
Technology adoption with forward-looking agents∗

Paolo Colla

Università Bocconi - IEP

Via Gobbi, 5

20136 Milan (Italy)

Filomena Garcia

ISEG - Departamento de Economia

Rua Miguel Lupi, 20

1249-078 Lisbon (Portugal)

December 2005†

Abstract

We investigate the effects of forward looking behavior in technology adoption. Within an

overlapping generations model agents choose between two alternative networks taking into con-

sideration both the installed base and the expected base. The latter element is the distinctive

feature of our approach, and in general brings in multiple equilibria. We use results from

the supermodular games literature to guarantee equilibrium existence and we prove unique-

ness. We consider both the cases of incompatible and compatible technologies and show that

technologies cannot lock-in, while the adoption path exhibits hysteresis. Network choices are

characterized both in terms of their long run properties and expected time of adoption.
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1 Introduction

We characterize the unique equilibrium in a game of technology adoption where consumers are

forward-looking. Our analysis focuses on technologies exhibiting network externalities, in that

they become more valuable for each individual the more consumers adopt them (see Rolfhs (1974)

for a seminal contribution). The literature has treated the problem of both static and dynamic

decision-making in the presence of network externalities (Katz and Shapiro (1986), Shy (1996)).

However, the possibility for agents to consider the behavior of their future counterparts —obviously

ruled out within a static setup— has not received much attention within dynamic frameworks. In

fact, most of the papers assume that agents realize their payoffs at the time they purchase a given

technology. From then onwards they belong to the network, thus increasing future adopters’

benefits but not receiving any further payoff. As a consequence, agents regard predecessors’

adoptions only, that is they consider the installed base when opting for one technology. In this

paper we deal with consumers receiving payoffs in all periods of their permanence in the network,

in which case expectations over future agents’ choices need to be factored in.

We consider an overlapping generations setup in which consumers live for two periods and

opt for one of two technologies. We focus on stochastic technology values, i.e. consumers are not

aware of the technology value in successive periods. This feature is in line with the analysis in

Adner (2003): the marginal utility of technological improvements for consumers is not constant

in every step of the technology evolution. In fact, it assumes the form of an S-curve: agents have

a very high willingness to pay for the first improvements, but this willingness decreases after a

certain threshold. If we think about two technologies whose values evolve through time, it is

possible that at a certain point consumers have higher willingness to pay for one technology, and

at another point they prefer the other technology.

Consumers obtain utility from the value of the technology, the so called stand alone value,

and from interaction with other consumers, the network value as in Arthur (1989), Choi (1994),

Farrell and Saloner (1992) and Shy (1996). We distinguish between direct and indirect network

externalities. Direct effects are related to the increase in the quality of the product due to

an increment in the number of contemporaneous users. Indirect effects entail broader benefits
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stemming from past adoptions. Even though direct interaction with remote consumers is not

possible, the fact that a technology has had many previous users increases its value for the

consumer: there is higher likelihood that the technology has less flaws, technical assistance might

be prompter and more and better components might be available (see Liebowitz and Margolis

(1994) for a complete characterization of indirect network externalities).

Before making their choice, consumers observe technology values and predecessors’ actions,

and form expectations about future behavior. The main result of our paper is that a unique

equilibrium exists in which individuals adopt technologies via switching strategies that depend

on predecessors’ choices. The presence of strategic complementarities due to network externalities

induces multiple equilibria in adoption. If individuals expect the adoption of a certain technology,

they have an incentive to choose this same technology and enjoy the network benefit. As Levin

(2001) points out, ‘because the expectation of a certain behavior tends to be self-fulfilling, there

is the strong possibility of multiple expectations-driven equilibria’ (Levin (2001), p. 1). The

main problem is therefore to select among these equilibria the one that will actually be played.

Given stochastic technology values and network effects, our game is a (dynamic) Bayesian game of

strategic complementarities. By Van Zandt and Vives (2003) , a static Bayesian game of strategic

complementarities admits a greatest and a least Bayes-Nash equilibrium in monotone strategies.

We show that, in our dynamic framework, this result still holds, and moreover that the greatest

and least equilibria coincide. Hence the game is dominance solvable and has a unique equilibrium.

Our uniqueness result relates to the literature on so-called global games (see Morris and Shin

(2003) for a general overview).1 The main idea is that if 1) each player observes a noisy signal

of the payoffs and 2) the payoffs’ space includes values that make each action strictly dominant,

then iterative dominance leads to a unique equilibrium as the noise becomes small. In our setup,

stochastic technology values serve the purpose of a noisy signal and strategic complementarities

arise due to network externalities.
1More recently, Burdzy, Frankel and Pauzner (2001), Frankel and Pauzner (2000) and Frankel (2001) study the

conditions under which an equilibrium is selected for dynamic games with binary actions and strategic complemen-

tarities. Giannitsarou and Toxvaerd (2003) provide similar results for recursive games and Levin (2001) extends

the main findings to overlapping generation games. For an application of Levin’s result to the technology adoption

game described in the present article see Colla and Garcia (2004).

3



A second result of our analysis is that technologies cannot lock in by historical events. Instead

they will alternatively be chosen through time. Arthur (1989) presents a dynamic model in which

agents choose between two competing technologies based on their personal preferences (stand

alone value) as well as the network benefit, with the latter described by a function of the total

number of previous adopters. His main finding is that whenever a given technology achieves a

sufficient mass of adopters, it locks in attracting all future consumers. He considers as well the

possibility that consumers take into account the future base. However he restricts his analysis to

the case of lock-in by one of the technologies, neglecting in the first place how forward-looking

behavior interplays with the existence of lock-in. In the present paper we address this issue,

allowing agents to obtain payoffs every period of their lives and thus to form expectations about

the future base. A similar standpoint is taken in Ochs and Park (2004), that highlight the

importance of forward looking behavior in network formation.2

The absence of lock in is in line with Liebowitz and Margolis (1994; 1995), that question the

empirical relevance of lock-in patterns in technology adoption, arguing that lock-ins are extremely

unlikely to occur. We provide a different rationale for the absence of lock-ins. Agents incorporate

successors’ choices and face technologies with stochastic stand alone values. Given that these

values are independent of the number of adopters, network externalities are not the only driving

force behind technology adoption. A lead in terms of installed base is not enough to attract

all consumers. This is because agents are concerned with the stand alone value granted by the

technology upon purchase, as well as with the value provided in subsequent periods.

Even though lock-in does not emerge in our setup, path dependence in technology choices is

still present. Once the model parameters are laid out, the technology adopted by the ancestor

affects the current user’s decision. When this occurs the equilibrium path exhibits hysteresis.

One empirical prediction of our model is that competing technologies coexist in the market.

Several cases within the computer industry are compatible with our results. In fact, the computer

2Their model differs from ours in that individual types (or technology values as in our setup) are uncorrelated,

thus the global games equilibrium selection approach cannot be applied. In Ochs and Park (2004) it is possible

to identify a unique symmetric perfect bayesian equilibrium since agents choose both when and whether to join a

network.
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industry does not comply entirely with early leading technologies becoming dominant (see Gandal,

Greenstein and Salant (1999) for further details). In the early 80’s, CP/M, a highly adopted

operating system, was orphaned both by users and developers at the advantage of DOS, an

operating system that had been recently developed.3 In this case the technology that had initially

gained some market share lost its relevance over time. One reason for this is the heterogeneity

of adopters: early buyers are usually highly skilled, while late buyers are less skilled and might

go for a more user friendly platform. Another example that contradicts the idea of lock-in is

the persistence in time of the two computer platforms Macintosh and PC (IBM-PC). These

two platforms became important at the time the 16-bit microprocessor was invented, and have

shared the market since then. Passing through several waves of technological advances none of

the two managed to become dominant in the market (see Bresnahan and Greenstein (1999)).

An explanation for this evidence is the idea that technologies’ relative values oscillate through

time. Improvements in microprocessors’ speed stand as a clear example of this. In the beginning

microprocessors were very slow and any marginal increase in the speed was extremely valued

by the consumers. However, as the microprocessors proved faster, speed increases became less

important. In the Macintosh/PC example, the permanence in the market of the two standards

is justified by the oscillating preferences of the consumers for the technological improvements in

the two platforms.

We characterize as well the unique equilibrium in technology adoption when a converting

device is available and allows agents from different networks to interact. The conclusion on the

absence of lock in (that is a direct consequence of the stochastic pattern of the technology value),

does not change when converters are allowed. However converters contribute to mitigate hystere-

sis: agents have weaker incentives to coordinate their choices, and as a consequence technology

adoption depends less on predecessors’ decisions.

