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Abstract

We analyze a market game where firms choose capacities under uncertainty about

future market conditions and make output choices after uncertainty has unraveled.

We show existence and uniqueness of equilibrium under imperfect competition and

provide an intuitive characterization of equilibrium investment. We show that in-

vestment in oligopoly, in the first and second best solution can be unambiguously

ranked, in particular investment is highest in the First Best solution and lowest under

imperfect competition. We finally demonstrate that intervention of a social planer

only at the production stage leads to strategic uncertainty at the investment stage

and moreover decreases total investment below the level obtained under imperfect

competition.
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1 Introduction

In this article we investigate the nature of equilibrium outcomes in oligopolistic markets

where firms make capacity choices under uncertainty about future market conditions and

decide on output after the state of nature has unraveled. The fact that in many industries

where non storable goods are produced, capacity is a long run decision, whereas production

may be adjusted short–run is a natural motivation for our approach.1 Consider, for example,

the electricity sector or the High Tech industry, where production has to take place just in

time, but capacities have to be installed well in advance. In those markets firms usually

face considerable demand and cost uncertainty when choosing their capacities. This may

be due to uncertainty about the economic trend, about the success of a new product, about

future weather conditions, or fuel prices, to give just a few examples.

As we will show, the consideration of uncertainty about future market conditions reveals

incentive problems that cannot be addressed in a model with deterministic demand and

cost functions. To see this, consider a modification of the game described above where at

the second stage firms are regulated to marginal cost pricing whenever unconstrained (and

market clearing prices obtain if capacities are binding). It is obvious that in both, the

original and the modified game, if future market conditions were perfectly known, capacity

choices would equal the (one shot) Cournot quantities and firms would always operate at full

capacity. Thus, intervention at the production stage would be ineffective, since firms could

exercise their market power already at the investment stage. If capacities are chosen under

uncertainty, however, firms will inevitably be unconstrained if demand turns out to be low.

Then, an intervention at the production stage has an impact on the investment decision.

In our particular example, investment incentives would be lower in the modified game

since being capacity constrained is the more attractive the lower unconstrained profits are.

The above illustrates that for markets with considerable demand fluctuations a thorough

analysis of regulatory interventions cannot be conducted without modeling the investment

stage explicitly and accounting for the uncertainty firms are facing. Our research aims to

provide the appropriate tools to tackle those issues.

In this paper we develop a rather general and manageable framework to analyze in-

1Moreover, our model covers a wide range of scenarios like investment prior to production on many

successive markets, that may be of interest for applied theoretical or empirical work. We comment on those

issues in the conclusion.
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vestment and production choices in an imperfectly competitive environment. We thereby

close a gap in the literature between studies that consider investment incentives in perfectly

competitive and monopolistic markets2, respectively (which are covered by our model as

the extreme cases). We show that under standard regularity conditions on demand and

cost the Cournot two stage market game (where firms invest in capacity under uncertainty

about future market conditions and produce when uncertainty has unraveled) always has a

unique equilibrium. Equilibrium investment in the Cournot outcome can be characterized

by an intuitive first order condition that implies that marginal revenue generated by an

additional unit of capacity equals marginal investment cost.

In order to asses the impact of strategic behavior on investment incentives and welfare,

we also consider the First Best and a Second Best scenario: the First Best solution specifies

welfare maximizing capacities and production schedules, while the Second Best solution

specifies welfare maximizing capacity choices given that firms engage in Cournot compe-

tition at the production stage. We show that total capacity in the First Best is higher

than total capacity in the Second Best solution, which still exceeds equilibrium investment

in the Cournot two stage market game. Our results confirm the common perception that

in oligopolistic markets there is clearly a role for investment enhancing mechanisms (like

capacity obligations or capacity markets).

The second main objective of our work is to provide a framework that allows to shed

light on the impact of regulatory intervention only at the production stage on investment

incentives and welfare. In order to elaborate on this issue, we consider capacity choices

by strategic firms that anticipate optimal regulation at the production stage given the

capacities chosen.We provide an intuitive characterization of investment in any symmetric

equilibrium. However, existence (but not even uniqueness) of equilibrium can only be shown

for the case of constant marginal production cost. Moreover, in any symmetric equilibrium

of the game with optimal regulation at the production stage, total investment is even lower

than in the Cournot market game. Our results have two important implications: First,

intervention only at the production stage gives rise to multiple, and possibly asymmetric

2The literature on peak–load pricing provides a characterization of investment in those cases. However,

the approach used does not allow to analyze the strategic interaction of firms. See, for example, Crew and

Kleindorfer (1986) or Crew, Fernando, and Kleindorfer (1994) for an overview. Another related direction of

research analyzes production decisions under demand uncertainty in perfectly competitive and monopolistic

markets. See Dreze and Gabszewicz (1967), Dreze and Sheshinski (1976), Leland (1972), or Sandmo (1971).
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equilibria of the game, and thereby generates strategic uncertainty for the firms. Second,

it is not even clear that such an intervention is welfare enhancing since it decreases total

capacity in the industry. We conclude that interventions only at the production stage have

to be carefully reconsidered in markets with highly fluctuating demand.3

In the economic literature, capacity choice has been extensively analyzed prior to price

competition. This literature was initiated by the seminal article of Kreps and Scheinkman

(1983), and has been generalized and extended by many authors, among others by Osborne

and Pitchik (1986). Reynolds and Wilson (2000) use the latter to analyze capacity choice

prior to Bertrand competition when demand is uncertain. Their analysis reveals that sym-

metric pure strategy equilibria (in capacities) do not exist unless cost of investment is so

high that firms want to be constrained in any demand scenario.

Gabszewicz and Poddar (1997) analyze investment under demand uncertainty prior to

quantity competition in a framework where both, demand and marginal cost are linear,

and compare it to equilibrium production given the expected demand (which they call

the ”Certainty Equivalent Game”).4 Our analysis in section 3 includes their model as a

special case. However, in terms of generality and technical tractability our approach goes

far beyond the one of Gabszewicz and Poddar.5

Other papers that investigate investment incentives prior to imperfectly competitive

markets were mainly motivated by the liberalization of the electricity sector, where invest-

ment incentives have recently become a central issue in the policy debate [see, for example,

Murphy and Smeers (2003)]. As a response to the common perception of too low investment

incentives, various mechanisms have been proposed to raise investments [see e. g. Cramton

3Note that our analysis abstracts from many problems that additionally have to be considered when

judging the welfare effects of a particular regulatory policy. Still we provide a framework that can be used

in order to explicitly analyze different (more realistic) scenarios at stage two. Examples are the analysis

of price cap regulation in Zoettl (2005) or of forward markets prior to spot market competition in Grimm

and Zoettl (2005).
4In order to relate the results of Gabszewicz and Poddar to ours, in appendix B we analyze a more

general version of their ”Certainty Equivalent Game”.
5Our primary goal was to provide a tool to analyze different forms of market organization on investment

incentives. This cannot be achieved by the model of Gabszewicz and Poddar, since their discrete approach

to model demand uncertainty does not allow to show uniqueness of equilibrium, to analyze an arbitrary

number of firms, to use more general demand and cost functions, and finally does not yield intuitive

characterizations of equilibria.
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and Stoft (2005), or Bushnell (2005) for an overview]. These approaches are well in line with

our result that investment is generally too low prior to imperfectly competitive markets.

The current policy debate on electricity markets also provides motivation for our second

scenario. There is a huge literature that asks whether the firms abuse market power in the

spot market and — if so — whether regulatory intervention is desirable.6 Our results point

out that investment incentives may be strongly affected by such an intervention and thus,

the welfare effect may be unclear.

Our paper is organized as follows: In section 2 we state the model. In section 3 we show

existence and uniqueness of equilibrium for the Cournot two stage market game. Then,

in section 4, we characterize the first best solution. Section 5 is devoted to intervention

of a planer at only one of the two stages: We characterize the socially optimal capacity

levels given that firms compete à la Cournot at the production stage (second best solution)

in section 5.1. In section 5.2, we analyze the incentives to invest in case the constrained

social optimum is implemented at the production stage. Section 6 contains our main result,

an unambiguous ranking of total investment in all scenarios mentioned above. Section 7

concludes.

2 The Model

We analyze a two stage market game where firms have to choose production capacities

under demand and cost uncertainty, and make output choices after market conditions un-

raveled. Uncertainty is represented by a parameter Θ that is distributed on the domain

[θ, θ] according to c.d.f. F (θ) with the corresponding density f(θ) = Fθ(θ).
7 We denote by

q = (q1, . . . , qn) the vector of outputs of the n firms, and by Q =
∑n

i=1 qi total quantity

produced in the market. Market demand in scenario θ ∈ [θ, θ] is given by P (·, θ). Moreover,

all firms have the same cost function in scenario θ, which we denote by C(·, θ).8 We make

the following regularity assumptions:

6See, for example, Wolfram (1999) or Joskow and Kahn (2002).
7Throughout the paper we denote the derivative of a function g(x, y) with respect to an argument

z, z = x, y, by gz(x, y), the second derivative with respect to that argument by gzz(x, y), and the cross

derivative by gxy(x, y).
8Note that P and C may depend on independent random events. Then, F (·) approximates the distri-

bution over all potential states of nature that may result from the two random draws.
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Assumption 1 (i) Market demand in scenario θ has a finite satiation point Q(θ),

i. e. P (Q, θ) = 0 for all Q ≥ Q(θ). Moreover, for each θ there exists a prohibitive

price P (θ), such that P (0, θ) ≤ P (θ).

