m large the maximum is attained when z = z(m) again a corner solution. For each of these

cases, v0(m) >
�

2ca21
(a1�1=2)2 � c

�
=m2 can be veri�ed directly, using f 0(n) � 2ca21=n2, and the envelope

theorem in the interior case.

Step 3: When m > maxf2M + 1 � a1; 3a1 � 2g, v(m) is in region (R3), in particular v(m) =
f(m�1+2z(m) �(a1�1))�cz(m) since the expression in (6) attains the maximum where z = z(m).
To see why, note that using z(m) � 1=2,

f 0(m� 1 + 2z(m)(a1 � 1)) � f 0(m� 2 + a1) < f(m�2+a1)�f((m�2+a1)=2)
(m�2+a1)=2 <

2c

m� 2 + a1
� c

when m � 2 + a1 > M and m � 3a1 � 2 because of strong decreasing returns. But this chain of
inequalities implies that (6) is maximized for z = z(m).

Step 4: It follows from the argument so far that the per capita payo¤ in the e¢ cient network is at

most v(N). Then we can bound the ine¢ ciency of the star by

v(N)� v(N) = f(N � 1 + 2z(N)(a1 � 1))� f(N � 2 + a1)

� f(N � 3 + 2a1)� f(N � 2 + a1) � (a1 � 1)f
0
(N � 2 + a1)

<
(a1 � 1) � 2c
N � 2 + a1

<
2c(a1 � 1)=a1

N

as desired, where we used the assumption of strong decreasing returns.

Suppose that an e¢ cient network has Q components and m1; :::;mQ players in each of these

components. Let W =
PQ
q=1mqv(mq) denote the associated social welfare. We have

v(N)�v(mq) � v(N)�v(mq)� u
N � v(N)�v(mq)� 2c(a1�1)=a1

N �
h

2ca21
(a1�1=2)2 � c

i
(N�mq)
Nmq

� 2c(a1�1)=a1
N

where the last inequality follows from v(N)� v(mq) =
R N
mq
v0(n)dn �

h
2ca21

(a1�1=2)2 � c
i
(N�mq)
Nmq

. Mul-

tiplying by mq and summing over q yields

Nv(N)�W �
h

�
(a1�1=2)2 � c

i
(Q� 1)� 2c(a1 � 1)=a1:

Since Nv(N) � W by de�nition, it follows that
h

2ca21
(a1�1=2)2 � c

i
(Q � 1) � 2c(a1 � 1)=a1 � 0 and

hence Q � 1 + 2c(1� 1=a1)
h

2ca21
(a1�1=2)2 � c

i�1
a constant.
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Proof of Theorem 3

Consider an equilibrium that has a connected component � containing N� > 4 players who are of

T > 1 di¤erent types. For simplicity, we denote the types appearing in � by t = 1; 2; :::; T .

As discussed in the text, by (1; c)-strong decreasing returns the one link property holds in �.

By Lemma 3, the single link property implies that � is either a directed tree, or a directed circle

and a number of directed trees ending in that circle. By the argument in Lemma 6, there is no

directed circle in �. For a player i in �, de�ne the subtree of i to be the directed tree that has i as

the endpoint. The subtree contains i, set of players linking i, the set of players linking this latter

set, and so on. We say that i and j have independent subtrees if i is not contained in the subtree

of j, and j is not contained in the subtree of i.

Lemma 7 If a2 > a3, a pair of players i and j have independent subtrees in �, and either

a) both of them are bridges, or

b) they have the same type and both of them are terminal nodes

then i and j maintain a single link to the same player.

Note that in part b), the restriction that both i and j are terminal nodes already implies that

they have independent subtrees.