Since technologies do not lock in, a different measure of dominance should be studied. The

first measure we propose is the limiting probability of technology adoption. This describes the

likelihood that each technology is chosen in the long run, and provides a rough estimate of its

3 ‘Orphaning occurs when late adopters choose a technology incompatible with the technology adopted by early

users and suppliers of supporting services’ (Gandal, Greenstein and Salant (1999), p. 88)
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expected demand schedule over long horizons. We show that technologies are more likely to be

adopted in the long run if they 1) provide higher stand alone values, or 2) agents prefer bigger

networks, or 3) they embed a converter device. In short run equilibrium a technology will be

adopted for a certain number of consecutive periods, and then replaced. From the producer’s

point of view, it is therefore important to determine what is the expected time of adoption, our

second measure for dominance. We find that the expected time of adoption decreases in the

presence of converters due to the fact that compatible technologies reduce path dependence and

one observes switching between technologies more often.

The remainder of the paper is organized as follows. The sequential move game with incom-

patible technologies is described in section 2. Section 3 characterizes the unique equilibrium and

analyses the impact of the underlying parameters on the equilibrium outcome. Partial converters

are introduced in section 4. The long run behavior of our adoption game is described in section

5. Section 6 focuses on the robustness of the equilibrium outcome to alternative specifications.

Finally section 7 concludes.

2 Theoretical model

We consider a sequence of users planning to adopt a technology within a discrete time and infinite

horizon setting. At each time n ∈ N, player n enters the game and chooses among two competing

technologies A and B. Each player lives for two periods. We borrow the terminology from the

OLG literature and refer to the young (resp. old) generation at time n as the n-th player (resp.

the (n− 1)-th player). In the first period, user n buys a single unit of one of the two technologies
and commits to his choice in period n + 1.4 We denote player n’s action set as An = {0, 1}
where an = 1 (resp. an = 0) corresponds to technology A (resp. B). We restrict our analysis

4Choice irreversibility can be introduced by assuming that it is prohibitively costly to switch, say, to technology

A at time n + 1 after having adopted technology B at time n. This assumption is quite standard in (dynamic)

network adoption games. To our knowledge Farrell and Saloner (1985) are the only ones obtaining -rather than

imposing- choice irreversibility. However they are admittedly unable to explain why this result arises (see Farrell

and Saloner (1985), footnote 9 and Malin (2003))
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to unsponsored technologies resulting in their supply at a price equal to zero.5 Agents discount

future payoffs via the factor β ∈ (0, 1).

2.1 Technology value

The technology value at time n is given by xn, and can be thought of as player n’s relative

preference between the two technologies when no other agent shares the same base. We model

the evolution of technology values through time as a random walk with barriers −α and α, where
α > 0, i.e.

xn = xn−1 + σεn (1)

where σ > 0. The innovation ε is characterized by the density g (ε):

g (ε) =

⎧⎨⎩ −11 prob. q = 1− p

prob. p
(2)

where p ∈ (0, 1). The boundaries α and −α are partially reflecting. In other words, if the random
walk is in state α at time n, the following period it can either go down to α− σ with probability

q or stay at α with probability p = 1− q.6

2.2 Individual preferences

Player’s valuation of a technology reflects two components: the stand alone value and the net-

work value. The former captures the utility the user derives if no other player adopts the same

technology, while the latter is the benefit from interaction with other users.

2.2.1 Stand alone value

The n−th period stand alone value depends on the contemporaneous technology value xn. After
opting for one technology, generation n receives the stand alone value at period n. The time n

5The term unsponsored technologies was first used by Arthur (1989) to refer to technologies that are non-

appropriable. The absence of property rights leads to entry in the market until marginal cost pricing condition is

met, i.e. in our case until prices are zero.
6Similarly when xn = −α, the technology value can either jump up to − (α− σ) (with probability p) or stay at

−α (with probability q) at time n+ 1.
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stand alone value is therefore a function of the current technology value xn and player n’s chosen

technology an according to

πS = πS (an, xn) =

⎧⎨⎩ α+ xn if an = 1

α− xn if an = 0
(3)

In words, players’ relative preference for technology A over B is increasing in the technology value

through an affine function.7

2.2.2 Network value

Network externalities assume two different aspects. On one hand, consumers may interact with

each other because they use the same technology (direct network value). On the other, consumers

benefit from the technologies adopted by previous generations, even without direct interaction

(indirect network value).

Since each user lives for two periods, at each time n there are two generations active in the

market. Thus player n’s direct network value depends on the action chosen by his immediate

predecessor n − 1 and by his immediate successor n + 1. We consider the direct network value
to be linear in the number of users of the same technology. Further we assume that the two

technologies are identical in terms of the direct network benefit they provide per unit of member

in the base, νD > 0. If player n and n − 1 adopt the same technology, they receive a direct
network benefit of νD. The same payoff is received by user n and n+1 if they coordinate on the

same technology. Generation n’s per-period direct network payoff πD is given by:

πD = πD (an, a−n) =

⎧⎨⎩ νDa−n if an = 1

νD (1− a−n) if an = 0
(4)

where a−n denotes the technology purchased by the other generation active in the market, i.e.

a−n = an−1 at time n and a−n = an+1 at time n+ 1.

7Our choice for the barriers in the stochastic process (1) together with the payoffs in (3) imply that the stand

alone value belongs to the interval [0, 2α] ∈ <+. This normalization provides individuals with a (weakly) positive
utility from purchasing one of the two techologies in the absence of network benefits.
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As for the indirect network value, we assume that technologies adopted by previous genera-

tions affect player n’s choice through a summary statistic hn = h (an−M , ..., an−2), M ≥ 2, which
describes the past behavior, or equivalently the history of technology adoption. We require the

function h (·) to be real-valued, bounded, separable and increasing in each of its arguments such
that the technology chosen by each generation from n −M to n − 2 affects player n’s utility.8

Without loss of generality we let hn : {0, 1}M−1 → [0,H], where H is the value taken by the

statistic hn when all have predecessors chosen technology A, i.e. H = h (1, ..., 1) . The indirect

network value then reads as

πI = πI (an−M , ..., an−2) =

⎧⎨⎩ νIhn if an = 1

νI (H − hn) if an = 0
(5)

where νI > 0 describes the value attached to technology history.

2.2.3 Total payoffs

Adding up the stand-alone component (3) and the network components (4-5) gives player n’s

overall utility un = u (an, an−1, an+1, hn, xn):

un =

⎧⎨⎩ α+ xn + νD (an−1 + βan+1) + νIhn if an = 1

α− xn − νD [(1− an−1) + β (1− an+1)] + νI (H − hn) if an = 0

For the remainder of our analysis it is useful to rewrite player n’s payoff in the following

compact way:

un= πS (an, xn) + πD (an, an−1) + βπD (an, an+1) + πI (an, hn) (6)

The terms on the RHS in (6) capture respectively the stand alone value, the direct network

component -i.e. the sum of the payoff related to the existing base and to the (discounted) future

base- and the indirect network component.9

8The assumption that hn does not depend on the immediate predecessor action, an−1, is made without loss

of generality. Suppose the indirect network value depends on an−1 as well as on (an−M , ..., an−2) through some

statistic h (·). This parametrization would be equivalent to another one in which the direct network value attached
to an−1 is different from the one attached to an+1 because it is augmented by νI . Our main results would not be

qualitatively altered. See also section 2.4 on this point.
9According to (6), despite player n lives for two periods, he receives the technology stand alone value only once.
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2.3 Timing and Strategies

At time n, agent n is aware of the current technology valuation xn and the predecessors’ choices

an−M , ..., an−1. A strategy for player n is thus a function sn = s (an−1, hn, xn) : {0, 1} × [0,H]×
[−α, α] → {0, 1}. Player n chooses his action to maximize the expected payoff in (6) . Letting
sn+1 = s (an, hn+1, xn+1) denote the strategy of player (n+ 1), the n−th user solves the following:

max
an∈An

E [u (an, an−1, an+1, hn, xn) |an−1, hn, xn; sn+1] (7)

From (7) it emerges that, when choosing which technology to purchase, player n takes into

account the effect of his action in determining the future size of the network, which in turn

affects player n + 1 compatibility payoff. It is worth noting that the process (1) allows the

technological valuation to be correlated through time, which turns out to be crucial in enabling

player n to forecast the next generation’s strategy after observing xn. We allow user n to receive

network benefits from the (expected) future base via (7), and thus we explicitly bring in a role

for predicting future technology values.

2.4 Discussion

We now briefly discuss the modelization assumptions related to timing, technology values and

players’ payoffs.

• overlapping generations. The overlapping generations structure has been chosen for two
reasons. First, OLG models are appropriate to study the choice of buying a durable good

and holding it for several periods. Second, OLG models allow agents to form expectations

over their finite lifetime. Shy (1996) considers an OLG setup as well, but like Arthur (1989)

the future behavior of agents is not regarded as a determinant of consumers’ choices.

