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Abstract

This paper considers a public good game with incomplete information af-
fected by extreme free-riding. We overcome this problem through the imple-
mentation of a contest in which several prizes can be awarded. For any possible
distribution of wealth we identify the necessary and su¢ cient conditions for
the equilibrium allocations to be interior for all players. At interior solutions
the social planner sets the last prize equal to zero and the total expected wel-
fare is independent of the distribution of the total prize sum among the other
prizes. We prove that private provision via a contest Pareto-dominates both
public provision and private provision via a lottery.

1 Introduction

This paper looks at contests as a way to overcome the free-riding problem. It is
well known that simply asking each agent in an economy to contribute to the public
good generally results in underprovision and might cause extreme free-riding (see
for examples Bergstrom et al. 1986; Andreoni 1988). Di¤erent solutions have been
o¤ered. Groves and Ledyard (1977) and Walker (1981) proposed mechanisms to
Nash implement �rst best public good allocations. Experimental evidence, though,
does not support their results (Chen and Tang 1998). Harstad and Maresse (1982)
eximined an iterative version of the Groves and Ledyard mechanism, �nding that
Nash predictions perform badly. Further, contests as incentive mechanisms di¤er
from the above solutions in that no tax or transfer power is required on the part of
the organisation conducting the tournament. In the case of organisations with no
coercive power such as charity or civic groups this di¤erence may be fundamental.
Voluntary mechanisms with provision points (see Bagnoli and Lipman 1989;

Admati and Perry 1991) can also lead to �rst-best outcomes. However, laboratory
results show divergence from the equilibrium predictions (Ledyard 1995).
Morgan (2000) analyses lotteries as a means to solve the free-riding problem and

Morgan and Sefton (2000) provide experimental results showing that contribution
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under a lottery is generally higher than under the voluntary contribution mechanism.
Both these papers only consider the case in which one prize is awarded. However,
we will prove that a lottery with one prize performs worse than a contest, either
with one or more prizes.
Contests are competitions in which agents spend resources in order to win one

or more prizes. The main characteristic is that, independently of success, all par-
ticipants bear some costs. Most of the economic literature on contests has focused
on the case where only one prize is awarded. Moldovanu and Sela (2001) study a
contest with several prizes and show that when costs are either linear or concave
allocating only one prize maximises the e¤ort exerted by the bidders; however, when
costs are convex more prizes could be optimal. Although contests and tournaments
have been largely analysed as incentive schemes1, to my knowledge, they have not
been studied as a means to overcome the free-riding problem and provide socially
desirable public goods.
In this paper we present a theoretical model, which is di¤erent from the models

presented in the literature and can be tested experimentally. We consider a public
good game with incomplete information in which the agents� utility function is
linear both in wealth and in the public good. Such a game is a modi�ed version
of the game with complete information which is typically employed in public good
experiments. Each agent chooses how much of her wealth to allocate to the public
good; this money is multiplied by a parameter, which takes a value between one and
the number of players, and shared equally among all the agents. The unique Nash
equilibrium is to contribute nothing, although it is socially optimum to contribute
all the wealth. We overcome this extreme free-riding via a contest. We assume
that the social planner has access to a budget, which can be allocated in form of
prizes. The �rst prize is awarded to the player who contributes the most, the second
prize to the player with the second highest contribution and so on until all prizes are
awarded. The social planner wants to maximise the expected total welfare net of the
vlaue of the total prize sum. For any possible distribution of wealth we identify the
necessary and su¢ cient conditions for the equilibrium allocations to be interior for all
players. As we said, we assume the typical utility function that is used in laboratory
experiments on public goods. Although it does not seem plausible that in real life
people spend all their wealth in auctions or lotteries, in the framework we analyse
we believe that wealth constraints are likely to be binding and studying interior
solutions without identifying conditions for their existence might cause problems in
the empirical application. We �nd that there exists a critical level of budget under
which wealth constraints are non-binding for all agents. When the total prize sum
is below such critical value the social planner sets the last prize equal to zero and
the total expected contribution is independent of the distribution of the total prize
sum among the other prizes. Interestingly, although the cost of providing the public
good is linear, the result is strikingly di¤erent from Moldovanu and Sela�s (2001).
Further, provided interior solutions, we prove that private provision via a contest