(ii) P (Q, θ) is twice continuously differentiable in Q with P (Q, θ) > 0 and Pq(Q, θ) < 0

for all Q ∈ [0, Q(θ)) and θ ∈ (θ, θ].

(iii) C(qi, θ) is twice continuously differentiable in qi with Cq(qi, θ) ≥ 0 and Cqq(qi, θ) ≥ 0

for all θ ∈ [θ, θ].

(iv) P (Q, θ) satisfies Pq(Q, θ)+ Pqq(Q, θ)qi < 0 for all θ ∈ [θ, θ] and all qi ∈ [0, Q−Q−i].
9

(v) Both, P (Q, θ) and C(qi, θ) are differentiable in θ with P (0, θ) = C(0, θ) = 0 and

Pθ(Q, θ) − Cqθ(qi) > 0.

(vi) P (Q, θ)qi − C(qi, θ) is (differentiable) strict supermodular in qi and θ,

i. e. d2[P (Q,θ)qi−C(qi,θ)]
dqidθ

> 0 for all i, θ, and q−i.

The situation we want to analyze is captured by the following two stage game:

At stage one firms simultaneously build up capacities x = (x1, . . . , xn) ∈ [0, Q(θ)].

Capacity choices are observed by all firms. Cost of investment K(xi) is the same for all

firms and satisfies

Assumption 2 (Investment Cost) Investment cost K(xi) is twice continuously differ-

entiable, with Kx(xi) ≥ 0 and Kxx(xi) ≥ 0.

Throughout the paper we consider only the interesting cases where it holds that

K(0) <

∫ θ

θ

[P (0, θ) − C(0, θ)]dF (θ). (1)

That is, we assume that the consumers’ expected willingness to pay for the ”first unit” of

capacity is always higher than the cost of the first unit of investment. Note that if the

condition does not hold, no firm invests in capacity.

At stage two, facing the capacity constraints inherited from stage one, firms simultane-

ously choose outputs at the spot market. Since demand uncertainty unravels prior to the

9Throughout the paper q−i denotes the quantities produced by the firms other than i, and Q−i =
∑

j 6=i qj .
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output decision, produced quantities depend on the realized demand scenario. We denote

individual quantities produced in demand scenario θ by q(θ) = (q1(θ), . . . , qn(θ)), and the

aggregate quantity by Q(θ) =
∑n

i=1 qi(θ).

Finally, we state firm i’s stage one expected profit from operating if capacities are given

by x and firms plan to choose feasible10 production schedules qF (θ) for all θ ∈ [θ, θ].

πi

(
x, qF

)
=

∫ θ

θ

[
P
(
QF (θ) , θ

)
qF
i (θ) − C

(
qF
i (θ) , θ

)]
dF (θ) − K (xi) . (2)

3 Imperfect Competition

In this section we analyze the two stage market game where at stage one firms simulta-

neously invest in capacity under uncertainty about future market conditions and at stage

two, when uncertainty has unraveled, decide on production. We call this game the Cournot

market game and refer to the equilibrium investments and quantities as the Cournot out-

come.

In this section we show existence and uniqueness of equilibrium of the Cournot market

game and provide and intuitive characterization of equilibrium investment. In the following

— using backward induction — we proceed in two steps: we first analyze the equilibria

at stage two for all possible investment levels and then characterize equilibrium capacity

choices.

Production Stage In the first step we characterize equilibrium outputs of the capacity

constrained Cournot games at each θ ∈ [θ, θ] given investment choices x. Note that in order

to analyze all possible continuation games we have to consider also asymmetric investments.

In order to simplify the exposition we will order the firms according to their investment

levels, i. e. x1 ≤ x2 ≤ · · · ≤ xn, throughout the paper.

An equilibrium of the capacity constrained Cournot game at stage two in scenario θ

given x, qC(x, θ), satisfies simultaneously for all firms

qC
i (x, θ) ∈ arg max

q

{
P (q + qC

−i, θ))q − C(q, θ)
}

s.t. 0 ≤ q ≤ xi. (3)

Note that due to assumption 1, part (v), all firms are unconstrained for values of θ close

to θ. By assumption 1 parts (ii) to (iv), the unconstrained Cournot equilibrium [which we

10That is, 0 ≤ qF
i (θ) ≤ xi for all θ ∈ [θ, θ], i = 1, . . . , n.
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denote by q̃C0(θ)] is unique and symmetric for each θ ∈ [θ, θ].11 From (3) it follows that

q̃C0
i (θ) is implicitly determined by the first order condition

P (nq̃C0
i , θ) + Pq(nq̃C0

i , θ)q̃C0
i = Cq(q̃

C0
i , θ).

Now as θ increases, at some critical value that we denote by θC1(x), firm 1 (the one

with the lowest capacity) becomes constrained. The critical demand scenario is implicitly

determined by x1 = qC0
1 (θC1). If it holds that x1 < x2, then at θC1(x) only firm one

becomes constrained. Then, in equilibrium, firm 1 produces at its capacity bound whereas

the remaining firms produce their equilibrium output of the Cournot game among n − 1

firms given the residual demand P (Q − x1, θ) [denoted by q̃C1
i (x, θ)], which solves the first

order condition

P (x1 + (n − 1)q̃C1
i , θ) + Pq(x1 + (n − 1)q̃C1

i , θ)q̃C1
i = Cq(q̃

C1
i , θ).

The capacity constrained Cournot equilibrium in the case where one firm is constrained is

a vector qC1(x, θ), where qC1
i (x, θ) = min{xi, q̃

C1(x, θ)}.

As θ increases further, we pass through n+1 cases, from case C0 (no firm is constrained)

to case Cn (all n firms are constrained). Note that two critical values θCm(x) and θCm+1(x)

coincide whenever xm = xm+1, and that it holds that θCm(x) < θCm+1(x) (by assumption

1 part (v)) whenever xm < xm+1.

Now we are prepared to characterize the capacity constrained Cournot equilibrium in

case Cm where m firms are constrained. In this case, the m firms with the lowest capacities

produce at their capacity bound, whereas the n − m unconstrained firms produce

q̃Cm
i (x, θ) =

{

qi ∈ R : P

(
m∑

i=1

xi + (n − m) q̃Cm
i , θ

)

(4)

+Pq

(
m∑

i=1

xi + (n − m) q̃Cm
i , θ

)

q̃Cm
i = Cq

(
q̃Cm
i , θ

)

}

,

The equilibrium quantities of the capacity constrained Cournot game in case Cm are given

by

qCm
i (x, θ) = min{xi, q̃

Cm
i (x, θ)}, (5)

11See, for example Selten (1970), or Vives (2001), pp. 97/98.
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and aggregate production in case Cm is

QCm(x, θ) =

n∑

i=1

qCm
i (x, θ). (6)

This allows us finally to pin down the profit of firm i in scenario Cm,

πCm
i (x, θ) =







P
(
QCm, θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QCm, θ

)
q̃Cm
i (x, θ) − C

(
q̃Cm
i (x, θ) , θ

)
if i > m.

(7)

Note that it holds that
dπCm

i

dxi
> 0 only if i ≤ m, and

dπCm
i

dxi
= 0 otherwise, since a firm’s

capacity expansion only affects production at stage two in case the firm was constrained.

Obviously, in this case the derivative must be positive.