Proof. a) Let ni be the number of players i has access to through her single link, not counting

the agents that are in the subtree of j, and de�ne nj symmetrically. Let bi and bj be the e¤ective

number of agents i and j have access to in their own subtrees. Suppose that nj � ni, and consider
the deviation by i of dropping her single link and instead replicating j�s link strategy. Since i is

a bridge, the new link costs at most as much as the old link did. By deviating, i will access nj
instead of ni people from the set of agents outside of both i�s and j�s subtrees. Further, i will be

closer to the people in j�s subtree, including j herself, and i will continue to have access to all the

bi people in her own subtree. As long as a2 > a3, i strictly gains from being closer to the people in

j�s subtree, unless she was already linking j�s direct neighbor. In equilibrium a deviation is never

pro�table, so i and j link the same player.

b) Let � be the distance between i and j, and let ci respectively cj be the costs i and j are

paying for their current links. Consider the deviation where i replicates j�s link decision. Since this

is not pro�table,

f(ni + a�)� ci � f(nj + 1)� cj

where we used that both i and j are terminal nodes, hence they earn no payo¤ from people linking

them, and that they are the same type, so their costs of linking any given agent are the same. The

symmetric deviation for j implies

f(nj + a�)� cj � f(ni + 1)� ci
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and adding the two inequalities yields

f(ni + a�) + f(nj + a�) � f(nj + 1) + f(nj + 1)

a contradiction unless � = 2 in which case i and j are currently linking the same player.

The subtree of a player i is homogenous if all players in the subtree are the same type.

Lemma 8 If a2 > a3 and the subtree of i is homogenous, then either all players in the subtree link

i (in which case the subtree is a star) or there is a player j linking i, and all other players in the

subtree link j. In the latter case, i has to be a bridge.

Proof. By Lemma 7 part b), all terminal nodes in i�s subtree link the same player j. Thus

the structure of the subtree is the following: a number of players link j, who initiates a directed

path to i, and players in this path are not linked by any other players. We have to show that the

path has length zero or one. Suppose that j links a player k 6= i, and k links l (who may be i). If l
maintains no links (i.e., l = i and this is the whole network) then by strong decreasing returns and

N� > 3, it is easy to show that k would drop her single link. Thus we know that l also maintains

a link. In this case, by a2 > a3, j would �nd it bene�cial to replace her link to k with a link to l,

in e¤ect �leapfrogging�k. This cannot be an equilibrium, hence the path consists of at most one

player j. Finally, the only case when j would not leapfrog and connect to i�s other direct neighbor

instead of i is when this involves an increase in costs, in other words, when i is a bridge.

These results restrict the structure of � the following way.

1) There is a �bridge path�: Lemma 7 part a) implies that all bridges in � are in the same

directed path, except that there may be multiple bridges linking the same player at the origin of the

path. To see why, note that for any two bridges i and j who are not linking the same player, one of

them is contained in the subtree of the other, which de�nes a unique directed path between them.

Any other bridge has to be either �above�, or �below�or �in�that path, otherwise she would have

independent subtrees with i or j. As long as there are bridges above or below the path, we can

extend the same reasoning to generate a longer path encompassing all bridges involved. Moreover,

if there are two bridges k and l linking the same player, then all bridges h not linking this same

player have to be �above�them, because the subtrees of k and l are disjoint, hence this is the only

way to avoid h having an independent subtree with either k or l.

2) There is at most one maximal homogenous subtree for each type, because any two terminal

nodes of type t link the same player. If the homogenous subtree of i is not a periphery-sponsored

star, then i is a bridge, hence she is either in the directed circle or in the bridge path.

3) The subtrees of the bridges who link the same agent j at the end of the bridge path are

all homogenous. If any of these bridges is a terminal node (of type t), then all other terminal
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nodes of type t are also linking j by Lemma 7 b). It follows that all players of type t not in the

bridge path are linking j, because they have to be organized in a homogenous tree, and they cannot

have terminal nodes linking a player di¤erent from j. As a result, these players are organized in a

periphery-sponsored star with center j.

This discussion implies that with a few exceptions, all players in � are organized in periphery-

sponsored stars. The exceptions are: 1) players in the bridge path; and 2) at most one player for

each type, who is the bridge of the corresponding homogenous subtree.

To bound the number of players in the bridge path, let i be the player with the �highest paying

d� 1 wide neighborhood�in the component, that is, the player it with maximal a2 � ni1 + a3 � ni2 +
::: + ad � nid�1. By the argument of Lemma 1, all bridges in the network are at most 2d + 1 away
from this player. Hence, the length of the bridge path is at most 2d+2. It follows that the number

of exceptions in groups 1) and 2) are at most 2d+ 2 + T .