1Applications have been made to promotions in labour markets (Lazear and Rosen 1981),
technological and research races (Wright 1983; Dasgupta 1986; Taylor 1995; Fullerton and McAfee
1999; Windham 1999), credit markets (Breocker 1990), and rent seeking (Tullock 1980) among
others.
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as the one we present Pareto-dominates both public provision and private provision
via a lottery in which one prize is awarded.
In Section 2 we present a linear public good game with complete information.

In Section 3 we present the model and identify the Nash equilibrium. In Section 4
we �nd necessary and su¢ cient conditions for interior solutions and we present the
revenue equivalence result. Section 5 compares private provision via a contest with
both public provision and private provision via a lottery. Section 6 concludes.

2 A Linear Public Good Game with Complete In-
formation

In this Section we present the game that is typically used in public good experiments
n subjects take part in the experiment. Each subject is endowed with the same
amount of money z and simultaneously chooses how much of her wealth to allocate
to the public good; this money is multiplipied by a parameter � and shared equally
among all the subjects. Agent i�s payo¤ can be described by

Ui = z � gi + �
G

n
(1)

where gi is i�s contribution to the public good and G =
nX
i=1

gi is the total level

of public good. If � 2 (1; n) an individual opportunity cost of contributing to the
public good exceeds the marginal return of investing in the public good. Thus, the
unique Nash equilibrium of the game is to contribute nothing, while it is e¢ cient to
contribute z.

3 The Model

Let us consider n players. Each player i is assumed to have endowment zi, which
is private information. Endowments are drawn independently of each other from
the interval [0; 1] according to the distribution function F (z), which is common
knowledge, with mean E[z]. We assume that F (z) has a continuous and bounded
density F

0
(z) > 0. Players play a public good game in which each individual has

to choose how much to contribute to the public good. At the same time they take
part in a contest in which n prizes are awarded such that �1 � � � � � �m�1 >

�m = � � � = �n � 0, 1 < m � n and
nX
j=1

�j = �. This assumption rules out the

possibility of awarding n equal prizes and will enable us �nd an equilbrium. We
will call � = (�1; � � � ; �n) 2 Rn the vector of prizes. The player with the highest
contribution wins �1, the player with the second highest contribution wins �2, and
so on until all the prizes are allocated. For each player, a strategy will be the
contribution to the public good as a function of the player�s endowment and the
action space for player i will be the interval [0; zi]. If player i, who has endowment
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zi and contributes gi, wins prize j her payo¤ is

Ui = zi � gi + �
G

n
+ �j (2)

where � 2 (1; n).
Each player i chooses her contribution in order to maximise expected utility

(given the other players�contributions and given the values of the di¤erent prizes).
We will assume that � is exogenously determined. For a given value of �, the social
planner determines the number of prizes having positive value and the distribution
of the total prize sum among the di¤erent prizes in order to maximise the expected
value of total welfare net of the value of � (given the players�equilibrium strategy
functions).
In this Section we will focus on the case in which the equilibrium strategy is less

than z for any z 2 [0; 1].
In order to �nd the equilibrium of the game it is useful to present the function

K(F (z)) =

nX
i=1

�i

�
n� 1
i� 1

�
(F (z))n�i(1� F (z))i�1 (3)

Given a vector of prizes �, K(F (z)) is a linear combination of n order statistics
with weights equal to the prizes. If all agents adopt the same strictly increasing
strategy g(z), K(F (z)) represents the expected prize of the player with endowment
z.

Lemma 1 The function K(F (z)) is strictly monotonic increasing in z.