This assumption is made for simplicity, and we could easily encompass a more articulated specification in which the

utility depends on both xn and xn+1 via, say, πS (an, xn)+βπS (an, xn+1) . The main results would be unchanged,

and the interested reader is referred to the working paper version of our work (see Colla and Garcia (2004)). A

similar argument applies to the introduction of the (discounted) indirect network value, i.e. βπI (an, hn+1), in (6).
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• stochastic technology values. We consider stochastic technology values as in Choi (1994) in
order to capture the idea that the stand alone value at time n+1 will be revealed to players at

the beginning of that period, such that xn+1 is a random variable from player n’s standpoint

at time n. Thus, we view the technology value as inherent to the technology itself, rather

than being agent-specific. The step size σ > 0 in the technology process X (see (1)) can

be thought of as a measure of (intertemporal) heterogeneity in technology valuation, and

drives the randomness in agents’ payoffs. As it has been mentioned in the Introduction, the

literature on strategy and management provides an intuitive explanation for the stochastic

technology values’ assumption, known as the demand S-curve for technology improvements

(see Adner (2003)). Alternatively, if we regard technologies as evolving through time, xn

measures the relative value of technologies’ developments at time n.

• correlated technology values. The correlation through time of the technological valuation
is crucial in enabling player n to forecast the next generation’s action after observing xn.

Technology values are assumed to be independent through time in Arthur (1989), while the

technology innovation -and thus the stand alone value- is given by a deterministic, rather

than stochastic, process in Shy (1996). In the sequential move games of Arthur (1989)

and Shy (1996) the intertemporal pattern of technology values does not play a relevant

role, since users choose their action based on the installed base only. Unlike these works,

we allow player n to receive network benefits from the (expected) future base in (7). Our

specification for technology values is closely related to Oyama (2003), which employs a

similar process to describe the pattern of fundamentals within an OLG speculative attack

model. One can also explain the correlation through time in technology values resorting to

taste shocks in users’ preferences (see Macskasi (2002)). According to this interpretation,

each generation tastes’ are evolving, as to say that the relative preferences for the young

generation at time n might differ from the tastes of the same generation when old at time

n + 1. Note however that at each point in time both the young and the old generations

agree on the technology value. This argument leads again to think of technology values as

time specific.
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• affine stand alone value. We assume that the stand alone depends on the technology value
through an affine function. This formulation is fairly standard in the literature. Arthur

(1989) considers two (classes of) agents with the former (resp. the latter) displaying a

natural preference for technology A (resp. technology B). His formalization for the stand

alone value can be obtained from ours restricting x to take only two values, say x = {−1, 1},
with equal probabilities. Our specification for πS is analogous to Farrell and Saloner (1992)

with the only difference that technology values belong to the interval [−α, α] in our model
rather than [0, 1]. Shy (1996) considers a richer specification for the stand alone value

without restricting it to affine functions of xn.

• direct network value. In line with much of the previous literature we consider the direct
network value to be linear in the number of users of the same technology. Further we assume

that the two technologies provide the same direct network benefit per unit of member in

the base, νD > 0. This assumption is quite standard in the literature (see Choi (1994) and

Farrell and Saloner (1992)). Allowing for asymmetric network benefits as in Arthur (1989)

can be easily incorporated into our framework without changing the main conclusions.

• indirect network value. The specification for πI in (5) serves as a reduced form for more

complex relationships between the installed base, i.e. the actions an−M , ..., an−2, and in-

dividual payoffs. Such indirect network externalities usually stem from the increase in the

variety of complementary products available for each technology (see for example Clements

and Ohashi (2005)). The minimal requirements we impose on the function h (·) allow for a
rich variety of specifications for such indirect network externalities.10

10For example one might take the sum of predecessors’ actions as summarizing past behaviour, and consequently

set hn =
M

j=2

an−j and H = M − 1. In this case player n puts a weight equal to νI to each action chosen by

generations from n−M to n−2. Alternatively, a weighted average of past actions can be employed to capture the

benefit from indirect interaction with predecessors, i.e. hn =
M

j=2

ωjan−j with
M

j=2

ωj = 1, ωj > 0 for all j = 2, ...,M

and H = 1. One can then choose decaying weights, i.e. ωj > ωj+1, in order to capture the idea the technologies

more recently chosen have a larger impact on generation n payoff.
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3 Solving for an equilibrium

3.1 The benchmark model: no network externalities

If there are no network externalities, utility is simply given by the stand alone value (3). The

maximization problem (7) therefore resumes to:

max
an∈An

πS (an, xn)

In the absence of network benefits, i.e. νD = νI = 0, agent n is indifferent between the two

technologies when the technology value xn = x̂ solves:

πS (1, x̂) = πS (0, x̂)

We refer to the technology value x̂ as the pivotal point, that is the threshold above which the

agent has a strict preference for technology A. Making use of (3) in the above equation gives x̂ = 0.

Without network externalities the pivotal point is zero because actions are entirely determined

in equilibrium by the technology value. If player n prefers technology A to B —this would occur

when xn > 0— then he opts for A.

3.2 The model with network externalities

We now analyze equilibrium strategies when both νD and νI are strictly positive. In order to

solve for the equilibrium in the sequential move game outlined in section 2 we first consider the

following:

Lemma 1 Let the model parameters be such that

2α > νD (1 + β) + νIH . (8)

Then the space of technology values contains a region [x̄, α] where technology A is dominant, and

a region [−α, x] where technology B is dominant, i.e.

an (xn) =

⎧⎨⎩ 1

0

if xn ≥ x̄ = νD(1+β)+νIH
2

if xn < x = −x̄
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The intuition behind condition (8) is as follows. Note from (3) that the maximal stand alone

value is given by 2α, which would occur whenever the stocastic process in (1) reaches one barrier.

The direct per-period network benefit is νD (from (4)) and the maximal indirect network benefit is

νIH (from (5)). According to Lemma 1 there exist technology values for which the maximal stand

alone valuation offsets the (discounted) benefits from coordinating on a network, i.e. adopting the

installed technology (νD + νIH) given that it will be chosen by the immediate successor (βνD).

Lemma 1 ensures that some individuals would choose a technology regardless of the network size:

technology A is dominant whenever xn is above the critical value x̄, whereas technology B is

dominant if the technology value falls below x. Thus condition (8) guarantees that the values x̄

and x lie in the state space for the technology process X. In general, multiple equilibria would

occur within the interval [x, x̄].11 Lemma 1 plays a key role in applying an iterated elimination

argument, and thus solving for the unique equilibrium. Proposition 1 constitutes our main result.

Proposition 1 Under (8) the game has a unique equilibrium, in which for all n

s (an−1, hn, xn) =

⎧⎨⎩ 1 if xn ≥ x∗ (an−1, hn)

0 if xn < x∗ (an−1, hn)
, (9)

where x∗ (an−1, hn) is a decreasing function of both an−1 and hn. Moreover, let the step size σ be

sufficiently small such that:

σ < σ̄ = νD

µ
1− β

2

¶
. (10)

Then the cut-off points are given by:

x∗ (0, hn) =
νD (1− βp) + νI (H − 2hn)

2
(11)

x∗ (1, hn) =
−νD (1− βq) + νI (H − 2hn)

2
(12)

11This region is symmetric around zero, i.e. the pivotal point for dominant actions in the absence of network

benefits. Note that the gap x̄−x depends positively on the network benefits. The fact that x̄−x increases in both

νD and νIH stems from the fact that when individuals attach a large positive value to joining a network, a high

stand alone component is needed in order to adopt technologies regardless of other users’ choices. As a result both

x̄ and x would move away from zero the larger are νD, νI and H.
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Proof. See the appendix.

According to Proposition 1, switching strategies are played at equilibrium. Within the global

game literature this is a common finding due to strategic complementarities in (dynamic) games.

Player n has an incentive to move to higher actions as soon as the successor raises his strategy from

sn+1 to s0n+1 > sn+1. The cut-off points x∗ (an−1, hn) specify the technology values at which user

n is indifferent between A and B. These cut-offs depend on the immediate predecessor’s observed

action, on the technology history and on the expected behavior of the immediate successor, and

due to condition (8) they belong to the region [x, x̄]. Proposition 1 yields x∗ (0, hn) > x∗ (1, hn) ,

so that when technology A is highly valuable relative to B —this occurs when a player observes a

relatively high value for xn— it is going to be adopted regardless of the predecessors’ choices. On

the other hand when technology B is more valuable, player n is more likely to purchase technology

A only if he observes his predecessor choosing A. Unlike condition (8) , the inequality (10) does

not play any role for the equilibrium uniqueness result. Thanks to condition (10), there exists

at least one value of the technology process X within the two cut-off points. This rules out the

admittedly uninteresting situation in which the technology values are such that the game jumps

from one equilibrium to the other, i.e. outside the region [x∗ (1, hn) , x∗ (0, hn)], every few periods.