Investment Stage Now we are prepared to analyze capacity choices at the investment

stage. The results obtained for the production stage enable us to derive a firm i’s profit

from investing xi, given that the other firms invest x−i and quantity choices at stage two

are given by qCm(x, θ) for θ ∈ [θCm(x), θCm+1(x)]. Recall that when choosing capacities the

firms still face demand uncertainty. Thus, a firm’s profit from given levels of investments,

x, is the integral over equilibrium profits at each θ given x on the domain [θ, θ], taking

into account the probability distribution over the demand scenarios. For each θ, firms

anticipate equilibrium play at the production stage, which gives rise to one of the n + 1

types of equilibria, EQC0, . . . , EQCm, . . . , EQCn. Note that, by assumption 1, part (v), any

x > 0 gives rise to the unconstrained equilibrium if θ is close enough to θ. As θ increases,

more and more firms become constrained. Thus, a tuple of investment levels that initially

gave rise to an EQC0, then leads to an equilibrium where first one (then two, three, . . . ,

and finally n) firms are constrained. In order to simplify the exposition we again make use

of the definitions θC0 ≡ θ and θCn+1 ≡ θ. Then, the profit of firm i is given by12

πi(x, qC) =

m=n∑

m=0

∫ θCm+1

θCm

πCm
i (x, θ)dF (θ) − K(xi). (8)

12Note that it is never optimal for a firm to be unconstrained at θ and thus, we always obtain θCn ≤ θ.
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Note that at each critical value θCm, m = 1, . . . , n it holds that πCm−1(x, θCm) =

πCm(x, θCm). Thus, πi(x, qC) is continuous. Differentiating πi(x, qC) yields13

dπi

(
x, qC

)

dxi

=
n∑

m=i

∫ θCm+1(x)

θCm(x)

dπCm
i (x, θ)

dxi

dF (θ) − Kx (xi) (9)

Note that if all firms invest the same, then it holds that either all firms are constrained,

or none, i. e. θC1 = θC2 = · · · = θCn. This implies that for symmetric investment the first

order condition coincides for all firms. We are able to show the following

Lemma 1 (Cournot (C)) The Cournot market game has a unique equilibrium which is

symmetric. Equilibrium investments xC
i = 1

n
XC, i = 1, . . . , n solve

∫ θ

θCn(xC)

[

P
(
XC , θ

)
+ Pq

(
XC , θ

) 1

n
XC − Cq

(
1

n
XC , θ

)]

dF (θ) = Kx

(
1

n
XC

)

. (10)

Proof See appendix A.1. �

Let us emphasize two important aspects of our results: First, we could show that un-

der standard regularity assumptions the Cournot market game has a unique equilibrium.

Second, we find that (symmetric) equilibrium investment can be characterized by a rather

intuitive condition, (10). The condition simply says that expected marginal revenue gen-

erated by an additional unit of capacity must equal marginal cost of investment. When

calculating the marginal revenue of capacity, however, one has to take into account that

additional capacity affects a firm’s revenue only in those states of nature where capacity was

binding. Thus, expectation must only be taken with respect to those scenarios in which the

firms are capacity constrained, i. e. over the interval [θCn
(
xC
)
, θ], and not over the whole

domain of Θ.

4 First Best

In order to be able to assess the impact of market power on investment incentives, in this

section we characterize the first best solution, that is, welfare optimal capacity levels and

13Note that continuity of πi implies that due to Leibnitz’ rule the derivatives of the integration limits

cancel out. Moreover πCm
i only changes in xi if firm i is constrained in scenario FBm, i. e. i ≤ m. Thus,

the sum does not include the cases where firm i is unconstrained, i. e. m < i.
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output choices given the number of firms in the market. Again we proceed in two steps:

We first characterize the socially optimal production plan at stage two for all possible

investment levels and then characterize socially optimal investment at stage one.

We moreover show that if firms do not act strategically, investment and production

levels coincide with the first best (socially optimal) solution, again given the number of

firms. Later, in section 6, we provide a comparison of investment under the First Best

solution and in the Cournot outcome.

Production Stage We start with the characterization of the socially optimal production

plan at stage two, given the capacities chosen at stage one, which may differ across firms.

Recall that we order the firms according to their investment levels, i. e. x1 ≤ x2 ≤ · · · ≤ xn.

In the following we specify, for a given vector of capacities x, the optimal production

schedule for any possible demand scenario (that is, for any possible value of θ).14

Note that due to assumption 1, part (v), all firms are unconstrained for values of θ close

to θ. It is straightforward to show that in the welfare optimum, all unconstrained firms

produce the same (due to convex cost). Thus, the socially optimal total quantity of each

firm if all firms are unconstrained is given by qFB0
i (θ) = {qi ∈ R : P (nqi, θ) = Cq (qi, θ)}.

Now, as θ increases, at some critical value, that we denote by θFB1(x), firm 1 (the lowest

capacity firm) becomes constrained. The critical demand scenario θFB1(x) is implicitly de-

fined by x1 = qFB0
1 (θFB1). If it holds that x1 < x2, then at θFB1(x) only firm 1 becomes con-

strained and the socially optimal production plan implies that firm 1 produces at its capacity

bound whereas the remaining firms produce the unconstrained optimal quantity given the

residual demand P (Q−x1, θ), i. e. q̃FB1
i (x, θ) = {qi ∈ R : P ((n − 1)qi + x1, θ) = Cq (qi, θ)}.

The optimal production plan in scenario FB1 is a vector qFB1(x, θ), where each element is

given by qFB1
i (x, θ) = min{xi, q̃

FB1
i (x, θ)}.

As θ increases further and more firms become constrained, we pass through n+1 cases,

from case FB0 (no firm is constrained) to case FBn (all n firms are constrained). Note

that two critical values θFBm(x) and θFBm+1(x) coincide whenever xm = xm+1, and that it

holds that θFBm(x) < θFBm+1(x) (by assumption 1 part (v)) whenever xm < xm+1.

Now we are prepared to characterize the socially optimal production plan and social wel-

14With convex cost a characterization of the welfare optimum could probably be given with less mathe-

matical burden. However, we will need the characterization developed here also in section 5.2.
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fare generated in case FBm, where m firms are constrained. In this case, the m firms with

the lowest capacities produce at their capacity bound, whereas the n−m unconstrained firms

produce the unconstrained optimal quantity given the residual demand P (Q−
∑m

i=1 xi, θ),

i. e.

q̃FBm
i (x, θ) =

{

qi ∈ R : P

(
m∑

j=1

xj + (n − m)qi, θ

)

= Cq(qi, θ)

}

. (11)

We denote the optimal production plan in case FBm by qFBm(x, θ) where each element is

given by

qFBm
i (x, θ) = min{xi, q̃

FBm
i (x, θ)} i = 1, . . . , n. (12)

Consequently, the optimal total quantity produced in case FBm is

QFBm(x, θ) =
n∑

i=1

qFBm
i (x, θ). (13)

All this allows us finally to pin down maximal social welfare generated in demand scenario

θ ∈ [θFBm, θFBm+1] (where, given x, the m lowest capacity firms are constrained) as

W FBm (x, θ) =

∫ QF Bm(x,θ)

0

P (Q, θ) dQ −

n∑

i=1

C
(
qFBm
i (x, θ) , θ

)
. (14)

Note that W FBm only depends on xi if firm i is constrained in scenario m, that is if i ≤ m.

Investment Stage Let us now characterize the welfare maximizing level of investment.

Total expected welfare is obtained by integrating over all demand realizations. Since the

functional form of the maximal attainable welfare changes as we pass from case FBm to

case FBm + 1, we have to integrate piecewisely. In order to facilitate exposition, we define

θFB0 = θ and θFBn+1 = θ. Then, welfare generated by the choice of capacities x, given the

optimal production plan is implemented at stage two is

W(x, qFB) =

n∑

m=0

∫ θF Bm+1(x)

θF Bm(x)

W FBm(x, θ)dF (θ) −

n∑

i=1

K (xi) . (15)

Note that at each critical value θFBm, m = 1, . . . , n, it holds that W FBm−1(x, θFBm) =

W FBm(x, θFBm). Thus, W(x) is continuous. Differentiating W(x) yields

dW(x, qFB)

dxi

=

n∑

m=i

∫ θF Bm+1(x)

θF Bm(x)

dW FBm (x, θ)

dxi

dF (θ) − Kx (xi) . (16)
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Obviously, the n first order conditions are simultaneously satisfied for all firms if all firms

invest the same. We can show the following

Lemma 2 (First Best (FB)) In the welfare optimum, each firm invests xFB
i = 1

n
XFB,

i = 1, . . . , n, where xFB solves

∫ θ

θF Bn(xF B)

[

P
(
XFB, θ

)
− Cq

(
1

n
XFB, θ

)]

dF (θ) = Kx

(
1

n
XFB

)

. (17)

Proof See appendix A.2. �

We obtain a rather intuitive characterization also of the first best investment level. The

condition says that in the welfare optimum capacity should be chosen such that expected

marginal social welfare of additional capacity [LHS of (17)] should equal marginal cost of

investment [RHS of (17)]. Again it is important to notice that expectation is only taken

over those scenarios where the firms are actually constrained given the scheduled stage

two–production, that is, over the interval [θFBn(xFB), θ].

Remark 1 (Non-Strategic Firms) For each number of firms, n, if firms do not behave

strategically (i. e. they act as price takers at stage two and ignore their impact on total

capacity at stage one), firms invest and produce optimally from a social welfare point of

view.

Proof See appendix A.3 �

5 Partial Intervention

This section is thought to shed light on the effects that intervention at only one of the two

stages has on investment incentives. In the following section (5.1) we consider implementa-

tion of the welfare optimal capacity level at stage one given that firms strategically choose

their outputs at the production stage (Second Best). In section 5.2 we analyze strategic

capacity choices if firms anticipate implementation of the welfare optimal production sched-

ule given the capacities chosen at stage two (Optimal Regulation at the Production stage,

ORP).15 Table 2 relates those scenarios to the scenarios already analyzed in sections 3 and

4.
15We abstract from all informational problems by assuming that a social planer implements the welfare

optimum at one stage given that firms behave strategically at the other one.
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Objective at the Production

Stage

Profit Welfare

Objective Cournot ORP

at the Profit XC XORP

Investment Second Best First Best

Stage Welfare XSB XFB

Table 1: The four scenarios analyzed.