We now determine the structure of all components in the network. If there is a player i of type

t who maintains a link, then no type t player j is isolated, because she could earn positive payo¤ by

replicating the link strategy of i. Likewise, if there exists a bridge in the network, then no player is

isolated. Consider now all connected components of the network, �1, �2,...,�r. By the argument

of Lemma 7 part a), there cannot be bridges i and j in di¤erent components, because they need to

link the same player. This shows that all components except at most one are homogenous.

Other then isolated players, there cannot be more than one homogenous component of type t

by Lemma 1. Moreover, if there is a homogenous component of type t that has more than one

element, then no type t agent is isolated. It follows that other than isolated players, there are at

most �T + 1 components, and all of them except one are homogenous.

A homogenous component of size larger than 4 is a periphery-sponsored star by Theorem 1.

This shows that except for 5 �T +2d+2 agents, all non-isolated players in the network are organized

in periphery-sponsored stars. There is at most one star for each type; and stars may be linked to

each other or separate, but there is at most one component that contains agents of di¤erent types.

If such a component exists, than no player is isolated.

Proof of Corollary 1

The result is immediate for an equilibrium that contains no mixed component. If there is a mixed

component, then by the argument in the proof of Theorem 3, it contains a bridge path which

includes two players, i and j, who are the only ones with incoming links from outside of the path.

If i = j then all terminal nodes link the same player, and an argument similar to Lemma 5 shows

that the component is a single star. Otherwise, there are no terminal node bridges, which by

Lemma 8 implies that all type 1 terminal nodes directly link a player i1 who links i, and all type 2

terminal nodes directly link a player j1 who links j (it is possible that i1 = i or j1 = j). Moreover,
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the bridge path has to be a directed path between i and j: by the usual leapfrogging and strong

decreasing returns argument, it cannot extend longer in either direction. Suppose that the �ow of

the path is from i to j. If player j1 exists, then it has to be that j and j1 are of the same type

2. But in this case, whoever links player j in the bridge path would �nd it optimal do link to

j1 instead (because by assumption j1 has at least one incoming terminal node link). This shows

that j1 = j. If i1 exists, then relabel her to be i: the component thus consists of a directed path

between i and j, with all type 1 terminal nodes linking i and all type 2 terminal nodes linking j.

By leapfrogging, the length of the directed path can be at most three: if i is not linking j directly,

it has to be that i links some player k (who is of type 1) and k links j. Thus the mixed component

has the structure outlined in the theorem. In the presence of a mixed component there cannot be

a homogenous component of any type t, because there would be terminal nodes of type t in both

the mixed and the homogenous component, contradicting Lemma 7.

Proof of Corollary 2

(i) Consider an interlinked star, and denote the centers of the two groups by k1 and k2. By the

argument in the text, the bridge is a member of the smaller group. Assume this is the group of type

2 agents. By revealed preference, a player in the periphery of the second group �nds it suboptimal

to replace her current link with a new link to player k2. Assuming that the interlinked star is such

that k2 links k1 directly, the formal condition for this is

f
�
1 + � [N2 � 2] + �2 + �3 [N1 � 1]

�
> f

�
1 + � [N1 � 1] + �2 + �3 [N1 � 2]

�
��C;

which is violated for �C = 0. By continuity, the inequality will be violated as long as C <

C(c;�N; �) for some threshold level C(c;�N; �). A similar bound can be derived for the other

potential interlinked star architecture involving an intermediate bridge (as in Figure 4). Separate

stars can be ruled out the same way, and fragmented but non-empty equilibria do not exist by

f(N2) > C:

(ii) Consider the periphery-sponsored star with a type 1 center, and focus on a type 2 agent in

the periphery. This agent does not replace her current link with a link to another type 2 as long as

f (1 + � [N � 2])� C > f
�
1 + � + �2 [N � 3]

�
� c

holds. This inequality will be violated for � = 1, proving the existence of the desired threshold

�(c; C;�N).

(iii) Consider an interlinked star with no intermediate bridge. The center k2 does not drop her

single link only if f(N2 + � [N1 � 1])� C > f(N2 � 1). If N1 = N2 this is equivalent to

f(N=2� 1 + 1 + � [N=2� 1])� C > f(N=2� 1);
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a condition that will be violated for N large by (1; c)-strong decreasing returns. As a result, for N

large we have a threshold for �N as desired. A similar argument applies for the interlinked star

with an intermediate bridge.