Consider the time during which all types fall into one of the dominance regions, say xn > x̄.

In this case network benefits are not strong enough to observe A-lover individuals choosing the

competing technology. When technology values fall into [x̄, x] results from supermodular games

allow to determine the unique equilibrium path. More specifically, when xn is above x∗ (0, hn)

technology A is chosen regardless of the predecessors’ actions (similarly, technology B is adopted

for xn below x∗ (1, hn)).12

12Model uncertainty —captured by the technology value heterogeneity σ— plays a role in determining the width

of the region [x∗ (1, hn) , x∗ (0, hn)] but not [x, x̄]. When the uncertainty about future types is very large, the

interval [x∗ (1, hn) , x∗ (0, hn)] is less effective in refining the dominance regions, i.e. limσ→∞ [x̄− x∗ (0, hn)] =

limσ→∞ [x
∗ (1, hn)− x̄] = 0. Other things equal, this refining ability vanishes with the future base importance.

When individual n neglects the impact of his successor’s action, i.e. for values of β close to zero, the equilibrium

selection criterion has no power in eliminating the multiplicity of equilibria within [x, x̄].
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The interval [x∗ (1, hn) , x∗ (0, hn)] generates hysteresis, since player n’s choice depends on

the predecessors’ actions (as well as the expectation of the successor’s action) whenever xn falls

into the hysteresis band, i.e. the gap x∗ (0, hn) − x∗ (1, hn) = σ̄. In other words, when xn ∈
[x∗ (1, hn) , x∗ (0, hn)] individual n’s choice is determined by his predecessors’ actions, and equi-

librium adoption is path dependent. When σ̄ is small the likelihood of hysteresis is reduced,

i.e. the probability of simultaneously observing a technology value falling into the interval

[x∗ (1, hn) , x∗ (0, hn)] and a user choosing based on the past history is small.

We can perform the following comparative statics over the hysteresis band: 1) it narrows

with the discount rate β, 2) it widens with the direct network benefit νD and 3) it is unaffected

by the indirect network benefit νI as well as the probability p. High values for β mean that

the importance of the future base is high relative to the installed base. Thus, individuals tend

to disregard the predecessor’s action and the switching points get closer to each other. On the

other hand an increase in the direct network externality νD would increase the importance of the

network component relative to the stand alone value in the individuals’ expected utility. Future

expected direct network values are discounted through β, implying that direct interaction with

the predecessor becomes more important (in utility terms) with respect to interaction with the

successor. As a result, player n attaches more importance to the technology adopted by the old

generation thus widening the hysteresis band. These effects are summarized in figure 1-Panel A.

Figure 1 shows a sample path for the random walk (1-2) with N = 100, p = 1/2, x0 = 0, σ = 0.5,

α = 4 and νI = 0; individual preferences are captured by β = 0.5 and νD = 5. The hysteresis

band narrows when the discount factor increases to β = 0.95 (see Panel A.2), and widens when

the direct network benefit increases to νD = 6 (see Panel A.3).

In order to explain the third finding, suppose that hn is the arithmetic mean and at time

n one has hn > H/2, i.e. more than a half of the predecessors have chosen technology A. It

follows from eqs. (11-12) that higher values for νI would move both cut-offs downwards by the

same amount. This reflects the fact that technology A is more attractive since it takes a lower

technology value xn to have individuals choosing A. The comparative statics for p hinges on a

similar argument. If p increases, the process for technology values is expected to move upwards
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with a higher probability as time goes by, so that there is a higher probability that the successor

turns out to adopt technology A. Again, this lowers the minimum level of stand alone value

required for the current player to choose technology A. An increase in p thus decreases both

cut-offs by the same amount.

Finally, note from eqs. (11,12) that when the technology value is expected to be constant

through time, i.e. p = 1/2, the cut-off points are symmetric around νI (H − 2hn) /2, i.e. the
pivotal point in the absence of direct network externalities.13 Further the cut-offs collapse to zero

as the network externalities die out; in this case technologies are chosen in equilibrium depending

on their stand alone value only. Similarly, when the technology value is expected to move away

from its current value —because either p > 1/2 or p < 1/2—, the cut-off points converge to the

pivotal point νI (H − 2hn) /2 as νD goes to zero.

4 Introducing Converters

4.1 Individual payoffs

We now consider the effect of converters enabling imperfect compatibility between technologies

A and B. As in section 2, we focus on perfect competition, implying a null price for the converter.

Let r ∈ (0, 1) denote the compatibility of technology A with B (s is defined similarly). The stand
alone component is not influenced by the existence of converters. Converters have an effect on

the utility derived from networks, in that they allow agents to profit from the network even if

no one else has chosen the same technology. Consider for example player n choosing technology

A while both the previous and the next generations opt for technology B. Compatibility results

in a payoff of νDr (1 + β) contrasting with a null network benefit in the absence of converters.

Similarly player n receives νDs (1 + β) if he adopts technology B and both agent n− 1 and n+1
13When νD = 0 the maximization problem (7) reduces to max

an∈An
πS (an, xn) + πI (an, hn). It is straightforward

to check that in this case the pivotal point x̂ = νI (H − 2hn) /2 solves

πS (0, x̂) + πI (0, hn) = πS (1, x̂) + πI (1, hn) .
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choose A. Let ucn = uc (an, an−1, an+1, hn, xn) denote the individual payoff with compatibility.

Using the payoffs defined for the incompatibility case (see eqs. (3) , (4) and (5)) gives:

ucn =

⎧⎨⎩ u (1, an−1, an+1, hn, xn) + νDr ((1− an−1) + β (1− an+1)) if an = 1

u (0, an−1, an+1, hn, xn) + νDs (an−1 + βan+1) if an = 0

or equivalently:

ucn = un + νDran (1 + β) + νD (an−1 + βan+1) (s− an (r + s)) (13)

Note that when both the compatibility levels are equal to zero one gets the ucn = un and the

previous results with incompatible technologies follow.

4.2 Equilibrium and interpretation

The equilibrium in the absence of external benefits (νD = νI = 0, see subsection 3.1) does not

change with the introduction of converters as they act as network enhancers only. On the contrary,

the equilibrium with νD > 0 is different from the incompatibility case and is characterized in the

following:

Proposition 2 Let the model parameters satisfy restriction (8). Then the technology adoption

game displays dominance regions. Technology A is dominant if xn ≥ x̄c = x̄− rνD (1 + β) /2 and

technology B is dominant if xn < xc = x+sνD (1 + β) /2. The game admits a unique equilibrium

in which for all n:

sc (an−1, hn, xn) =

⎧⎨⎩ 1 if xn ≥ x∗c (an−1, hn)

0 if xn < x∗c (an−1, hn)

where the cut-off x∗c (an−1, hn) is decreasing in both an−1 and hn. Furthermore let the step size σ

be sufficiently small according to:

σ < σ̄c = σ̄ − νD [r (1− βq) + s (1− βp)]

2
(14)

Then the cut-off points are given by:

x∗c (0, hn) = x∗ (0, hn)−
νD (r − βps)

2
(15)

x∗c (1, hn) = x∗ (1, hn) +
νD (s− βqr)

2
(16)
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Proof. See the appendix.

In the presence of converters the dominance regions are affected by the probability of upward

movements p and the network benefits νD and νI along the same lines as the incompatibility

case. An increase in either νD or νI would move xc and x̄c towards the barriers −α and α, thus

shrinking the dominance regions. When technologies provide substantial network benefits, it takes

higher stand alone values (and therefore higher technology values) in order to make individual

opt without considering network externalities. Note that converters act in the opposite direction,

that is an increase in either r or s (or both) would reduce the dominance regions. High values

for r provide an individual opting for A with network payoffs even if other players choose B, thus

making technology A more appealing and widening the region [x̄c, α]. As it emerges comparing

the dominance regions under compatibility and incompatibility (see Lemma 1), the presence of

converters shrinks the interval in which no action is dominant, i.e. [xc, x̄c] ⊂ [x, x̄]. The reason
behind this is that when technologies are compatible the gains from coordinating (i.e. three

generations choosing the same technology) are reduced, since player n profits from some network

externalities even if he chooses a different technology relative to players n−1 and n+1. The same
argument implies that the hysteresis band narrows with compatible technologies. In fact from

(14) one has σ̄c < σ̄. Using the cut-off points in eqs. (15,16), we get the following comparative

statics:

1. an increase in the discount rate β reduces the hysteresis band along the same lines as in

section 3.2. However, in the presence of converters this gap reduces less than in the case

without converters.14 This is because agents derive utility from the installed base even if

they buy a technology that has not been chosen by the previous generation;

2. when direct network payoffs are negligible, individuals switch around the pivotal point,

namely νI (H − 2hn) /2;

3. converters affect cut-off points in an asymmetric fashion: higher values of s increase both

x∗c (0, hn) and x∗c (1, hn) while an increase in r would lower both the switching points. This

14From (14) one has ∂σ̄c/∂β = (rq + sp− 1) νD/2 which is negative since (p, r, s) ∈ (0, 1)3.
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finding has the following interpretation. Assume that, given predecessors’ choices, player

n is indifferent between the two technologies. Other things equal an increase in s makes

technology B more attractive since user n achieves higher gains from compatibility with

the competing technology A. As a consequence it would take a higher xn, i.e. an individual

that is relatively more prone to purchase technology A, to restore indifference. A similar

reasoning would hold with respect to an increase in r. Note that despite this asymmetry,

an increase in either of the compatibility parameters would narrow the hysteresis band

σ̄c. Partial converters bring in network benefits that can be reaped when other players

purchase the competing technology. A higher level of the one-way compatibility s has a

higher impact in the utility function when the predecessor chose A than when he chose B.