5.1 Second Best

In order to investigate whether the capacity choices of strategic firms are locally inefficient,

in this section we characterize the socially optimal investment levels given that firms play

the capacity constrained Cournot equilibrium at the production stage. Later, in section

6, we will provide a comparison with capacity levels in the First Best and in the Cournot

outcome.

If, at stage two, firms play the capacity constrained Cournot equilibrium16 qCm
i (x, θ),

i = 1, . . . , n, aggregate production in case Cm is given by QCm(x, θ) as defined in (6).

Consequently, total welfare generated in demand scenario θ ∈ [θCm(x), θCm+1(x)] is

W Cm(x, θ) =

∫ QCm(x,θ)

0

P (Q, θ)dQ −
n∑

i=1

C(qCm
i (x, θ), θ). (18)

Note that W Cm(x, θ) depends on xi only if firm i is constrained in case Cm, i. e. if i ≤ m,

or, equivalently, qCm
i (x, θ) = xi.

Welfare generated by the choice of capacities x, given that the firms play the capacity

constrained Cournot equilibrium at stage two is given by

W(x, qC) =

n∑

m=0

∫ θCm+1(x)

θCm(x)

W Cm(x, θ)dF (θ) −

n∑

i=1

K (xi) (19)

Note that at each critical value θCm, m = 1, . . . , n, it holds that W Cm−1(x, θCm) =

16See the characterization provided in section 3.
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W Cm(x, θCm). Thus, W(x, qC) is continuous. Differentiation yields

dW(x, qC)

dxi

=

n∑

m=i

∫ θCm+1(x)

θCm(x)

dW Cm (x, θ)

dxi

dF (θ) − Kx (xi) (20)

Obviously, the n first order conditions are simultaneously satisfied for all firms if all firms

invest the same. We can indeed show the following

Lemma 3 (Second Best (SB)) The capacities xSB
i = 1

n
XSB, i = 1, . . . , n, a social

planner would like to implement prior to Cournot competition at stage two solve

∫ θ

θCn(xSB)

[

P
(
XSB, θ

)
− Cq

(
1

n
XSB, θ

)]

dF (θ) = Kx

(
1

n
XSB

)

(21)

Proof See appendix A.4. �

5.2 Optimal Regulation at the Production Stage

In order to investigate the impact of stage two–intervention on capacity choices in oligopolis-

tic markets, we analyze strategic capacity choices at stage one given that firms anticipate

that at stage two the socially optimal solution is implemented (e.g. by a social planer). A

comparison of equilibrium investment in this scenario with investments in the First Best,

Second Best, and Cournot solution is provided in section 6.

If the competitive outcome is implemented at stage two, outputs coincide with the

welfare maximizing quantities characterized in equation (12). Thus, a firm i’s stage two–

profit in scenario θ ∈ [θFBm(x), θFBm+1(x)] where firms have invested x and m firms turn

out to be constrained is given by

πFBm
i (x, θ) =







P
(
QFBm(x, θ), θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QFBm(x, θ), θ

)
q̃FBm
i (x, θ) − C

(
q̃FBm
i (·) , θ

)
if i > m.

The stage one expected profit of firm i is obtained by integrating over all profits asso-

ciated with each demand realization,

πi(x, qFB) =

n∑

m=0

∫ θF Bm+1(x)

θF Bm(x)

πFBm
i (x, θ)dF (θ) − K (xi) . (22)
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Thus, the first order condition is

dπi

(
x, qFB

)

dxi

=
n∑

m=i

∫ θF Bm+1(x)

θF Bm(x)

dπFBm
i (x, θ)

dxi

dF (θ) − Kx (xi) . (23)

Again, we immediately see that if investment is symmetric across firms, only the last integral

in (23) remains positive. We show the following

Lemma 4 (Optimal Regulation at the Production Stage (ORP))

(i) In any symmetric equilibrium of the game where the competitive outcome is imple-

mented at stage two, firms choose capacities xORP
i = 1

n
XORP , i = 1, . . . , n such that

∫ θ

θF Bn(xORP )

[

P
(
XORP , θ

)
+ Pq

(
XORP , θ

) XORP

n
− Cq

(
XORP

n
, θ

)]

dF (θ) (24)

= Kx

(
XORP

n

)

.

(ii) Suppose that marginal cost Cq(q, θ) is constant in q. Then , there exists at least one

symmetric equilibrium, but there may be more than one. No asymmetric equilibria

exist.

(iii) The game always has a unique symmetric (degenerate) equilibrium if XC ≤ Q̃C0(θ),

i. e. capacity in the Cournot outcome is lower than the unconstrained Cournot equi-

librium production at θ. In such an equilibrium firms are constrained at any θ ∈ [θ, θ].

Proof See appendix A.5 �

Note that we cannot prove existence and uniqueness of a symmetric equilibrium in the

general case while for constant marginal cost existence (but not uniqueness) can be shown.

The basic problem is that in neither case the stage one profit is quasiconcave, which makes

standard analysis impossible. In the case of linear marginal cost, however, we can exploit

recent insights on oligopolistic competition that makes use of lattice theory (Amir and

Lambson (2000)). In the general case (i. e. strictly convex production cost), however, the

game cannot be reformulated as a supermodular game and thus, even more sophisticated

techniques do not help.

Finally let us draw the reader’s attention to the degenerate case mentioned in part (iii)

of the lemma. There we show that the game with optimal regulation at stage two always

has a unique equilibrium in case that even in the Cournot market game (see section 3)

firms always want to be constrained, even at the lowest realization of θ. In section 6 we

will provide further intuition on this special case.
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6 Comparison of Investment Levels

In this section compare equilibrium investments in the scenarios analyzed in sections 3 to 5.

Moreover, in the discussion of our result we demonstrate how the approach can be used to

easily obtain insights on the effect that regulatory intervention or market re–organization

have on investment incentives, far beyond the stylized scenarios we analyzed.

Theorem 1 Suppose that assumptions 1 and 2 hold.

(i) For any finite number of firms, n, it holds that

– Capacity in the Cournot outcome is too low from a social welfare point of view,

i. e. XSB
n > XC

n .

– Capacity in any symmetric stage two–regulated outcome is lower than in the

Cournot outcome, i. e. XC
n ≥ XORP

n .

– The first best solution yields the highest capacity level among all scenarios.

Summarizing, it holds that XFB
n ≥ XSB

n > XC
n ≥ XORP

n .

(ii) As the number of firms approaches infinity, investment levels in all scenarios coincide,

i. e. XFB
∞ = XSB

∞ = XC
∞ = XORP

∞ .

Proof Part (i) Consider the first order conditions that implicitly define total capacities

in the four scenarios considered, as given in lemmas 1 to 4. Note that (i) Pq(X, θ) < 0,

(ii) θCn(x) > θFBn(x) for all x17, and that (iii) at (below, above) the demand realization

θCn(xC) we have that Pq(X
C, θ)XC

n
+ P (XC, θ) − Cq(

1
n
XC , θ) = 0 (< 0, > 0). Thus, the

lefthand–sides of the first order conditions can be ordered as follows:

FB :

∫ θ

θFBn(x)

[

P (X, θ) − Cq

(
1

n
X, θ

)]

dF (θ) (25)

SB : ≥

∫ θ

θCn(x)

[

P (X, θ) − Cq

(
1

n
X, θ

)]

dF (θ)

C : >

∫ θ

θCn(x)

[

Pq (X, θ)
1

n
X + P (X, θ) − Cq

(
1

n
X, θ

)]

dF (θ)

ORP : ≥

∫ θ

θF Bn(x)

[

Pq (X, θ)
1

n
X + P (X, θ) − Cq

(
1

n
X, θ

)]

dF (θ)

17The latter is due to the fact that firms get already constrained at lower demand realizations if they

behave competitively and therefore produce where demand equals marginal cost.
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Note that according to lemmas 1 to 4, the total capacities are determined as the values of

X where the respective term equals Kx

(
1
n
XZ
)
, Z ∈ {FB, SB, C, ORP}. Recall that in

all cases we get interior solutions and note that the above terms (except for the one that

determines XORP ) are decreasing in X, while Kx is increasing in X. This immediately

implies XFB ≥ XSB > XC .

In order to see why the ranking stated in the theorem also holds for ORP , note that

the above term in scenario C is strictly decreasing in X, whereas in scenario ORP it

satisfies LHS(0) > Kx(0) (by assumption 2) and LHS(X) < Kx(X) for X high enough

(by assumption 1 (i)). Since Kx(X) is increasing in X, this immediately implies that for

any equilibrium investment XORP it holds that XC ≥ XORP .