To prove the second part of (iii), take separate stars with centers k1 and k2. A player in the

periphery of the second star does not deviate only if

f(1 + � [N1 � 1])� C < f(1 + � [N2 � 2]):

Given that f(:) is unbounded, this condition cannot hold for N large enough and �N large.

Proof of Theorem 4

We �rst introduce a few standard de�nitions from the literature on stochastic stability. The cost

C(Z;Z 0) of a transition from Z to Z 0 equals lim"!0[logP (Z 0jZ)= log "] where P (Z 0jZ) is the proba-
bility of a transition from Z to Z 0 in one period. The cost of a path Z = (Z1; Z2; :::; Zk) is the sum

of the costs of individual transitions between consecutive states Zt and Zt+1. In our case, the cost is

simply the number of mutations taking place along the path. The radius R(
) of 
 is the minimum

cost necessary to leave D(
) if play starts in 
. The coradius CR(
) is the maximum across all

states of the minimum cost required to reach D(
). Ellison (2000) shows that if R(
) > CR(
)

then 
 is the unique stochastically stable set. Our goal is to prove this inequality for 
 = E1.

We �rst establish that under (1; c)-strong decreasing returns, any limit set other than the empty

network consists only of states where all players maintain at most one link. To see why, pick a state

Z in a limit set and consider a path along the unperturbed dynamics in which each player best

responds once. Any such path has positive probability. By (1; c)-strong decreasing returns, each

player who best responds along this path will choose to maintain at most one link. At the end of

this path, all players maintain at most one link; moreover, the argument also shows that the single

link property is preserved over best responses. Because from any state we get to a state with the

single link property with positive probability, it follows that limit sets consist only of such states.

Lemma 9 The radius of the star with player 1 as the center satis�es

R(E1) � 1 + min
��
N � 3
2

+ !
a1 � 1
2

�
;

�
N � 1
2

��
:

Proof. Let

z = min

��
N � 3
2

+ !
a1 � 1
2

�
;

�
N � 1
2

��
and consider a path starting from the star with 1 as the center:We claim that along any path with

y � z mutations, (a) all players who best respond will either choose a single link to 1, or decide to
maintain no links, and (b) player 1 has at least (N � 1)=3 direct neighbors. We prove this result
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by induction on y. For y = 0 the claim is immediate. Assume the result is true for up to y� 1, and
consider a path in which the last step is the y-th mutation. We make three observations about the

structure of the network at this stage.

1) By the inductive assumption, any link not involving player 1 in this path was formed as a

result of a mutation. Consequently, at most y new links have been formed.

2) The deletion of a link between some player k and player 1 can be the result of either a

mutation or a best response. If k chooses to delete her link to player 1 as a best response, she

must have at least two (direct or indirect) incoming links. This is because by (b) player 1 still has

(N � 1)=3 or more direct neighbors, and by f(d(N � 1)=3e)� f(1) > c dropping such a link is not
worthwhile when one has a single incoming link. Both of k�s incoming links have to be the result

of mutations.

3) Consider a player j 6= 1. Any direct neighbor of j except potentially 1 has to come from a

mutation by 1). Moreover, by 2), a mutation that resulted in the deletion of some link between k

and 1 does not increase the direct neighborhood of j, since such a mutation created a link between

the mutating player and player k.

These observations imply that best-response link-deletions place a bound on the size of the

neighborhood of any player j. Speci�cally, if l links to player 1 were deleted as a best response, any

player j 6= 1 can have at most y � 2l + 1 direct neighbors. On the other hand, player 1 continues
to have at least N � 1 � y � l direct neighbors. Note that 2) implies l � y=3, which immediately
gives that player 1 continues to have at least (N � 1)=3 neighbors after the y-th mutation.

Now consider the incentives of a player i who comes to best respond after the y-th mutation.

We know that any player forms at most one link as a best response, so to prove a), we only need

to rule out the possibility that i links some player j 6= 1. Suppose that i is a player who maintains
a direct link to 1. By the above bound on the direct neighbors of 1, i currently has access to at

least a1(1 +!) +N � 2� y� l e¤ective neighbors. Consider the alternative of linking player j. By
doing so, i will gain access to at most a1 + y � 2l + 1 + ! e¤ective neighbors (the ! term is there

because she might indirectly access 1). Maintaining a link to 1 is better if

a1(1 + !) +N � 2� y � l > a1 + y � 2l + 1 + !

equivalently

y <
N � 3
2

+ !
a1 � 1
2

+
l

2

which holds by de�nition as long as y � z, because l � 0. Hence i will not choose to link a player
di¤erent from 1. If i does not maintain a link to 1, then the relative payo¤ bene�t from linking to
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1 as opposed to j will be even higher. In that case, the gain from linking 1 will increase because

we no longer count i as one of the neighbors of 1.