In order to restore indifference, the cut-off for an−1 = 1 increase more than the cut-off for

an−1 = 0 for a given technology history hn, thus narrowing the hysteresis band. A similar

argument applies to changes in r.

The main point here is that, other things equal, converters decrease direct network benefits

from coordination on the same technology and dominance regions widen. Consider symmet-

ric converters first, i.e. s = r. Inspection of eqs. (15,16) then reveals that the cutoff points

x∗c (0, hn) and x∗c (1, hn) are symmetric around (H − 2hn) /2 as in the incompatibility case, and
[x∗c (0, hn) , x

∗
c (1, hn)] ⊂ [x∗ (0, hn) , x∗ (1, hn)]. As a result hysteresis is less likely to occur with

partial symmetric converters relative to the case of incompatible technologies (contrast Panel A.1

with Panel B.1 in figure 1, where we set r = s = 0.2). On the other hand asymmetric converters

would drive individual choices towards the more compatible technology. In order to see this,

compare Panel B.2 and B.3 in figure 1. Given a sample path for (1-2) and other exogenous

parameters (see subsection 3.2), asymmetric converters with r = 0.6 and s = 0.2 (resp. r = 0.2

and s = 0.6) appears in Panel B.2 (resp. Panel B.3). Note that the level of overall compatibility

r+ s is the same for both Panel B.2 and B.3, such that the difference x∗c (0, hn)− x∗c (1, hn) does

not change from one case to the other. Recall that r > s corresponds to higher compatibility

gains for technology A and note from Panel B.1 and B.2 that more users adopt technology A in

the asymmetric converters case (similarly more users opt for technology B in Panel B.3 relative
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to Panel B.1).

5 Long run behavior and the expected time of adoption

5.1 Technology lock-in and limiting behavior

We investigate lock-in effects in our OLG setup where individuals explicitly take into account the

actions of future generations when choosing between two competing technologies. As mentioned

in the Introduction, in Arthur (1989) one technology emerges as dominant as time goes by. In

other words there exists a time after which all players opt for the same technology. In our

setup, due to the stochastic nature of the individual types, the emergence of a technology as

dominant is related to: 1) the likelihood of the stochastic process for xn hitting the barriers x,

x̄, x∗ (0, hn) and x∗ (1, hn) (as well as their counterpart with converters) and 2) the impact of

the underlying parameters on the mentioned barriers. As for the latter point, we have provided

several comparative statics results in sections 3 and 4. The long run characterization of our

adoption game is thus captured by the limiting behavior of the technology process (1-2) like in

Kandori, Mailath and Rob (1993). Technology A locks in if and only if xn is always above x (0, hn)

for large n (similarly technology B locks in if and only if xn is below x (1, hn)). More formally, let

the adoption probabilities of the two technologies be defined as πA = limn→∞ Pr (xn ≥ x (0, 0))

and πB = limn→∞Pr (xn ≤ x (1,H)). Adoption probabilities with compatible technologies are

defined similarly, i.e. with respect to the relevant cut-offs x∗c (0, 0) and x∗c (1,H), and denoted by

πA,c and πB,c. Then technologies lock in if and only if either πA = 1 or πB = 1 (lock-ins with

compatible technologies are defined similarly).

Proposition 3 No technology lock-in occurs in the long run, regardless of the presence of con-

verters.

Proof. See the appendix.

The idea behind Proposition 3 is that technology values in (1-2) hit any barrier with positive

probability, regardless of the uncertainty about future values σ. As a consequence, no technology

can emerge as dominant in the long run, and lock-ins can occur only temporarily.
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We now consider the interplay between the parameters in our game and the long run probabil-

ities of adopting each technology. This point is clearly related to the impact of such parameters

on the cut-offs (see sections 3 and 4), since changes in the cut-offs affect the probabilities of

adoption πA and πB.

Corollary 4 i) πA and πB (and their counterparts with compatible technologies) increase with

β and decrease with both νD and νI ; ii) πA and πA,c increase with p (resp. πB and πB,c decrease

with p). iii) πA,c increases in r and decreases in s (resp. πB,c increases in s and decreases in

r); iv) πA,c > πA and πB,c > πB if and only if r/s ∈
µ
βp,

1

β (1− p)

¶
. Moreover for p = 1/2, v)

πA = πB = π and πA,c = πB,c = πc if and only if s = r

Proof. See the appendix.

According to property ii) an increase in p increases the likelihood of adopting technology A.

This is intuitive since higher values for p mean that technology A is more valuable, in that it pro-

vides higher stand alone values. Similarly, an increase in compatibility level r makes technology

A more valuable, and thus increases the probability it becomes dominant in the long run (see

property iii). Note from iv) that converters increase the adoption probabilities if and only if the

ratio r/s belongs to the above interval. At a first glance this might seem to be in sharp contrast

with findings in Arthur (1989) , where converters always increase adoption probabilities. However

note that in Arthur (1989) consumers receive payoffs (both stand alone and network benefits)

only upon purchase. This would correspond β = 0 in our setup, such that property v) implies

that converters increase the probability of adoption, alike Arthur (1989). Finally for p = 1/2 the

long run probabilities for the process (1-2) are all equal across states and as a consequence the

adoption probabilities coincide.

5.2 Expected time of adoption

We now consider the length of time the random walk X in (1-2) takes to move from one state

to the other. The aim here is to determine the expected time to observe individuals switching

from one technology to the other. Consider incompatible technologies and assume that at time n

the technology value is immediately below x∗ (1, hn). We know from Proposition 1 that player n
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would adopt technology B. The following period, player n+ 1 makes his choice comparing xn+1

with x∗ (0, hn+1). Since hn+1 ≤ hn for an = 0, it follows that x∗ (0, hn+1) is always above xn+1.

Therefore technology B is chosen by player n + 1, as well as the following generations until the

process for technology values passes through x∗ (0, 0). From now onwards it is technology A to

be chosen until X crosses x∗ (1,H) and so on. Given that xn is immediately below x∗ (1, hn)

we define by mB = mB (hn) the expected number of adopters of technology B. mB is therefore

related to the average number of periods the technology process X takes to move from x∗ (1, hn)

to x∗ (0, 0). Similarly mA = mA (hn) is the expected number of agents choosing technology A

given that the process x is immediately above x∗ (0, hn) , and corresponds to the average time the

random process (1-2) takes to exit the band [x∗ (1,H) , x∗ (0, hn)] after entering from x∗ (0, hn).

Knowledge of mA and mB is useful to determine how often we are likely to observe adopters

switching from one technology to the other for a given technology history. With convertible

technologies mA,c and mB,c are defined along the same lines and have a similar interpretation.

Formulas to compute mA and mB (and their counterpart with compatibility) are given in the

appendix. One might be interested in determining how compatible technologies affect the average

time of adoption. For a given set of parameters (p, σ, α, β, νD, νI ,H) and convertibility values

(r, s) we say that compatible technologies decrease the likelihood of switching -or equivalently

increase path dependence- whenever mA,c > mA and mB,c > mB.

Proposition 5 The introduction of symmetric converters reduces path dependence whenever

r/s ∈
µ
βp,

1

β (1− p)

¶
.

Proof. See the appendix.

This finding follows from the fact that converters reduce the hysteresis band, which in turn

implies that the expected adoption time for both technologies cannot increase. This will be rele-

vant in an extended version of our model with sponsored technologies and firms setting technology

prices based on the expected demand schedule.
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6 Discussion

We now briefly discuss the impact of alternative assumptions on our equilibrium outcomes. First

of all equilibrium uniqueness is preserved under a generalization of the expected payoffs in (7) .

More specifically, linearity —albeit convenient— is not needed in order to preserve equilibrium

existence, which is a consequence of expected payoffs exhibiting increasing differences (see Van

Zandt and Vives (2003) and the proof of Proposition 1). A different specification of the payoffs

would obviously imply different equilibrium cut-off points.