Part (ii) As n approaches infinity, all first order conditions collapse to
∫ θ

θ
[P (X, θ) −

Cq(0, θ)]dF (θ) = Kx(0). �

In the following we derive exact conditions under which the weak inequalities from

theorem 1 are strict, and hold with equality, respectively. They hold with equality whenever

already the capacity choice determines production in any demand scenario θ ∈ [θ, θ], that

is, if firms are always constrained at the production stage. In particular:

Theorem 2 (Degenerate Cases) Suppose f(θ) > 0 for all θ ∈ [θ, θ]. Then it holds18

(i) XC ≤ Q̃C0(θ) ⇔ XC = XORP ,

(ii) XFB ≤ Q̃C0(θ) ⇔ XFB = XSB.

Proof Let x0 be a vector of equal capacities summing up to X0. We have θ ≤ θFBn(x0) ≤

θCn(x0) for all x0 and both, θFBn(x0) and θCn(x0) are increasing in X0.

(i) If XC ≤ Q̃C0(θ), then θ = θCn(xC). This implies that θ = θFBn(xORP ) = θCn(xC) (since

XORP ≤ XC). Then the first order conditions (10) and (24) collapse since the lower limit of

integration is given by θ. This proves ”⇒”. In order to prove ”⇐”, note that XC > Q̃C0(θ)

implies θ ≤ θFBn(xORP ) < θCn(xC).19 Then the the lower limit of integration in first order

conditions (10) and (24) does not coincide which implies XORP < XC if f(θ) > 0 for all

θ ∈ [θ, θ].

(ii) The proof works analogously to part (i). �

18The assumption f(θ) > 0 is only needed for the ”⇐”-direction. ”⇒” always holds.
19Note that whenever θ < θCn(xC), then it holds that θFBn(xORP ) < θCn(xC).
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Genuine Uncertainty Degenerate Cases

Q̃C0(θ) < XC XC ≤ Q̃C0(θ) < XFB XFB ≤ Q̃C0(θ)

XORP < XC XORP = XC

XSB < XFB XSB = XFB

Table 2: Degenerate Cases and Equivalence of Scenarios.

If condition (i) of theorem 2 holds, in the Cournot market game (section 3) firms want to

be constrained at the production stage in any state of nature θ ∈ [θ, θ]. Since the incentive

to be constrained is higher in case of optimal regulation at stage two, the solutions of C and

ORP collapse in this case. Moreover, comparison with a result by Reynolds and Wilson

(2000) shows that under condition (i) also a game where firms invest prior to Bertrand

competition at stage two yields the same capacity as C and ORP .20

This result is well known in the absence of uncertainty (when obviously condition (i) is

always satisfied). In this case, the equivalence of the Cournot and the Bertrand outcome has

already been shown by Kreps and Scheinkman (1983). Our results show that those findings

also hold under a weaker condition that basically imposes a restriction on the variance of

θ. Obviously, condition (i) describes a degenerate environment where uncertainty does not

matter much. Under genuine uncertainty, where firms are unconstrained in at least some

states of nature, our analysis demonstrates that in fact market organization at stage two

matters a lot.21

20Reynolds and Wilson show that under condition (i) capacity choice prior to Bertrand competition

yields the same outcome as capacity choice in a game where firms cannot adjust their production after

uncertainty unraveled. It is easy to show that under condition (i) the latter game yields the same outcome

as our Cournot market game (which clearly is not the case if condition (i) does not hold). Reynolds and

Wilson fail to recognize, however, their this game does not have a unique equilibrium in case of genuine

uncertainty (which is why part (ii) of their theorem is incomplete).
21For the Bertrand market game Reynolds and Wilson (2000) show that under genuine uncertainty

equilibria with equal capacities of the firms do not exist.
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If condition (ii) holds, at the welfare maximizing (First Best) capacity level even strategic

firms are constrained in any demand scenario θ ∈ [θ, θ] at stage two. Notice that condition

(ii) is stronger than condition (i) [since XFB > XC , as we have shown in theorem 1].

Consequently, (ii) can only hold in a degenerate environment where uncertainty is not an

important issue.

Why the level of uncertainty is not the only decisive factor for a equivalence of XFB and

XSB can best be illustrated in case of certain demand. At the production stage, strategic

firms play either their Cournot quantity given marginal production cost, or their capacity,

whichever is lower. This implies that even under certainty the First Best and the Second

Best outcome coincide only in those cases where the First Best capacity level is below

the Cournot quantities at stage two. Thus, condition (ii) requires that marginal capacity

cost is sufficiently high compared to marginal production cost and that uncertainty does

not matter much. As we have shown in our analysis, however, under genuine uncertainty

the First Best solution always implies higher investment than the second best solution,

independent of marginal capacity and production cost.

Let us finally draw the reader’s attention to the particular structure of all four first

order conditions. They all equalize marginal profit or welfare of additional capacity [LHSs

of the first order conditions as listed in equation (25)] with marginal cost of capacity [RHS]

(see lemmas 1 to 4). Note that the stage one–objective is reflected only in the integrand at

the LHS while the stage two–objective enters exclusively into the lower limit of integration.

That is, we integrate over marginal profit in cases where the firms maximize profits at

stage one (C and ORP ) and over marginal welfare in cases where welfare is the stage one-

objective (FB and SB). The game at stage two enters only in form of the lower limit

of integration, which is the state of nature from which on firms are constrained given the

capacities chosen at stage one (i. e. θCn(x) in the case of Cournot competition at stage two

and θFBn(x) if the welfare optimum is implemented).

7 Conclusion

In this paper we have provided a general model of strategic investment decisions under un-

certainty prior to imperfectly competitive markets. We have shown existence and unique-

ness of equilibrium and provided an intuitive characterization of equilibrium investment.
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We found that increasing capacity is desirable from a social welfare point of view. We also

demonstrated that intervention only at the production stage leads to strategic uncertainty

at the investment stage and, moreover, decreases total investment. Thus, in markets with

considerable demand fluctuations, (partial) intervention only at the market stage has to be

carefully reconsidered.

The particular structure of the first order conditions discussed at the end of the previous

section moreover allows several conjectures about the desirability of interventions at either

stage one or stage two. First, our model suggests that any stage two–intervention which

increases production above the level obtained in the Cournot outcome in every state of the

world reduces investment. Second, increasing the capacity above the level freely chosen by

the firms is desirable from a social welfare point of view whenever firms exercise market

power to some extent at the production stage.

While the model provides a solid intuition for how investment incentives and welfare

are affected by regulatory intervention, specific market designs under consideration still

have to be analyzed carefully in order to obtain reliable policy conclusions. In this respect,

our model provides a tractable framework for the analysis of different scenarios at the

market stage. The framework captures the stylized fact that at the time when they make

their investment decisions firms face considerable uncertainty both about future demand

and production cost, and probably also with respect to future regulatory regimes. Let us

outline several directions of research that can directly benefit from the analysis done in this

paper.

The most obvious application of the model is to modify the game played at the second

stage in order to analyze how different market designs or regulatory interventions affect

investment incentives and welfare. However, modeling a more complicated strategic context

at the production stage usually comes at the cost of loosing some generality (i. e. restriction

to linear demand). Grimm and Zoettl (2005) analyze how investment incentives are affected

by the introduction of forward markets prior to spot trading and Zoettl (2005) considers

price cap regulation at the spot market. Whereas the results of Grimm and Zoettl (2005)

confirm the intuition that making the spot market more competitive decreases investments,

Zoettl (2005) finds that price caps at stage two may actually increase investment incentives.

The reason is that price caps eliminate an important feature of the present model, i. e. prices

do not rise in case of insufficient capacity, which crucially affects the incentives.
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A second line of research for which the current model serves as a starting point is

the analysis of capacity expansion, probably even allowing the choice between different

technologies. On the one hand, such a model would allow to analyze the effect of measures

like emission permits in electricity markets that affect variable costs of different technologies

to different extents. On the other hand it could serve as the theoretical benchmark that

allows to estimate market power at the investment stage.

A Proofs

A.1 Proof of Lemma 1

We prove the lemma in two parts. In part I we show existence and in part II uniqueness of

the equilibrium. For the proof we first need to establish the following

Property 1 (Monotonicity of θCm) dθCm(x)
dxi

is strictly positive if i ≤ m, and zero

otherwise.

Proof θCm(x) is the demand realization from which on firm m cannot play its uncon-

strained output any more. At θCm(x) it holds that qC
i (θCm(x)) = q̃Cm(θCm(x)) = xm for

all i ≥ m and qC
i (θCm(x)) = xi < xm for all i < m. Thus, θCm(x) is implicitly defined by

the conditions

P

(
m∑

i=1

xi + (n − m)xm, θCm(x)

)

+Pq

(
m∑

i=1

xi + (n − m)xm, θCm(x)

)

xm − Cq

(
xm, θCm(x)

)
= 0.