Proof. Let�s consder zi and zj such that 0 � zi < zj � 1. Given that F (zi) < F (zj),
and given the assumption that �1 � � � � � �m�1 > �m = � � � = �n � 0, 1 < m � n,
K(F (zj)) assigns higher weights than K(F (zi)) to higher prizes and lower weights
than K(F (zi)) to lower prizes. Therefore K(F (zi)) < K(F (zj)).

Proposition 1 Given a vector � of prizes, at an interior solution for all players
the game has a symmetric pure strategy equilibrium given by

g(z) =
n

n� �(K(F (z))� �n)

Proof. The expected utility of a player from a choice g can be calculated as

E[U(z � g; �) j g; g�i] =

z � g + �G
n
+ (Pr[1 j g; g�i]�1 + Pr[2 j g; g�i]�2 + � � �+ Pr[n j g; g�i]�n)

where Pr[j j g; g�i] is the probability of a choice g being j-th highest conditional
on the other strategies g�i. If all agents adopt the same strictly increasing strategy
g(z), then the probability that a candidate with endowment zi is higher ranked
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than another randomly chosen candidate is Pr[g(zi) > g(z)] = Pr[zi > z] = F (zi).
Therefore

(Pr[1 j g; g�i]�1 + Pr[2 j g; g�i]�2 + :::+ Pr[n j g; g�i]�n) =

K(F (z)) =
nX
i=1

�i

�
n� 1
i� 1

�
(F (z))n�i(1� F (z))i�1

Now, given the common strategy g(z), we suppose that an individual with endow-
ment z chooses g(ẑ) for some ẑ, then her expected utility will be

z � g(ẑ) + �G�i + g(ẑ)
n

+K(F (ẑ))

where G�i is the sum of the contributions of all the other players. Di¤erentiating
with respect to ẑ we obtain

�� n
n

g0(ẑ) +K 0(F (ẑ))F 0(ẑ)

In equilibrium the individual with endowment z should choose g(z) so that the above
will be equal to zero when ẑ = z, and we have

g0(z) =
n

n� �K
0(F (z))F 0(z)

A player with the lowest possible endowment z = 0 does not contribute to the public
good and wins the last prize. This yelds the boundary condition g(0) = 0. Hence,
the solution is

g(z) =
n

n� �(K(F (z))� �n)

From Lemma (1) we know that the candidate equilibrium function g is strictly
monotonic increasing.
Assuming that all players rather than i play according to g, we �nally need to

show that, for any type z of player i, the contribution g(z) maximises the expected
utility of that type. Let us consider an individual with endowment z. If she plays
g(z) = n

n��(K(F (z))� �n) her expected utility is given by

E[U(z; g(z)) j g�i] = z �
�

n� �K(F (z)) +
n

n� ��n +
�

n
G

If she deviates and plays n
n��(K(F (ẑ)) � �n) for some ẑ 6= z her expected utility

will be

E[U(z; g(ẑ)) j g�i] =

z � n

n� �K(F (ẑ)) +
n

n� ��n +
�

n
(G� n

n� �K(F (z))

+
n

n� ��n +
n

n� �K(F (ẑ))�
n

n� ��n) +K(F (ẑ))

= z � �

n� �K(F (z)) +
n

n� ��n +
�

n
G
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Therefore she is indi¤erent to play any other strategy n
n��(K(F (ẑ)) � �n). If her

action space [0; z] is a subset of the set g�i this rules out the possibility that she
might be better o¤ deviating from g(z). If z > g(1) it is easy to show that she
would be worse o¤ playing any strategy greater than g(1). In fact, playing g(1)
would already guarantee �1 and any higher contribution would result in a lower
expected utility.