Second, the random walk specification (1-2) is not necessary to select a unique equilibrium.

We could have used a different cumulative distribution function for the innovation ε —including

for instance a continuous distribution with bounded support— as well as a random walk without

barriers. We choose a binary distribution for the technology innovation for its simplicity and

impose elastic barriers for the technology valuation in order to obtain bounded stand alone values

like in the previous literature. What one needs for the equilibrium characterization is technology

values exhibiting first order stochastic dominance, i.e. higher types of player n believe that

successors are more likely to be of higher types as well.

Third, an important feature that must be imposed on the game is that it displays dominance

regions, such that one can apply an iterative dominance argument and select a unique equilibrium.

This means that payoffs should be specified in such a way that for some technology values the

actions chosen by other players (via the installed and future base), play no role in determining

player n’s choice. The model in Arthur (1989) does not belong to this class: it is not true for

all n that one action is optimal no matter the technology value and the history. This happens

because the stand alone value is bounded but the network value is unbounded and increasing in

the actions of all the predecessors.

7 Conclusion

We have analyzed technology adoption choices of agents characterized by a forward looking

behavior. The existing literature does not encompass users getting utility from the purchased

technology over their whole life time. Due to this assumption, agents take into consideration the
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installed base only, but do not form expectations of the future base. The OLG model allows us to

consider agents that: 1) receive benefits in all periods of their permanence in a network and 2) take

them into account when choosing the technology in the first period. Agents must therefore form

expectations about future behavior. This feature, together with the strategic complementarities

arising from the network effects, yields multiple equilibria in technology adoption. However,

thanks to stochastic technology values, our game belongs to the class of Bayesian monotone games.

In essence, even within our dynamic setting we show that the existence result of Van Zandt and

Vives (2003) for static games still holds and we prove uniqueness. This is our main result: based

on past observations, agents choose technologies through a unique switching strategy. A second

result is that lock in cannot occur in our setup. The intuition is that, given the thresholds of the

equilibrium strategy, it is always possible to find a technology value for which in any point in time

agents switch from the most adopted technology to the least used one. Finally, we show that

partially compatible technologies are characterized by larger adoption probabilities and lower

path dependence.

The setup we consider lends itself to further extensions and modifications. For example,

one can include agents living for more than two periods. In this case we would not expect the

qualitative conclusions of our model to change. However, this extension would make the setup

more realistic since at each point in time more than two generations are active in the market.

Another promising direction is to introduce sponsored technologies produced by competing firms.
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8 Appendix

Proof. (Lemma 1) Let ∆n = ∆ (an−1, an+1, hn, xn) denote the difference in player n’s payoff

when he switches between technology A and B:

∆n = u (1, an−1, an+1, hn, xn)− u (0, an−1, an+1, hn, xn) (17)

Using the payoffs in (6) we have

∆n = −νD (1 + β)− νI + 2xn + 2νIhn + 2νD (an−1 + βan+1) (18)

Let ∆̄n and ∆n denote respectively the value of ∆n in (18) when both the users n− 1 and n+ 1

choose the low and high action respectively, i.e. ∆̄n = ∆ (0, 0, hn, xn) and ∆n = ∆ (1, 1, hn, xn).

From (18) one has:

∆̄n = 2xn − νD (1 + β)− νIH

∆n = 2xn + νD (1 + β) + νIH

We now solve for the technology values making individuals indifferent between the two technolo-

gies. Let x̄ (resp. x) be the type that makes the individual n indifferent between choosing one

of the two technologies when both the predecessor and the successor coordinate on technology

A (resp. B), i.e. ∆ (0, 0, 0, x̄) = 0 (resp. ∆ (1, 1,H, x) = 0). Using the above expressions for ∆̄n

and ∆n one gets x̄ =
νD(1+β)+νIH

2 and x = −x̄. As is clear, x̄ > x and one needs to check that

α > x̄ for both x̄ and x to belong to (−α,α). This is equivalent to require that condition (8)
holds true.

Proof. (Proposition 1) With finite action space, monotone strategies can be represented

by the cut-off technology values x (an−1, hn) where players switch from an = 0 to an = 1;moreover

x (.) is decreasing in an−1 and hn as in (9).

Step 1: existence of a greatest and least equilibrium in monotone strategies

Van Zandt and Vives (2003) (Theorem 1) set out minimal assumptions on agents’ payoff

function (un supermodular in an and with increasing differences in any pair of variables) as well

as on beliefs (first order stochastic dominance) guaranteeing that there exist a greatest and least
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Bayes-Nash equilibrium in monotone strategies. As is clear, the assumption about player types

is fullfilled by the random walk (1-2) that we use for the technology process. We now show that

the remaining conditions as layed out by Van Zandt and Vives are fulfilled in our model. Let

Un = U (an, an−1, hn, xn; sn+1) be the expected utility (see (7)) of player n, when n+1 plays the

monotone strategy sn+1 defined in (9). One can rewrite Un as

U = Pr (xn+1 ≥ x∗ (an, hn+1) |xn)u (an, an−1, 1, hn, xn) +

Pr (xn+1 ≤ x∗ (an, hn+1) |xn)u (an, an−1, 0, hn, xn)

We now show that Un has increasing differences in (an, an−1) , (an, hn) , (an, xn) and (an, an+1) .15

To this end, we first show that un has the same properties.

Let Λn = Λ (an, an−1, hn, xn) denote the difference in player n’s payoff when player n + 1

switches between technology A and B:

Λn = u (an, an−1, 1, hn, xn)− u (an, an−1, 0, hn, xn) (19)

Using the payoffs in (6) we have

Λn = νDβ (2an − 1) (20)

Inspection of (18-20) reveals that our payoff structure displays the following properties:

i) ∆n is increasing in an−1, an+1, hn and xn

ii) Λn depends only on player’s n action, i.e. Λ(an, an−1, hn, xn) = Λ(an), and Λ (1) > 0 > Λ (0) .

While property i) is in fact equivalent to un having increasing differences in the relevant

pair of variables (see Van Zandt and Vives (2003), pg. 21), property ii) is essential to establish

increasing differences of the expected utility, Un, within a dynamic monotone Bayesian game like

the one we consider.16 This property implies that there is strong complementarity between player

15 In fact, increasing differences among any pair of arguments of Un is equivalent to supermodularity in each

argument since Un is defined on the product of linearly ordered sets. Moreover it is straightforward to see that Un

is supermodular in an, which is another requirement for the monotonicity of the argmax of Un.
16 In fact, from property i) one only has that Λ(1, an−1, hn, xn) > Λ(0, an−1, hn, xn).
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n’s action and his successor’s, i.e. not coordinating brings disutility. With increasing differences

only, coordinating increases the payoff of the players. However, not coordinating might not bring

about losses. Thus, by means of property ii), player n has a strict incentive to coordinate with

player n+ 1.

Let Dn = D(an−1, hn, xn; sn+1) be the difference in player n’s expected payoff from taking

the high and the low action when agent n+ 1 plays according to (9):

D(an−1, hn, xn; sn+1) = U(1, an−1, hn, xn; sn+1)− U(0, an−1, hn, xn; sn+1)

= Pr (xn+1 ≥ xn+1 (0, hn+1) |xn)×∆ (an−1, 1, hn, xn) +

Pr (xn+1 < xn+1 (1, hn+1) |xn)×∆ (an−1, 0, hn, xn) +

Pr (xn+1 (0, hn+1) > xn+1 ≥ xn+1 (1, hn+1) |xn)×

[u (1, 1, hn, xn)− u(0, 0, hn, xn)]

Therefore, showing that Un has increasing differences in any pair of relevant arguments is equiv-

alent to showing that D (an−1, hn, xn; sn+1) is increasing in an−1, hn, xn and an+1.

Letting G be the cumulative distribution function of the increment ε in the stochastic process

for the technology values (see (2)), one can rewrite Dn as

Dn = ∆ (an−1, 1, hn, xn) + Λ (0)G

µ
xn+1 (0, hn+1)− xn

σ

¶
−Λ (1)G

µ
xn+1 (1, hn+1)− xn

σ

¶
(21)

As is clear, Dn is independent of an+1. Moreover:

• Dn is increasing in xn from properties i) and ii), and G decreasing in xn

• Dn is increasing in an−1, from properties i) and ii). Furthermore hn+1 = h (an+1−M , ..., an−1)

is increasing in an−1 and xn+1 (an, hn+1) is decreasing in hn+1, such that G is decreasing

in an−1.