It follows that immediately after the y-th mutation, any player who best responds will maintain

a single link with 1 or maintain no links. But this implies that observations 1), 2) and 3) remain

valid one step after the y-th mutation as well. As a result, the second step along the unperturbed

dynamics will also involve a link with 1 or no link, meaning that properties 1), 2) and 3) remain

valid two steps after the y-th mutation too. This argument can be repeated arbitrary many times,

giving the proof of both a) and b) in the inductive step for any path that involves at most y

mutations.

To conclude the proof of the lemma, �rst note that by part b) above, a path with at most z

mutations does not reach the empty network. Moreover, after the last mutation in the path has

taken place, eventually all players best respond, and a) implies that the network will contain no

links other than those to player 1. Finally, isolated players will always optimally link player 1 given

part b). It follows that after at most z mutations, the dynamics eventually reaches the network

with 1 as a center.

Lemma 10 The coradius of the star with player 1 as the center satis�es

CR(E1) � max
��
N � 3
2

� !a1 � 1
2

�
;

�
N � 5
2

��
:

Proof. Start from a state that is in a limit set di¤erent from the empty network. We need to

bound the cost of a path from the current state to the periphery-sponsored star with as the center.

Begin by noting the unperturbed dynamics reaches a state where player 1 is not isolated with

positive probability. Otherwise, consider the path in which 1 comes next to best respond. If her

best response involves maintaining a link, our claim follows. If not, suppose a terminal node comes

to best respond. It must be that this terminal node either drops her link or forms a link to player

1, because if she �nds any other link bene�cial, 1 should have found that bene�cial in the previous

period as well. In the latter case our claim is proved. Repeating this argument for all terminal nodes

gives a positive probability path leading to a state where agents are either isolated or organized

in circles, so that there are no more terminal nodes (recall, the one link property holds). In any

circle, a player has a weak better response that involves linking a di¤erent member of the circle or

dropping her link. In either case a new terminal node is created. Repeating this process eventually

takes us to a completely isolated network, contradicting the assumption that the current limit set

is not the empty network. Hence we can assume without loss of generality that the current state is

such that 1 is not isolated.

Now de�ne

s = max

��
N � 3
2

� !a1 � 1
2

�
;

�
N � 5
2

��
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and consider the following path involving a sequence of s consecutive mutations. Along this path,

players who mutate drop their current link if they have one, and instead maintain a new link to

player 1. Assume that any player already directly connected to 1 does not mutate. Any path with

these properties will be su¢ cient.

After the s mutations, consider an agent j who is linked to by 1. Suppose that j best responds

next. If j chooses to maintain no links, her e¤ective neighbors will number at least a1(1 + !) + s.

The reason is that she gains a1(1 + !) from player 1, and at least s from 1�s direct neighbors. If

she decides to maintain a link, she can gain access to at most N � s� 2 players; the ones she does
not access yet. Moreover, her direct neighbors can increase by at most one. Thus the additional

gain in e¤ective neighbors from maintaining a link is at most a1+N � s� 3. By strong decreasing
returns, maintaining a link will not be bene�cial for i if a1(1 + !) + s > a1 + N � s � 3, which
is satis�ed. Therefore the unperturbed dynamics takes us to a state where the player linked by 1

maintains no links.

Next consider an agent j who is either a terminal node or isolated, and not directly connected

to player 1. (We will later explore what happens when such an agent does not exist). Suppose

that player j best responds next. If j chooses to link 1, her e¤ective number of neighbors will be

at least a1(1 + !) + s+ 1.