4 Interior Solutions and Revenue Equivalence

In this Section we are going to look for conditions that assure that the solution is
interior for all players, given that the social planner wants to maximise the expected
total welfare net of the value of the total prize sum. We will then analyse the
expected total contribution when interior solutions are guaranteed.
First of all, let us present the social planner�s maximisation problem, assuming

that wealth constraints are non-binding for all players. Recall that � is exogenoulsly
determined and the social planner determines the number of prizes having positive
value and the distribution of the total prize sum among the di¤erent prizes in order
to maximise the expected value of total welfare net of the value of � (given the play-
ers�equilibrium strategy functions). This means that, to analyse the maximisation
problem we have let the vector of prizes � be variable, mantaining the assumptions

that �1 � � � � � �m�1 > �m = � � � = �n � 0, 1 < m � n and
nX
j=1

�j = �, and we

now have to study the family of functions

�(F (z); � j
nX
j=1

�j = �; �1 � � � � � �m�1 > �m = (4)

� � � = �n � 0; 1 < m � n) =
n

n� �

nX
i=1

�i

�
n� 1
i� 1

�
(F (z))n�i(1� F (z))i�1

Notice that, if � were �xed expression (4) would reduce to K(F (z)), as presented
in (3).
Letting the vector of prizes � be variable, at an interior solution for all players,

the equilibrium strategy is represented by the following2

g(z; �) =
n

n� �(�(F (z); �)� �n) =

n

n� �

nX
i=1

�i

�
n� 1
i� 1

�
(F (z))n�i(1� F (z))i�1 � n

n� ��n

2For simplicity of notation, unless di¤erently speci�ed, from now on we will refer to �(F (z); � j
nX
j=1

�j = �; �1 � � � � � �m�1 > �m = � � � = �n � 0; 1 < m � n) as �(F (z); �).
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And the social planner�s problem is given by

max
�
W = n

1Z
0

(z � g(z; �) + �
n
G+ �(F (z); �))F 0(z)dz � � (5)

Notice �rst that

n

1Z
0

�(F (z); �)F 0(z)dz = � (6)

independently of the distribution of the total prize sum among the di¤erent
prizes.
Further, notice that, at interior solutions, we have

G = n

1Z
0

g(z; �)F 0(z)dz =
n

n� ���
n2

n� ��n

This means that the expected total contribution only depends on the total prize
sum and the value of the last prize.
Therefore, we can rearrange expression (5) as

max
�
W = n

1Z
0

(z � g(z; �) + �

n� ���
�n

n� ��n)F
0(z)dz (7)

and we can state the following result.

Proposition 2 At an interior solution for all players the social planner will set
�n = 0.

Proof. Expression (7) can be rewritten as

max
�
W = n

1Z
0

(z � n

n� ��(F (z); �) + (8)

n

n� ��n +
�

n� ���

�n

n� ��n)F
0(z)dz = nE[z] +

n(�� 1)
n� � (�� n�n)

It is obvious that �n = 0 maximises the above expression.
Provided that at an interior solution for all players the social planner will set

the last prize equal to zero, Proposition (9) in Appendix A provides necessary and
su¢ cient conditions for the value of � such that g(z) is interior for any z on the
interval [0; 1] for any possible distribution of � among the �rst n� 1 prizes. On the
basis of this we can establish the following result.

Proposition 3 Provided that the last prize is equal to zero, there exists �� > 0 such
that g(z) is interior for all players independently of the distribution of the total prize
sum among the �rst n� 1 prizes if and only if � � ��.
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Proof. See Appendix B.
As we noticed the expected total contribution only depends on the value of the

total prize sum and on the last prize. We know, though, that if wealth constraints are
non-binding for all players the social planner maximises the total expected welfare
setting the last prize equal to zero. Therefore, at an interior solution the expected
total contribution will be the same, independently of the distribution of the total
prize sum among the �rst n � 1 prizes. This result is summarised by the following
proposition.

Proposition 4 If � � �� the social planner will set the last prize equal to zero and
the expected total contribution will be G = n

n���, independently of the distribution
of the total prize sum among the �rst n� 1 prizes.

Further, from the result above it is obvious that

Corollary 1 If � � �� the expected total contribution is strictly increasing in �.