• Dn is increasing in hn from properties i) and ii) and from hn+1 increasing in hn.17

17 In fact, suppose that hn increases because any of the actions an+1−M , ..., an−2 increase. Then, hn+1 increases

as well. If the increase in hn is due to a higher value for an−M , then hn+1 is not affected.
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Following Theorem 1 in Van Zandt and Vives (2003), the existence of a greatest and least

equilibrium in monotone strategies obtains from the supermodularity of the expected utility

function and the existence of dominance regions. In fact, D (an−1, hn, xn; sn+1) < 0 if xn < x and

D (an−1, hn, xn; sn+1) > 0 if xn > x, which provides us with the starting point for the greatest

and least best reply.18

Step 2: equilibrium uniqueness

The final step of the proof consists of showing that the greatest and least equilibrium of our

game coincide. Another alternative would be to show that the best-reply mapping is a contraction

as in Levin (2001). Define x∞ (an−1, hn) as the limit of the sequence of iterated deletion of

dominated strategies when player n observes an−1 and hn. The threshold x∞ (an−1, hn) defines

the infimum technology value above which player n chooses technology A:

D(an−1, hn, x
∞ (an−1, hn) ; sn+1) ≤ 0 (22)

Similarly, let x∞ (an−1, hn) be the supremum of xn below which player n chooses technology B,

i.e.

D(an−1, hn, x
∞ (an−1, hn) ; sn+1) ≥ 0 (23)

Thus all strategies for player n have been deleted but the ones such that

s (an−1, hn, xn) =

⎧⎨⎩ 1 if xn ≥ x∞ (an−1, hn)

0 if xn < x∞ (an−1, hn)

where x∞ (an−1, hn) ≤ x∞ (an−1, hn) . For a unique equilibrium to exist we must have that

x∞ (an−1, hn) = x∞ (an−1, hn).

Suppose player n observes an−1 = 1 and hn. Then inequality (22) becomes

πs (1, x
∞ (1, hn)) + πD (1, 1) + πI (1, hn) + βE [πD (1, an+1) |x∞ (1, hn)] ≤

πs (0, x
∞ (1, hn)) + πI (0, hn) + βE [πD (0, an+1) |x∞ (1, hn)] ,

18For a graphical representation of the iterated elimination of dominated strategies see Frankel, Morris and

Pauzner (2001).
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that is

α+ x∞ (1, hn) + νD + νIhn + βpνD ≤ α− x∞ (1, hn) + νI (H − hn) + βνD .

Solving the latter inequality for x∞ (1, hn) gives

x∞ (1, hn) ≤
−νD (1− βp) + νI (H − 2hn)

2
.

The inequality (23) yields

α+ x∞ (1, hn) + νD + νIhn + βpνD ≥ α− x∞ (1, hn) + νI (H − hn) + βνD

such that

x∞ (1, hn) ≥
−νD (1− βp) + νI (H − 2hn)

2

Since x∞ (1, hn) ≤ x∞ (1, hn) it follows that

x∞ (1, hn) = x∞ (1, hn) = x∗ (1, hn)

Following the same procedure for an−1 = 0, we get

x∞ (0, hn) = x∞ (0, hn) = x∗ (0, hn)

where x∗ (0, hn) is given in the main text. Thus a unique equilibrium exists.

Proof. (Proposition 2). The incremental payoffs for the compatibility case ∆n,c and Λn,c

are defined along the same lines of (??,19). Using (13) they can be written in terms of their

counterpart under incompatibility:

∆n,c = ∆n + νDr (1 + β)− νD (r + s) (an−1 + βan+1) (24)

Λn,c = Λn + βνD [s− (r + s) an] (25)

The dominance regions can be determined as before since:

∆̄n,c = ∆c (0, 0, 0, xn) = ∆̄n + rνD (1 + β)

∆n,c = ∆c (1, 1,H, xn) = ∆n − sνD (1 + β)
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which yield x̄c and xc as in the main text. Since x̄c < x̄ (and similarly xc > x) it follows that

condition (8) is sufficient to guarantee that the adoption game displays dominance regions with

compatible technologies.

From (24-25) one has that ∆n,c is increasing in an−1, an+1, hn and xn since ∆n is increasing

in the same variables (see property i) in the proof of Proposition 1) and r + s < 2. Moreover

Λn,c (1, an−1, hn, xn) = βνD (1− r) > 0 > −βνD (1− s) = Λn,c (0, an−1, hn, xn)

so that Λn,c (1) > 0 > Λn,c (0) and property ii) (see the proof of Proposition 1) holds. In order

to show that the expected payoff Uc has increasing differences in any pair of variables, we have

from (21) that

Dn,c = ∆n,c (an−1, 1, hn, xn) + Λc (0)G

µ
xn+1 (0, hn+1)− xn

σ

¶
−Λc (1)G

µ
xn+1 (1, hn+1)− xn

σ

¶
It is easy to see that the Dn,c is increasing in xn, an−1, hn and independent of an+1 from the

analysis for Dn and the expressions (24-25). So there exists a greatest and least equilibrium in

monotone strategies.

The proof of uniqueness closely mirrors the second step in the proof of Proposition 1. Suppose

that player n observes an−1 = 1 and hn. The infimum technology value above which he chooses

technology A is given by

Dc(an−1, hn, x
∞
c (1, hn) ; sn+1) ≤ 0

that is

x∞c (1, hn) ≤
−νD [1− s− βq (1− r)] + νI (H − 2hn)

2

The supremum of xn below which player n chooses technology B is given by

Dc(an−1, hn, x
∞
c (1, hn) ; sn+1) ≥ 0

yielding

x∞c (1, hn) ≥
−νD [1− s− βq (1− r)] + νI (H − 2hn)

2
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and uniqueness follows from x∞c (1, hn) ≤ x̄∞c (1, hn) . Applying the same reasoning for the case

an−1 = 0 gives the cutoff x∗c (0, hn) in the main text. Finally the hysteresis band is given by

x∗c (0, hn)− x∗c (1, hn) = σ̄ − νD (r (1− βp) + s (1− βq))

2

Proof. (Proposition 3). Let S denote the state space for the process x. Without loss of

generality we assume {0, α} ∈ S and let n̄ denote the number of steps the process takes to move

from 0 to α, i.e. n̄ = α/σ. Therefore the (finite) state space S comprises 2n̄+ 1 elements and is

given by S = {−α,− (α− σ) , ...,−σ, 0, σ, ..., α}. In what follows si ∈ S denotes the i-th state,

where the subscript i is an integer between 0 and 2n̄, i.e. s0 = −α, ..., sn̄ = 0, ..., s2n̄ = α. We

apply results for Markov chains to the random walk (1). The one-step transition matrix is given

by:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p q 0 . . . 0 0 0

q 0 p 0 0 0
...

. . .
...

0 0 0 q 0 p

0 0 0 . . . 0 q p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

with p+q = 1. Given that at time n the Markov chain is in state si, Pij gives the probability that

the Markov chain moves to state sj next period, i.e. Pij = Pr (xn+1 = sj |xn = si) for n ∈ N . The

Markov chain described by (26) is irreducible, aperiodic and regular. It follows that the n-step

ahead matrix Pn converges as n → ∞ to a positive matrix Π = 1>π (Çinlar (1975), Corollary

2.11).19 The probability vector π is the unique solution to:

πP = π (27)

π1> = 1 (28)

πj > 0, j = 0, ..., 2n̄ (29)

19 In what follows boldface characters denote row vectors; for example 1 is the 1 × (2n̄+ 1) unity vector. πj is
the probability to reach state sj as time goes to infinite, i.e. πj = limn→∞ P

(n)
ij .
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Since πj > 0,∀j, each element in the limiting matrix Π is strictly positive. This means that

every state can occur with a positive probability as n → ∞ and as a consequence technology

lock-ins are ruled out in our game. This result is not affected by the compatibility between the

two technologies, since the stationary distribution π is driven by the random process (1) only.

Proof. (Corollary 4). First of all we proceed in determining the probability vector π. Using

the transition matrix (26) the constraints in (27, 28) become:20

π0q + π1q = π0

π0p+ π2q = π1

πi−1p+ πi+1q = πi, i = 2, ..., 2n̄− 2
π2n̄−2p+ π2n̄p = π2n̄P2n̄

i=0 πi = 1

Letting ρ = p
q the above system may be rewritten as:

π1 = ρπ0 (30)

πi = πi−1ρ, i = 2, ..., 2n̄− 1 (31)

π2n̄ = π2n̄−1ρ (32)P2n̄
i=0 πi = 1 (33)

By recursive substitution21 one has πi = π1ρ
i−1 = π0ρ

i for i = 2, ..., 2n̄−1, and π2n̄ = π1ρ
2n̄−1 =

π0ρ
2n̄ such that

P2n̄
i=0 πi = π0

P2n̄
i=0 ρ

i. Thus:

π0 = (2n̄+ 1)
−1

π0 =
³
1−ρ2n̄+1
1−ρ

´−1 if p = 1
2

if p 6= 1
2

(34)

and the stationary distribution π is given by (34,30-32). Recall that by construction, for a given

step size σ, the barriers (α,−α) coincide with admissible states for the random walk process

20For the vector π to be uniquely determined as a solution for (27,28) one equation in the system (27) is redundant

(or equivalently, the determinant of (I − P ) needs to be null). Thus we drop the (2n̄− 1)-th equation in (27).
21When n̄ = 1, i.e. the state space for x is S = {−α, 0, α}, equations (31) are not defined. The stationary

distribution is defined by equations (30,32,33) only.
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(s2n̄, s0). On the other hand this might not occur for the cut-off points x (0, 0) and x (1,H).