Differentiation with respect to xi, i < m, yields

Pq (·) + Pθ (·)
dθCm (x)

dxi

+ Pqq (·) xm + Pqθ (·)xm

dθCm (x)

dxi

− Cqθ (·)
dθCm (x)

dxi

= 0,

and solving for dθCm(x)
dxi

we obtain

dθCm (x)

dxi

= −
Pq (·) + Pqq (·)xm

Pθ (·) + Pqθ (·)xm − Cqθ (·)
> 0

due to assumption 1, parts (iv) and (vi) [note that the expression in the denominator is

the cross derivative which was assumed to be positive in part (vi) of assumption 1].
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Differentiation with respect to xi, i = m, yields

(n − m + 2)Pq (·) + Pθ (·)
dθCm (x)

dxi

+(n − m + 1)Pqq (·)xm + Pxθ (·)xm

dθCm (x)

dxi

− Cxx (·) − Cqθ (·)
dθCm (x)

dxi

= 0,

and solving for dθCm(x)
dxi

we obtain

dθCm (x)

dxi

= −
(n − m + 2)Pq (·) + (n − m + 1)Pqq (·) xm − Cxx (·)

Pθ (·) + Pqθ (·) xm − Cqθ (·)
> 0,

also due to assumption 1, parts (iv) and (vi). Finally, differentiation with respect to xi,

i > m, yields

Pθ (·)
dθCm (x)

dxi

+ Pxθ (·)xm

dθCm (x)

dxi

− Cqθ (·)
dθCm (x)

dxi

= 0,

which implies that dθCm(x)
dxi

= 0 for i > m. �

PartI: Existence of Equilibrium In the following we show that a symmetric equilib-

rium of the two stage Cournot market game exists, and that equilibrium choices xC
i = 1

n
XC ,

i = 1, . . . , n, are implicitly defined by equation (10). For this purpose it is sufficient to show

quasiconcavity of firm i’s profit given the other firms invest xC
−i, πi(xi, x

C
−i), which we do in

the following.

Note that πi(xi, x
C
−i) is defined piecewisely. For xi < xC

i , we have to examine to profit

of firm 1 (by convention the lowest capacity firm) given that x2 = x3 = · · · = xn. Since

this implies that θC2 = · · · = θCn and thus it follows from (8) that

π1(x1, x
C
−1) =

∫ θC1(x)

θ

πC0
1 (x, θ)dF (θ) +

∫ θCn(x)

θC1(x)

πC1
1 (x, θ)dF (θ) (26)

+

∫ θ

θCn(x)

πCn
i (x, θ)dF (θ) − K(x1)

For xi > xC
i , the profit of firm i is the profit of the highest capacity firm (firm n according

to our convention), given all other firm have invested the same, i. e. x1 = · · · = xn−1. We

get

πn(xn, xC
−n) =

∫ θCn−1(x)

θ

πC0
n (x, θ)dF (θ) +

∫ θCn(x)

θCn−1(x)

πCn−1
n (x, θ)dF (θ) (27)

+

∫ θ

θCn(x)

πCn
n (x, θ)dF (θ) − K(x1)
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(i) The shape of πi(xi, x
C
−i) for xi > xC

i : The second derivative of the profit function πn

is given by22

d2πn

(dxn)2
= −

dθCn(x)

dxn

[
dπCn

n (x, θCn)

dxn

]

︸ ︷︷ ︸

=0 (xn is opt. atθCn)

f(θCn) +

∫ θ

θCn(x)

d2πCn
n (x, θ)

(dxn)2
︸ ︷︷ ︸

<0 by A1 part (iv)

f(θ)dθ < 0. (28)

Note that the first term cancels out and the second term is negative by concavity of the

spot market profit function (implied by assumption 1, part (iv)). We find that for xi > xC
i ,

πi(xi, x
C
−i) is concave, which implies that upwards deviations are not profitable.

(ii) The shape of πi(xi, x
C
−i) for xi < xC

i : This region is more difficult to analyze since the

profit function π1(x1, x
C
−1) is not concave. But we can show quasiconcavity of π1(x1, x

C
−1).

For this purpose we need the following properties of marginal profits at stage two for the

cases (C1) and (Cn) [that can be derived from equations (7)].

Property 2 [Marginal Profits at Stage Two in Cases (C1) and (Cn)]

(i)
dπC1

1
(x,θ)

dx1
≥ 0.

(ii)
dπCn

1 (x′

1,x−1,θ)

dx1
≥

dπC1
1 (x′′

1 ,x−1,θ)

dx1
≥ 0 for x′

1 < x′′
1.

Proof (i) The first part holds due to the fact in case firm 1 is constrained, i. e. (θ ≥ θC1),

firm 1 would like to produce more than x1 for all demand realizations θ ≥ θC1, which,

however, is not possible due to the capacity constraint.

(ii) The first inequality follows from concavity of the profit functions in the spot markets,

which is implied by assumption 1, part (iv). Thus, the first order condition at each spot-

market is decreasing in x1 until q̃C0
i , which immediately yields the first inequality of part

(ii). The second inequality is due to the fact that in case all firms are constrained, i. e. (θ ∈

[θCn, θ]), firm 1 would like to produce more for all demand realizations θ (which is not

possible because it is constrained). �

Now we can use property 2 in order to complete the proof of existence (part I). We can

show quasiconcavity of π1(x1, x
C
−1) by showing that

dπ1(x
0
1, x

C
−1)

dx1

≥
dπ1(x

C
1 , xC

−1)

dx1

= 0 for all x0
1 < xC

1 .

22It is obvious that there is no incentive for any firm to deviate such that it is unconstrained at θ. Thus,

we only consider the case that all firms are constrained at θ.
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This holds true, since [compare also equation (9)]

dπ1(x
0
1, x

C
−1)

dx1
=

∫ θCn(x0
1,xC

−1)

θC1(x0
1,xC

−1)

dπC1
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸

>0 by property 2, part (i)

+

∫ θ

θCn(x0
1,xC

−1)

dπCn
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

>

∫ θ

θCn(x0
1,xC

−1)

dπCn
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

=

∫ θCn(xC

−1,xC

−1)

θCn(x0
1,xC

−1)

dπCn
1 (x0

1, x
C
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸

≥0 by properties 1 and 2, part (ii)

+

∫ θ

θCn(xC

1 ,xC

−1)

[
dπCn

1 (x0
1, x

C
−1, θ)

dx1
−

dπCn
1 (xC

1 , xC
−1, θ)

dx1

]

dF (θ)

︸ ︷︷ ︸

≥0 by property 2, part (ii)

+

∫ θ

θCn(xC

1 ,xC

−1)

dπCn
1 (xC

1 , xC
−1, θ)

dx1
dF (θ)

︸ ︷︷ ︸

=
dπi(x

C)

dxi
=0 [recall that θC1(xC)=θCn(xC)]

≥ 0.

To summarize, in part I we have shown that πi(xi, x
C
i ) is quasiconcave. We conclude

that the first order condition given in lemma 1 indeed characterizes equilibrium investment

in the Cournot market game.

Part II: Uniqueness In this part we show that (i) xC is the unique symmetric equilib-

rium and (ii) that there are no asymmetric equilibria.

(i) xC is the unique symmetric equilibrium. If capacities are equal, i. e. x0
1 = x0

2 =

· · · = x0
n, we have

dπi(x
0)

dxi

=

∫ θ

θCn(x0)

[P (nx0
i , θ) + Pq(nx0

i , θ)x
0
i − Cq(x

0
i , θ)]f(θ)dθ − Kx(x0

i ).

Differentiation yields23

d2πi(x
0)

(dxi)2
=

∫ θ

θCn(x0)

[
(n + 1)Pq(nx0

i , θ) + nPqq(nx0
i , θ)x

0
i − Cqq(x

0
i , θ)

]
dF (θ) − Kxx(x0

i ) < 0,

which is negative due to assumption 1 part (iv). Thus, since dπi(xC)
dxi

= 0 and moreover

πi(x) is concave along the symmetry line, no other symmetric equilibrium can exist.

(ii) There cannot exist an asymmetric equilibrium. Any candidate for an asymmetric

equilibrium x̂ can be ordered such that x̂1 ≤ x̂2 ≤ · · · ≤ x̂n, where at least one inequality

23Differentiation works as in (28).
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has to hold strictly. This implies x̂1 < x̂n. The profit of firm n can be obtained by setting

i = n in equation (8), and the first derivative is given by

dπn

dxn

=

∫ θ

θCn(x)

dπCn
n (x, θ)

dxn

f(θ)dθ − Kx(xn).

It is easy to show that firm n’s profit function is concave by examination of the second

derivative [see equation (28)]. Thus, any asymmetric equilibrium x̂, if it exists, must satisfy
dπn(x̂)

dxn
= 0. We now show that whenever it holds that dπn(x̂)

dxn
= 0, firm 1’s profit is increasing

in x1 at x̂ (which implies that no asymmetric equilibria exist).