5 Contest versus Public Provision and Lottery

In this Section, we will compare the result obtained through a contest as the one we
described with both the result generated by public provision and the one obtained
using a lottery.
When socially desirable public goods are not privately provided the obvious

alternative is to publicly provide them. Let us imagine that the social planner
has access to a budget equal to � � ��. Instead of allocating this sum in form of
prizes the social planner provides an amount of public good equal to �.We want
to compare the expected total welfare generated by such public provision with the
expected total welfare resulting from the use of a contest, where the social planner
awards up to n� 1 prizes which sum is equal to �.

Proposition 5 Private provision of public good via a contest, in which the total sum
prize � � �� is distributed among the n�1 players who contribute the most, Pareto-
dominates public provision. If the social planner uses � � �� to publicly provide the
public good the expected total welfare net of the value of � isW P = nE[z]+(��1)�.

Proof. If the social planner uses � � �� to provide the public good the expected
total welfare net of the value of � is given by

W P = n

1Z
0

(z +
�

n
�)F 0(z)dz � � = (9)

nE[z] + (�� 1)�

From expression (8) we know that, if the last prize is equal to zero, the expected
total welfare generated by a contest is equal to

W = nE[z] +
n(�� 1)
n� � �
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that is strictly greater than (9).
We now consider the case where the social planner resorts to a lottery to incenti-

vate the contribution of the public good. To be able to compare the use of a lottery
with the use of a contest we will have to restrict the analysis to interior solutions. To
do this let us assume n players whose endowments are drawn independently of each
other from the interval [z

¯
; �z], with z

¯
strictly positive, according to the distribution

function F (z), which is common knowledge. Assume that the social planner decides
to award the sum � via a lottery with the following properties. If a player i with
endowment zi contributes gi 2 [0; zi] and the sum of the contributions of all other
players is equal to G�i she wins � with probability

gi
gi+G�i

and her expected utility
is given by

E[U(zi � gi;�) j gi; G�i] = zi � gi + �
G�i + gi
n

+
gi

gi +G�i
�

Di¤erentiating with respect to g and setting this equal to zero we have

�� n
n

+
G�i

(gi +G�i)2
� = 0

Assuming that the total contribution is di¤erent from zero3 and rearranging we
obtain player i�s best response function

g�i = �G�i + 2

r
n

n� ��G�i (10)

From (10) we can write an expression for the total contribution when player i
plays according to her best response

G(g�i j G�i) = 2

r
n

n� ��G�i

Although the endowment is private information, notice that z does not enter the
�rst order condition. Each player will have the same best response function and
at interior solutions the contribution in equilibrium will be the same for any z.
Therefore, assuming interior solutions, we know that g�i will be

G(g�i jG�i)
n

and we can
write

g�i =
2
p

n
n���G�i

n
(11)

Setting (10) and (11) equal we obtain an expression for G�i when any player
plays according to her best response function

G��i =
(n� 1)2
n(n� �)�

3Notice that in equilibrium the total contribution will not be zero. In fact, if any other player
di¤erent from i contributes zero, player i will contribute " strictly positive and arbitrarily close to
zero and win the prize.
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Hence we know that in equilibrium, at an interior solution for all players, all
agents will play

g� =
n� 1
n(n� �)�

And the total contribution in equilibrium, at an interior solution for all players,
will be

G� =
n� 1
n� ��

It is easy to see that if � � n(n��)
n�1 z¯

the solution will be interior for all players
These results are summarised in the following proposition.

Proposition 6 Assume n players whose endowments are drawn independently of
each other from the interval [z

¯
; �z], with z

¯
strictly positive, according to the distribution

function F (z), which is common knowledge. Assume that z is private information.
If � � n(n��)

n�1 z¯
the lottery has a symmetric pure strategy equilibrium in which any

player contributes g� = n�1
n(n��)� and the total contribution is G

� = n�1
n���

It is interesting to notice that under such a lottery, unlike the contest, all players
contribute the same amount in equilibrium.
Further, notice that in order to prove Proposition (8) in Appendix A we have not

resorted to the support of z and that the same conditions guarantee that the solution
will be interior for all players in the case in which endowments are drawn indepen-
dently of each other from the interval [z

¯
; �z], with z

¯
strictly positive, according to the

distribution function F (z), which is common knowledge, and which has a continuous
and bounded density F

0
(z) > 0. Under a contest as the one described, provided that

the social planner sets the last prize equal to zero, the total contribution is given by

G = n

�zZ
z
¯

n

n� ��(F (z); � j
nX
j=1

�j = �; �1 �

� � � � �n; �n = 0)F
0(z)dz =

n

n� ��

Hence, we can conlcude that, for � that guarantees interior solutions for all
players under both mechanisms, the expected total contribution raised with a contest
is greater than the total contribution under a lottery, for any �nite n.