Assume j chooses to link some player h instead. If h is a direct neighbor of 1, then no direct

neighbors of h are direct neighbors of 1. The reason is that any such relationship would involve

some player maintaining two links, or if h = i, then i maintaining at least one link. Neither of these

is possible. If h is not a direct neighbor of 1, then the direct neighborhood of h and 1 can have at

most one common agent (otherwise, again, some player would maintain more than one link). In

either case, a link to h can gain at most N�s�1 direct and indirect neighbors to i. This is because
she can access at most 2 of 1 and her direct neighbors. This excludes s+ 2� 2 = s people, leaving
at most (N � 1)� s potential neighbors. Therefore the maximum number of e¤ective neighbors j

can have is a1 + (N � s� 2 + !), because she may access 1 indirectly.
It follows that if a1(1 + !) + s+ 1 > a1 + (N � s� 2 + !), or equivalently

s >
N � 3
2

� !(a1 � 1)
2

holds, j will either choose to link player 1, or decide to maintain no links. But this inequality is

satis�ed by the de�nition of s.

As long as there are terminal or isolated players not directly connected to 1, we can repeat the

above argument. When there are no more such players, it has to be that all players outside of the

direct neighborhood of 1 are either isolated, or are elements of directed circles. In any circle, there

is a player who is has a response weakly better than maintaining her current link; and following

such an update a new terminal player will be created. We can now repeat the above argument for

terminal nodes. In the end, all players not connected directly to 1 have to be isolated. Given that
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f(1 + s) > c holds by assumption, all isolated players will optimally link player 1. Finally, when

all players except for i maintain a link to 1, we can allow 1 to drop her link and let i update next.

This results in a periphery-sponsored star with as the center.

To conclude the argument, start from the limit set that is the empty network. After s players

mutate and link player 1, all others will have a unique best response that involves doing the same.

Under the assumptions of the theorem, for N odd the two lemmas imply that for the star where

1 is the center, the coradius is at most (N � 3)=2 whereas the radius is at least 1 + (N � 3)=2.
Invoking the radius-coradius theorem of Ellison immediately gives the result. If N is even, then for

!(a1 � 1) > 1 the coradius is at most b(N � 3)=2c whereas the radius is at least d(N � 3)=2e and
again we have the result.

Proof of Theorem 5

(i) Using the terminology that i maintains a link to j if i pays at least c=2 for that link, we claim

that no player maintains more than one link. Otherwise, for some link that i maintains, she gets at

most half of her total e¤ective neighbors through that link, while she is paying c=2 or more. Then

dropping this link (setting tij su¢ ciently negative) has a bene�t of at least c=2 and a loss of at

most f(n) � f(n=2) where n is the total number of i�s e¤ective neighbors. Under (1; c=2) strong
decreasing returns, dropping the link will be optimal. As a result, any Nash equilibrium will be a

directed graph with no player initiating more than one link, and by Lemma 3, each component will

have the directed tree and circle architecture.

With (1; c=2) strong decreasing returns, an equilibrium network never contains a circle by the

argument used in the proof of Lemma 6. We turn to establish that all terminal nodes maintain a

link to the same player. Suppose that there are two terminal nodes, 1 and 2, who link di¤erent

players i1 and i2. Assume that i1 has access to m1 e¤ective neighbors, and provides access of g1
e¤ective neighbors to 1, where g1 includes the bene�t that 1 gets from knowing i1 as well. Because

a�+1=a� is weakly decreasing, the inequality g1�a1 � m1=a1 must hold. This is because the g1�a1
e¤ective neighbors that 1 has access to through i1 must all be neighbors of i1; but then their total

value cannot exceed the total that accumulates to i1 herself (m1), discounted by the highest relative

discount rate a2=a1 = 1=a1.

It is easy to see that the surplus over the link between 1 and i1 is

f(g1) + f(m1 + a1)� f(m1)� c

where the �rst term is the incremental bene�t of player 1 for this link, while the second and third

terms amount to the incremental bene�t of player i1. Suppose that the surplus of the link between
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2 and i2 exceeds that over the link between 1 and i1:

f(g1) + f(m1 + a1)� f(m1) � f(g2) + f(m2 + a1)� f(m2): (7)

Now consider the deviation where 1 drops her link to i1 and instead makes an o¤er to i2 with a

transfer amount chosen such that the payo¤ of 1 after this move will increase slightly. If it is in

20s best interest to accept this o¤er, then the previous allocation could not have been a pairwise

equilibrium with unilateral status quo. The way to prove that 2 will accept the o¤er is to compute

the surplus from the proposed link, and compare it with the surplus of the prior arrangement.