From equation (9) it follows that the first derivative of firm 1’s profit function is given

by

dπ1

dx1
=

∫ θC2(x)

θC1(x)

dπCn
1 (x, θ)

dx1
f(θ)dθ + · · · +

∫ θ

θCn(x)

dπCn
1 (x, θ)

dx1
f(θ)dθ − Kx(x1).

Note that all the integrals in dπ1

dx1
are positive since firm 1 is constrained at all demand

realizations and therefore would want to increase its production. Thus, we have

dπ1

dx1
>

∫ θ

θCn(x)

dπCn
1 (x, θ)

dx1
f(θ)dθ − Kx(x1),

where the RHS are simply the last two terms of dπ1

dx1
. Note furthermore that x̂1 < x̂n also

implies that Kx(x̂1) < Kx(x̂n) (due to assumption 2) and

dπ1(x̂)

dx1
= P (x̂, θ) + Pq(x̂, θ)x̂1 − Cq(x̂1, θ) < P (x̂, θ) + Pq(x̂, θ)x̂n − Cq(x̂n, θ) =

dπn(x̂)

dxn

(due to assumption 1, part (iv)). Now we can conclude that

dπ1

dx1
>

∫ θ

θCn(x)

dπCn
1 (x, θ)

dx1
f(θ)dθ − Kx(x1) >

∫ θ

θCn(x)

dπCn
n (x, θ)

dxn

f(θ)dθ − Kx(xn) = 0.

The last equality is due to the fact that this part is equivalent to the first order condition of

firm n, which is satisfied at x̂ by construction. To Summarize, we have shown that dπ1

dx1
> 0,

which implies that there exist no asymmetric equilibria, since at any equilibrium candidate,

firm 1 has an incentive to increase its capacity.

A.2 Proof of Lemma 2

Part I: Existence Note that on a compact set any continuous function has at least one

global maximum. The result applies to our setup since W(x, qFB) is continuous and x ∈

[0, Q(θ)]. Now it remains to show that the optimal investment levels cannot be asymmetric

(see part II) and that the symmetric solution as characterized in lemma 2 is unique (see

part III).
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Part II: Symmetry We first show that the optimal capacity choices cannot be asym-

metric across firms. We start at the first order condition (16), which at the optimal solution

has to hold simultaneously for all firms. It can be rewritten as follows:

dW(x, qFB)

dxi

=
n∑

m=i

∫ θF Bm+1(x)

θF Bm(x)

dW FBm (x, θ)

dxi

dF (θ) − Kx (xi) (29)

Let us first define the relevant industry marginal cost function,, given the capacities chosen

by the firms, x. Note that in any of the cases FBm, m = 1, . . . , n, the unconstrained firms

produce the same in the socially optimal solution. Thus, in case FB0, the relevant industry

marginal cost is given by Cq(
Q

n
, θ). Increasing Q leads, at some point, to a situation where

x1 = Q

n
. A further increase of Q then has to be produced by firms 2 to n, and thus, from

here on industry marginal cost is given by C(Q−x1

n−1
, θ). Continuation of this argument yields

a general formulation of the industry marginal cost function as follows:

CI
x (Q, θ|x) =







Cq

(
Q

n
, θ
)

if Q ∈ [0, nx1) ,

Cq

(
Q−

P

m

i=1
xi

n−m
, θ
)

if Q ∈ [
∑m−1

i=1 xi + (n − m + 1) xm,
∑m

i=1 xi + (n − m) xm+1)

∞ if Q ∈ [
∑n

i=1 xi,∞)

Now we can rewrite maximal social welfare generated in case FBm (given by (14)) as

follows:

W FBm (x, θ) =

∫ nx1

0

[

P (Q, θ) − Cq

(
Q

n
, θ

)]

dQ

+

m−1∑

k=1

∫ P

k

i=1
xi+(n−k)xk+1

P

k−1

i=1
xi+(n−k+1)xk

[

P (Q, θ) − Cq

(

Q −
∑k

i=1 xi

n − k
, θ

)]

dQ

+

∫ QF Bm

P

m−1

i=1
xi+(n−m+1)xm

[

P (Q, θ) − Cq

(
Q −

∑m

i=1 xi

n − m
, θ

)]

dQ

Now we can compute the derivatives that we need in order to analyze the first order con-

ditions given by (29). First note that dW F Bm

dxi
= 0 whenever i > m, i. e. firm i is not

constrained in case FBm. Thus, for the highets capacity firm, firm n, we get that only
dW F Bn

dxi
6= 0, that is

dW FBn

dxn

= P (X, θ) − Cq(xn, θ). (30)
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Thus, according to (29) it must hold for the highest capacity firm that

∫ θ

θF Bn(x)

[P (X, θ) − Cq(xn, θ)] dF (θ) − Kx(xn) = 0. (31)

Now suppose that one of the inequalities in x≤x2 ≤ · · · ≤ xn is strict, such that firm 1 has

invested strictly less than firm n. It holds that

dWFBm (x, θ)

dx1
=

m−1∑

k=1

∫ P

k

i=1 xi+(n−k)xk+1

P

k−1
i=1 xi+(n−k+1)xk

1

n − k
− Cqq

(

Q −
∑k

i=1 xi

n − k
, θ

)

dQ

+

∫ QF Bm

P

m−1
i=1 xi+(n−m+1)xm

1

n − m
Cqq

(
Q −

∑m

i=1 xi

n − m
, θ

)

dQ

+
dQFBm

dx1

[
P
(
QFBm, θ

)
− Cq

(
qFBm, θ

)]

= Cq(q
FBm, θ) − Cq(x1, θ)

︸ ︷︷ ︸

>0

+
dQFBm

dx1
︸ ︷︷ ︸

>0

[
P
(
QFBm, θ

)
− Cq

(
qFBm, θ

)]

︸ ︷︷ ︸

≥0

Now consider the first order condition of firm 1:

dW(x, qFB)

dx1
=

n∑

m=i

∫ θF Bm+1(x)

θFBm(x)

dWFBm(x, θ)

dx1
dF (θ) − Kx (x1)

>

∫ θ

θFBn(x)

dWFBn(x, θ)

dx1
dF (θ) − Kx (x1)

=

∫ θ

θFBn(x)

(

Cq(q
FBn, θ) − Cq(x1, θ) +

dQFBn

dx1

[
P
(
QFBn, θ

)
− Cq (xn, θ)

]
)

dF (θ) − Kx (x1)

>

∫ θ

θF Bn(x)

[
P
(
QFBn, θ

)
− Cq (xn, θ)

]
dF (θ) − Kx (xn) =

dW(x, qFB)

dxn

≡ 0

Consequently, it cannot be that in the social optimum firm 1 invests less than firms n.

Part III: Uniqueness We now show that there can be no other symmetric equilibrium

than xFB. If capacities are equal, i. e. x0
1 = x0

2 = · · · = x0
n, we have

dW(x0, qFB)

dxi

=

∫ θ

θF Bn(x0)

[P (nx0
i , θ) − Cq(x

0
i , θ)]dF (θ) − Kx(x0

i ).

Differentiation yields

d2W(x0, qFB)

(dxi)2
=

∫ θ

θFBn(x0)

[nPq(nx0
i , θ) − Cqq(x

0
i , θ)]dF (θ)

−
dθFBn(x0)

dxi

[P (nx0
i , θ

Cn(x0)) − Cq(x
0
i , θ

Cn(x0))]f(θCn(x0))

−Kxx(x0
i ).
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Note that the second term is equal to zero, since x0 is the unconstrained first best solution

at demand realization θCn(x0). Thus, we are left with the first term, i. e.

d2W(x0, qFB)

(dxi)2
=

∫ θ

θF Bn(x0)

[nPq(nx0
i , θ) − Cqq(x

0
i , θ)]dF (θ) − Kxx(x0

i ) < 0

Since dW(xF B ,qF B)
dxi

= 0, it follows that dW(x0,qF B)
dxi

> (<)0 for x0
i < (>)xFB

i . Thus, no other

symmetric optimal solution can exist and XFB is the unique welfare maximizing investment

level.

A.3 Proof of Remark 1

If firms act as price takers at stage two, outputs coincide with the welfare maximizing

quantities characterized in equation (12). Thus, a firm i’s stage two–profit in scenario θ if

firms have invested x and m firms turn out to be constrained in the welfare optimum is

given by

πFBm
i (x, θ) =







P
(
QFBm(x, θ), θ

)
xi − C (xi, θ) if i ≤ m,

P
(
QFBm(x, θ), θ

)
q̃FBm
i (x, θ) − C

(
q̃FBm
i (·) , θ

)
if i > m.