Proposition 7 Assume n players whose endowments are drawn independently of
each other from the interval [z

¯
; �z], with z

¯
strictly positive, according to the dis-

tribution function F (z), which is common knowledge. Assume that z is private
information and that F (z) has a continuous and bounded density F

0
(z) > 0. If

� � min[n(n��)
n�1 z¯

; ��], the expected total provision of public good via a contest, in
which the total sum prize is distributed among the n� 1 players who contribute the
most, is greater than the total contribution raised under a lottery.
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6 Conclusions

Di¤erent theoretical solutions to the free-riding problem have been o¤ered and some
of them are contradicted by experimental results. Although contests have been
widely studied as incentive schemes they have not been analysed as a means to
overcome free-riding. We presented a theoretical model that can be easily tested ex-
perimentally, in which a contest with multiple prizes is used to incentivate indivuals
to contribute to the public good.
We considered the case in which the social planner has access to a budget, and

uses it to run a contest. We found that there exists a critical level of budget under
which wealth constraints are non-binding for all agents. For any possible distribution
of wealth we identi�ed the necessary and su¢ cient conditions for the equilibrium
allocations to be interior for all players. When the total prize sum is below such
critical value the social planner sets the last prize equal to zero and the total expected
contribution is independent of the distribution of the total prize sum among the other
prizes. Provided interior solutions, we proved that a contest Pareto-dominates public
provision of the public good and performs better than a lottery. An interesting
extension to the present work would be to test experimentally whether individuals
actually contribute more in a contest than in a lottery and whether the revenue
equivalence holds.

Appendix A: Necessary and Su¢ cient Conditions

We want to �nd necessary and su¢ cient conditions for the value of � such that g(z)
is interior for any z on the interval [0; 1] for any possible allocation of � among the
�rst n � 1 prizes. Notice in fact that, assuming interior solutions, Proposition (2)
assures us that the social planner will set �n = 0.
If we let the vector of prizes � be variable, provided that the last prize is equal

to zero and that the sum of the �rst n� 1 prizes is equal to �, g(z) is represented
by the following4

n

n� ��(F (z); � j
nX
j=1

�j = �; �1 � � � � � �n; �n = 0) =

n

n� �

nX
i=1

�i

�
n� 1
i� 1

�
(F (z))n�i(1� F (z))i�1

Let us de�ne the following object.

De�nition 1 De�ne the envelope function

V (z) = max
�
f�(F (z); �) j

nX
j=1

�j = �; �1 � � � � � �n; �n = 0g

for any z on the interval [0; 1].

4Notice that, unlike the rest of the paper, both in Appendix A and Appendix B, when writing

�(F (z); �) we will refer to �(F (z); � j
nX
j=1

�j = �; �1 � � � � � �n; �n = 0).
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If we are able to provide necessary and su¢ cient conditions for V (z) to be weakly
less than z for any z on the interval [0; 1], it will be easy to extend the result to
g(z). In order to do this we will de�ne some useful concepts that will help us in the
course of our analysis.

De�nition 2 For any i such that 1 � i � n� 1:
1) de�ne the set Qi � Rnsuch that for every � 2 Qi it holds that �1 � � � � �

�i > �i+1 = � � � = �n = 0 and
iX
l=1

�l = �.

2) call ��i the vector � 2 Qi such that �1 = � � � = �i = �
i
.

De�nition 3 For any i such that 2 � i � n � 1 de�ne the set ~Qi � Qi such that
for every � 2 ~Qi it holds that �1 > �i.