Importantly, in this calculation we also need to account for the fact following the deviation, 1 will

no longer be linked to i1. This matters for the change in the payo¤ of i2, who was potentially

indirectly connected through i1 to 1 previously. A lower bound for the surplus of the proposed new

link between 1 and i2 is

f(g2 + a2 � a�) + f(m2 + 2a1 � a�)� f(m2 + a1 � a�)� c:

The �rst term here is a bound for the bene�t accumulating to player 1, accounting for the fact that

1 is no longer connected to i1, which potentially reduces g2 by at most a3. The second and third

terms measure the change in the bene�ts to i2, who is now directly connected to 1, but lost the

indirect connection, which costs her at most a2. We need this bound to be larger than the surplus

over the pre-existing link between 1 and i1 for a pro�table deviation to exist. Because, by (7), the

surplus at location 2 was larger originally, showing

f(g2 + a2 � a�+1) + f(m2 + 2a1 � a�)� f(m2 + a1 � a�) > f(g2) + f(m2 + a1)� f(m2)

would be su¢ cient (note, we used the fact that a2 = 1). This inequality becomes harder to satisfy

if we increase g2, because the left hand side grows slower in g2 than the right hand side Since

g2 � a1 + m2=a1, we can increase g2 only up to this point. Introducing n = 1 + m2=a1 and

substituting in g2 = n� 1 + a1 gives

f(n+ a1 � a�+1) + f((n+ 1)a1 � a�)� f(na1 � a�) > f(n� 1 + a1) + f(na1)� f((n� 1)a1):

To see why this inequality holds, �rst note that by assumption, a1a�+1 � a� and hence

f((n+ 1)a1 � a�)� f(na1 � a�) � f((n+ 1)a1 � a1a�+1)� f((na1 � a1a�+1):
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Then we can write

f(n+ a1 � a�+1) + f((n+ 1)a1 � a�)� f(na1 � a�) �

f(n+ a1 � a�+1) + f((n+ 1)a1 � a1a�+1)� f((na1 � a1a�+1) > f(n� 1 + a1) + f(na1)� f((n� 1)a1)

where the last step uses (MS). This gives the desired inequality, verifying that all terminal nodes

connect to the same player. Since circles are ruled out, this result also shows that any nonempty

equilibrium consists of a single component.

Given that the network is a tree with all terminal nodes connecting the same player i, the only

remaining possibility to rule out is that i maintains an additional link to some other player, which

initiates a chain of agents connecting to one another. This �forward chain� cannot be too long,

however. If it has a length of 2d or more, then there is a player in the middle of the chain whose

indirect neighborhood only includes a line of d players going forward as well as a line of d players

going backward. By strong decreasing returns, this agent chooses to drop her link. As a result, the

chain can be at most 2d�1 long, and the remaining N�2d+1 or more players are all organized in a
star. But then i, the center of this star, will certainly drop her link as long as 2da1 < (N �2d)a1 or
equivalently N > 4d, which holds by assumption. Hence the network must be a single star.

(ii) We need to alter the terminal node argument in the proof of (i). Consider the same situation

as above with two terminal nodes, 1 and 2, connecting to players i1 and i2, but now assume that i1
is not even indirectly connected to 1, thus the distance between i1 and i2 is at least d = 2. Under

these assumptions, we do not need to worry about changes in indirect payo¤s. Therefore both

equilibrium re�nements are equivalent in terms of evaluating the bene�t of the proposed deviation

by player 1. Since now we also have d = 2, the monotonicity of the relative discount rates a�+1=a�
is automatic, and the above argument shows that any two players who have �incoming�terminal

nodes must be within distance 1 from each other.

Given the tree structure of the graph, it must be that there are at most 2 players on a chain who

have incoming terminal nodes, and then the chain might continue further. As above, the forward

piece of the chain cannot be of length more than 2d � 1 = 3, so there must be at least N � 3
players who are organized in the two interlinked stars that contain all terminal nodes. The center

of the star that is closer to the forward chain will surely drop her link if 2da1 < (N � 2d)ad or if
N > (2 + 2a1=ad)d, which holds by assumption. It follows that the network is either a single star

or two interlinked stars directly connected through their centers.
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