Before determining the adoption probabilities, one has to determine the states for the random

walk process in (1) corresponding to the cut-offs. We therefore consider sn0 as the nearest

state to x (0, 0) , i.e. n0 = {minn ∈ (0, 2n̄) : sn0+1 > x (0, 0)}. Similarly sn1 is defined by n1 =

{maxn ∈ (0, 2n̄) : sn1−1 < x (1,H)}. As is clear from x∗ (0, 0) > x∗ (1,H) it follows that n1 < n0.

It follows that the adoption probabilities are πA =
P2n̄

k=n0
πk and πB =

Pn1
k=0 πk, or equivalently

(adoption probabilities with compatible technologies are defined similarly, considering n0,c and

n1,c instead of n0 and n1):

πA = π0
P2n̄

k=n0
ρk

πB = π0
Pn1

k=0 ρ
k

(35)

As it is obvious from (35) , the probability of adopting technology A in the long run is decreasing in

n0, and similarly the probability of adopting technology B is increasing in n1. For p = 1/2 one has

ρ = 1 and π0 = (2n̄+ 1)
−1 from (34). The adoption probabilities (35) become πA =

2n̄− n0 + 1

2n̄+ 1

and πB =
n1 + 1

2n̄+ 1
. On the other hand for p 6= 1/2 equations (34,35) give:

πA =
¡
1− ρ2n̄+1

¢−1 ¡
ρn0 − ρ2n̄+1

¢
πB =

¡
1− ρ2n̄+1

¢−1 ¡
1− ρn1+1

¢
From the expression for the cut-offs in (11,12,15,16) one has

x∗ (0, 0) =
νD (1− βp) + νIH

2
; x∗ (1,H) = −νD (1− βq) + νIH

2
;

x∗c (0, 0) =
νD (1− r − βp (1− s)) + νIH

2
; x∗c (1,H) = −

νD (1− s− βq (1− r)) + νIH

2

Therefore properties (i-iii) easily follows taking the appropriate derivatives in the above expres-

sions. Finally for r/s ∈
µ
βp,

1

β (1− p)

¶
, the cut-offs with compatible technologies are within

[x∗ (1,H) , x∗ (0, 0)] , and v) obtains. Note that the above interval is always non-empty since
1

β (1− p)
is strictly bigger than βp. For p = 1/2 the cut-offs x∗ (0, 0) and x∗ (1,H) are symmetric

around the origin, i.e. x∗ (0, 0) = −x∗ (1,H), it follows that n0 = 2n̄ − n1 which gives the first

claim in property (v). Similarly x∗c (0, 0) = −x∗c (1,H) if and only if s = r.

37



Proof. (Proposition 5). For each state sj let τ j be the (function giving the) number of

times that the process is in state sj . The expected first passage time from state si to state sj is

given by mij = Ei (τ j). For the Markov chain (26) the matrix M = hmij > 0i is given by (see
Kemeny and Snell (1976), chapter VII):

mij =

⎧⎪⎪⎨⎪⎪⎩
1
πi

(4n̄+ 1− i) i− (4n̄+ 1− j) j

j (j + 1)− i (i+ 1)

i = j

i > j

i < j

if p =
1

2
(36)

mij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
πi

1
2p−1

µ
ρ2n̄+1(ρ−j−ρ−i)

ρ−1 + j − i

¶
1

2p−1

³
j − i− ρj−ρi

(ρ−1)ρi+j
´

i = j

i > j

i < j

if p 6= 1

2
(37)

Fix a pair (i, j) ∈ [1, 2n̄] × [1, 2n̄] with i > j, such that mij is below the diagonal of M . Take

another pair (k, l) with k > l, k ≥ i and l ≤ j. Using (36,37) the difference mkl −mij becomes:

mkl −mij =

⎧⎪⎨⎪⎩
(4n̄+ 1) (k − i+ j − l)−

¡
k2 − l2

¢
+
¡
i2 − j2

¢
1

2p−1

∙
ρ2n̄+1(ρ−i−ρ−k+ρ−l−ρ−j)

ρ−1 − (k − i+ j − l)

¸ if p = 1/2

if p 6= 1/2

Taking k = i and j > l gives:

mil −mij =

⎧⎪⎨⎪⎩
[4n̄+ 1− (j + l)] (j − l)

1
2p−1

∙
ρ2n̄+1(ρ−l−ρ−j)

ρ−1 + l − j

¸ if p = 1/2

if p 6= 1/2

Taking k > i and j = l gives:

mkj −mij =

⎧⎪⎨⎪⎩
[4n̄+ 1− (k + i)] (k − i)

1
2p−1

∙
ρ2n̄+1(ρ−i−ρ−k)

ρ−1 + i− k

¸ if p = 1/2

if p 6= 1/2

It follows that mil > mij for j > l and mkj > mij for k > i. Therefore mij decreases with j and

increases with i below the main diagonal.
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Now consider: 1) the pair (i, j) ∈ [1, 2n̄]× [1, 2n̄] with i < j, i.e. mij is above the diagonal of

M , and 2) the pair (k, l), k < l with k ≤ i and l ≥ j. From (36,37) one has:

mkl−mij=

⎧⎪⎨⎪⎩
(l − j + i− k) +

¡
l2 − k2

¢
−
¡
j2 − i2

¢
1

2p−1

∙
(l − j + i− k)− ρj+l(ρi−ρk)+ρi+k(ρl−ρj)

(ρ−1)ρi+j+k+l

¸ if p = 1/2

if p 6= 1/2

Proceeding as before consider k = i and j < l:

mil −mij =

⎧⎨⎩ (l − j) (1 + j + l)

1
2p−1

³
l − j − ρl−ρj

(ρ−1)ρj+l
´ if p = 1/2

if p 6= 1/2

When k < i and j = l one has:

mkj −mij =

⎧⎨⎩ (i− k) (1 + i+ k)

1
2p−1

³
i− k − ρi−ρk

(ρ−1)ρi+k
´ if p = 1/2

if p 6= 1/2

Therefore mij increases in j and decreases in i above the main diagonal. For a given model

parametrization, the cut-off points are obtained using (11,12) . Let these states be denoted by

su and sl respectively for the upper (x∗ (0, 0)) and the lower (x∗ (1,H)) cut-off. Note that

sl < su since l < u. Similarly let su,c and sl,c be the corresponding states in the presence of

convertible technologies obtained via (15,16). It follows that the expected number of adopters is

mA = mul and mB = mlu. We know that converters reduce the hysteresis band, i.e. su,c − sl,c <

su − sl. Moreover it is easy to show that [x∗c (1,H) , x
∗
c (0, 0)] ⊂ [x∗ (1,H) , x∗ (0, 0)] whenever

r/s ∈
µ
βp,

1

β (1− p)

¶
. It follows that it cannot occur simultaneously that: 1) mlu,c is above and

to the right of mlu and 2) mul,c is below and to the left of mul. Since mlu and mul are respectively

above and below the main diagonal, it follows that it cannot be that mA,c > mA and mB,c > mB

simultaneously.
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Figure 1: Technology adoption pattern. Several technology adoption patterns are depicted.

Panels A.1,A.2 and A.3 refer to incompatible technologies, while Panels B.1,B.2 and B.3 consider compat-

ible technologies. In each Panel the solid line corresponds to one sample path for the process xn. Black

circles indicate individuals choosing technology B. The dashed lines display the cut-off points and the

small-dashed lines the dominance regions limits. The following parameterization has been used: N = 100,

p = 1/2, x0 = 0, σ = 0.5 and α = 4 (technology value process); β = 0.5 and ν = 5 (individual prefer-

ences); r = s = 0.2 (compatibility values). Panel A.1 (resp. B.1) is the benchmark case with incompatible

technologies (resp. compatible technologies). Panels A.2,A.3,B.2 and B.3 carry out some comparative sta-

tics exercises. Panel A.2 considers an increase in the individual discount factor (β = 0.95); Panel A.3

displays the effects of an increase in the network benefit (ν = 6). Panels B.2 and B.3 consider asymmetric

converters (r = 0.6 and s = 0.6 respectively).
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