Obviously ��1 2 Q1, characterised by �11 = �; �1l = 0 for 2 � l � n, is the only
element of the set Q1 and �(F (z); ��1) = �(F (z))n�1.
The next Proposition presents necessary and su¢ cient conditions for V (z) to be

weakly less than z on the interval [0; 1].

Proposition 8 �(F (z); ��i) � z on the interval [0; 1] for 1 � i � n�1 are necessary
and su¢ cient conditions for V (z) � z.

Proof. The necessity of these conditions is obvious. In order to prove su¢ ciency
we will have to present some technical results.

Lemma 2 Given a vector �R 2 Rn such that
nX
j=1

�Rj = � and �R1 � � � � � �Rn ;

�Rn = 0, consider a redistribution of the type ���Ri = ��Ri+1, with 1 � i � n � 1
and ��Ri > 0, and call the resulting vector �S. Then, �(F (z); �S) > �(F (z); �R)
for any z such that F (z) < n�i

n
and �(F (z); �S) < �(F (z); �R) for any z such that

F (z) > n�i
n
.

Proof. Notice that @�(F (z);�)
@�i

=
�
n�1
i�1
�
(F (z))n�i(1 � F (z))i�1. To see how a redis-

tribution of the type ���i = ��i+1 a¤ects �(F (z); �) we have to study the sign
of

�@�(F (z); �)
@�i

+
@�(F (z); �)

@�i+1
(12)

= (F (z))n�i(1� F (z))1(�
�
n� 1
i� 1

�
(F (z))

+

�
n� 1
i

�
(1� F (z)))

It is the case that expression (12) > 0 for any z such that F (z) < (n�1i )
(n�1i�1)+(

n�1
i )

and

(12) < 0 for any z such that F (z) > (n�1i )
(n�1i�1)+(

n�1
i )
. Further, it is easy to show that�

n�1
i

��
n�1
i�1
�
+
�
n�1
i

� = (n�1)!
i!(n�1�i)!

(n�1)!
(i�1)!(n�i)! +

(n�1)!
i!(n�1�i)!

=
n� i
n
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Lemma 3 Assume 1 � i � n � 2. Consider a vector �B 2 ~Qi+1. If 2 � i � n � 2
then �(F (z); ��i+1) > �(F (z); �B) for any z such that F (z) � n�i

n
. If i = 1 then

�(F (z); ��2) > �(F (z); �B) for any z such that F (z) < n�1
n
and �(n�1

n
; � j � 2 Q2) =

�(n�1
n
; ��1) = �(n�1

n
)n�1.

Proof. Let us �rst consider the case in which 2 � i � n � 2. The vector ��i+1 can
be obtained from vector �B applying the following algorithm in i steps.

Algorithm 1 Step 1. From vector �B construct vector �B1 such that �B11 = �
i+1
; �B12 =

�B2 + �
B
1 � �

i+1
; �B1j = �Bj ; 3 � j � i + 1. Given that �B2 � �B3 it will now be the

case that �B12 > �B13 � � � � � �B1i+1. Therefore
�
i+1
+ i�B12 > �. The last inequality

can be rewritten as �B12 > �
i+1
, therefore we can move to the next step and repeat the

process.
Step j, with 2 � j � i � 1. From vector �Bj�1 construct vector �Bj such

that �Bjj = �
i+1
; �Bjj+1 = �Bj�1j+1 + �Bj�1j � �

i+1
; �Bjl = �Bj�1l for 1 � l � j � 1

and j + 1 � l � i + 1. Given that �Bj�1j+1 � �Bj�1j+2 it will now be the case that
�Bjj+1 > �Bjj+2 � � � � � �Bji+1. Therefore it is the case that 2

�
i+1

+ (i + 1 � j) �Bjj+1.
Rearranging the last inequality we obtain �Bjj+1 >

�
i+1
. This means that we can move

to the next step and repeat the process.
Step i. From vector �Bi�1 construct vector �Bi such that �Bii = �

i+1
; �Bii+1 =

�Bi�1i+1 + �Bi�1i � �
i+1
; �Bil = �Bi�1l for 1 � l � i � 1. Notice that �Bi�1l = �

i+1
for

1 � l � i� 1. Therefore �Bi = ��i+1.