The stage one expected profit of firm i is obtained by integrating over all profits asso-

ciated with each demand realization,

πi(x, qFB) =

n∑

m=0

∫ θF Bm+1(x)

θF Bm(x)

πFBm
i (x, θ)dF (θ) − K (xi) (32)

Analogously to equation (16), the first order condition of firm i’s maximization problem is

given by24

dπi(x, qFB)

dxi

=
n∑

m=i

∫ θF Bm+1(x)

θF Bm(x)

[
P (QFBm, θ) − Cq(xi, θ)

]
dF (θ) − Kx (xi) ,

Note that the investment levels cannot be asymmetric by the following argument: Suppose

24Note that we assume that firms ignore their impact on X since they behave perfectly competitive. In

this case, concavity of (32) is easy to establish.
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that firm n invests strictly more than firm 1. The first order condition of firm 1 is given by

dπ1(x, qFB)

dx1

=
n∑

m=1

∫ θF Bm+1(x)

θF Bm(x)

[
P (QFBm, θ) − Cq(x1, θ)

]
dF (θ) − Kx (x1)

>

∫ θ

θF Bn(x)

[P (X, θ) − Cq(x1, θ)] dF (θ) − Kx (x1)

>

∫ θ

θF Bn(x)

[P (X, θ) − Cq(xn, θ)] dF (θ) − Kx (xn) ≡ 0.

Thus, firm 1 would like to increase its investment whenever it is lower than firm n’s.

Consequently, we have a unique solution, which must be the same for each firm. Let

xn = ( 1
n
XN , . . . , 1

n
XN) denote the capacities invested by the n non–strategic firms. Since

all firms face the same first order condition, we obtain a symmetric solution characterized

by

∫ θ

θF Bn(xN )

[

P
(
XN , θ

)
− Cq

(
1

n
XN , θ

)]

dF (θ) = Kx

(
1

n
XN

)

. (33)

Comparison with condition (17) implies that the investment level if firms do not behave

strategically coincides with the welfare optimal investment level (as characterized in lemma

2), i. e. XFB = XN .

A.4 Proof of Lemma 3

The structure of the proof is equivalent to the proof of lemma 2. The welfare function in

the case of Cournot competition at stage has exactly the same structure as welfare if the

social optimum is implemented at stage two. As in the proof of lemma 2, the derivative

of the welfare in a scenario Cm can be pinned down by using industry marginal cost. The

only difference is that in the analysis, the Cournot equilibrium quantities qCm, QCm of

the unconstrained players have to be substituted for the socially optimal quantities of the

unconstrained players, qFBm, QFBm, that have been used in the analysis of the welfare

optimum. We get

dWCm (x, θ)

dx1
= Cq(q

Cm, θ) − Cq(x1, θ)
︸ ︷︷ ︸

>0

+
dQCm

dx1
︸ ︷︷ ︸

>0

[
P
(
QCm, θ

)
− Cq

(
qCm, θ

)]
.

︸ ︷︷ ︸

>0

Note that in case of Cournot competition at stage two the last term is strictly positive.

The remainder of the proof is equivalent to the proof of lemma 2.
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A.5 Proof of Lemma 4

(i) First note that dπi

dxi
> 0 at X = 0 (by equation (1)), that dπi

dxi
< 0 for some finite value

of X (by assumption 1 part (i)), and that dπi

dxi
is continuous. Thus, a corner solution is

not possible, and we have at least one point where (24) is satisfied and dπi

dxi
is decreasing.

Note, however, that this does not assure existence. In fact, in the scenario considered here

a firm’s stage one profit is not even quasiconcave, and it is not possible to reformulate the

game as a supermodular game.

(ii) First note that in the case of constant marginal costs it is, independently of the capacity

choices firms made at stage one, always true that either all firms are constrained at p =

Cq(·, θ), or none of them. Thus, it holds that θFB1(x) = · · · = θFBn(x).

In order to prove the second part of the lemma we apply theorem 2.1 of Amir and

Lambson (2000), p. 239. They show that the standard Cournot oligopoly game has at

least one symmetric equilibrium and no asymmetric equilibria whenever demand P (·) is

continuously differentiable and decreasing, cost C(·) is twice continuously differentiable

and nondecreasing and, moreover, the cross partial derivative dπ(X,q)
dX−idX

> 0, where X denotes

total capacity and X−i capacity chosen by the firms other than i. In order to see that the

results of Amir and Lambson apply to our setup, note that our game is equivalent to a game

where firms choose output given the expected demand and cost function. Note that if the

first best outcome occurs whenever capacity is sufficient, it follows that expected inverse

demand is given by

EP (X) =

∫ θF Bn(x)

θ

P
(
QFB0 (θ) , θ

)
dF (θ) +

∫ θ

θF Bn(x)

P (X, θ) dF (θ) , (34)

and expected cost is given by

EC(xi) =

∫ θF Bn(x)

θ

C
(
qFB0
i , θ

)
dF (θ) +

∫ θ

θF Bn(x)

C (xi, θ) dF (θ) + K (xi) , (35)

Note that EP (X) is strictly decreasing in X and EC(xi) is strictly increasing in xi, but

they do not satisfy assumption 1, part (iv), which is why existence and uniqueness are not
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implied by standard (textbook) analysis.25 However, Amir and Lambson’s assumptions26

are satisfied, since the cross partial derivative

dπ2(X, qC)

dX−idX
= −

dθFBn(x)

dX

[
−P (X, θFBn(x)) + Cq(X − X−i, θ

FBn(x))
]

︸ ︷︷ ︸

=0 at θF Bn(x)

f(θFBn(x))

+

∫ θ

θF Bn(X)

[−Pq(X, θ) + Cqq(X − X−i, θ)]
︸ ︷︷ ︸

>0

f(θ)dθ

is positive. This guarantees that we have at least one symmetric equilibrium and no

asymmetric equilibria in case of constant marginal cost.

B The ”Certainty Equivalent Game”

As already mentioned, our analysis of imperfect competition in section 3 covers a contribu-

tion by Gabszewicz and Poddar (1997) who analyzed the imperfect competition scenario

with linear demand and deterministic and constant marginal cost for a discrete distribu-

tion over demand realizations. In order to relate our results more closely to theirs, in the

following we consider the game to which they compare capacities chosen in the imperfect

competition scenario (lemma 3). In this hypothetical game, which they call the ”Certainty

Equivalent Game”, firms are assumed to choose production given the expected demand.

However, rather than throwing away what they cannot (or do not want to) sell in low

demand scenarios, they have to sell the quantity they chose at any price (in particular

also at negative prices).27 Since the demand function we defined does not allow for neg-

25In fact, the expected profit function is not even quasiconcave, as it is easily seen by inspecting its second

derivative. Those observations point to an error in the article of Reynolds and Wilson (2000). They make

almost the same assumptions on demand as we do, but are more restrictive regarding cost (i. e. Cq(xi) = 0

and K(xi) = kxi). They state (p.126 of the article) that E[xiP (xi + x−i, θ) − kxi] (in our notation) is

strictly concave and differentiable in xi and therefore has a unique solution. Since E[xiP (xi +x−i, θ)−kxi]

is exactly the profit given by equation (32) for Cq(xi) = 0 and K(xi) = kxi, our analysis in section 5.2

shows that this is not true.
26The assumptions are: P (·) is continuously differentiable with Pq(·) < 0, C(·) is twice continuously

differentiable and nondecreasing, and Pq(X) − Cqq(xi) < 0.
27This can also be implemented by intervention at stage two, namely if the regulator prohibits withholding

of capacity at any demand scenario. In the formulation of Gabszewicz and Poddar demand is linear and

becomes negative for capacities higher than demand at price zero. This corresponds to the assumption of

considerable destruction cost in case of excess capacity, which does not seem plausible in most cases.
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ative prices we define an extended demand function P̂ (Q, θ) that coincides with P (Q, θ)

for all Q ≤ Q(θ) and that may become negative for Q > Q(θ). P̂ is assumend to satisfy

assumption 1, parts (ii) to (vi) for all Q, qi ∈ [0,∞).28

In our terminology the requirement that capacity is always sold, whatever the price is,

implies that firms are never ”unconstrained”. Thus, in order to determine the stage one

profit we do not need to integrate piecewisely but we simply get29

πi(x, x) =

∫ θ

θ

[

P̂ (X, θ)xi − C(xi, θ)
]

dF (θ) − K(xi). (36)

Differentiation yields the first order condition as stated in the following30

Property 3 (The Certainty Equivalent Game) The ”Certainty Equivalent Game”

has a unique equilibrium which is symmetric. Equilibrium investments xCE
i = 1

n
XCE,

i = 1, . . . , n solve

∫ θ

θ

(

P̂
(
XCE, θ

)
+ P̂q

(
XCE , θ

) XCE

n
− Cq

(
XCE

n
, θ

))

dF (θ) = Kx

(
1

n
XCE

)

. (37)

We get that

CE :

∫ θ

θ

[

Pq (X, θ)
1

n
X + P (X, θ) − Cq

(
1

n
X, θ

)]

dF (θ)

ORP : <

∫ θ

θFBn(x)

[

Pq (X, θ)
1

n
X + P (X, θ) − Cq

(
1

n
X, θ

)]

dF (θ)

which, analogously to the proof of theorem 1 allows us to show that XCE < XORP .
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