Notice that from Lemma 2 we know that �(F (z); �Bj) > �(F (z); �Bj�1) for any
z such that F (z) < n�j

n
for 1 � j � i. Therefore �(F (z); ��i+1) > �(F (z); �B) for

any z such that F (z) � n�i
n
, that contradicts our assumption.

Consider now the case in which i = 1. Notice that ��21 < �B1 and ��22 > �B2 .
Applying the same algorithm as above from �B we will obtain ��22 after the �rst step.
Applying Lemma 2 we know that �(F (z); ��2) > �(F (z); �B) for any z such that
F (z) < n�1

n
. Further, from Lemma 2 we also know that �(F (z); � j � 2 Q2) >

�(F (z); ��1) for any z such that F (z) < n�1
n
and �(F (z); � j � 2 Q2) < �(F (z); ��1)

for any z such that F (z) > n�1
n
. Therefore, by continuity, we can conclude that

�(n�1
n
; � j � 2 Q2) = �(n�1

n
; ��1) = �(n�1

n
)n�1.

Lemma 4 Assume 2 � i � n � 2. �(F (z); ��i+1) > �(F (z); � j � 2 Qj) for any z
such that F (z) � n�i

n
and for 1 � j � i.

Proof. The structure of this proof is in three parts.

First of all, from Lemma 3 we know that �(F (z); ��j) > �(F (z); � j � 2 ~Qj)
for any z such that F (z) � n�j�1

n
and, given that 1 � j � i, for any z such that

F (z) � n�i
n
.

For the second part of the proof, let us �rs assume j = 1. Consider a vector
�B 2 ~Qi+1. We want to show that �(F (z); �B) > �(F (z); ��1) for any z such that
F (z) � n�i

n
.

If 2 � j � i, consider a vector �B 2 ~Qi+1 such that �Bl = ��
j
l for 1 � l � j � 1.

Notice that, obviously, �Bj < ��
j
l . We want to show that

13



�(F (z); �B) > �(F (z); ��j) for any z such that F (z) � n�i
n
if 1 � j � i � 1 and

for any z such that F (z) < n�i
n
if j = i.

Vector �B can be obtained from ��j through the following algorithm in i + 1 � j
steps.

Algorithm 2 Step 1. If j = 1, from vector ��1 construct vector �A1 2 ~Q2 such
that �A11 = �B1 and �

A1
2 = � � �B1 . If 2 � j � i, from vector ��j construct vector

�A1 2 ~Qj+1 such that �A1l = ��jl =
�
j
for 1 � l � j � 1; �A1j = �Bj and �

A1
j+1 =

��jj � �Bj = �
j
� �Bj .

Step k, with 2 � k � i� j. From vector �Ak�1 construct vector �Ak 2 ~Qj+k such
that �Akl = �Ak�1l for 1 � l � j = k�2; �Akj+k�1 = �Bj+k�1 and �Akj+k = �Ak�1j+k�1��Bj+k�1.
Step i + 1 � j. From vector �Ai�j construct vector �Ai+1�j 2 ~Qi+1 such that

�Ai+1�jl = �Ai�jl for 1 � l � i� 2; �Ai+1�ji = �Bi and �
Ai+1�j
i+1 = �Ai�ji � �Bi . Notice

that �Ai+1�ji+1 = �Bi+1 and �
Ai+1�j = �B by construction.

From Lemma 2 we know that �(F (z); �Ak) > �(F (z); �Ak�1) for any z such that
F (z) < n+1�k

n
. Therefore if 1 � j � i� 1 then �(F (z); �B) > �(F (z); ��j) for any z

such that F (z) � n�i
n
. If j = i then �(F (z); �B) > �(F (z); ��j) for any z such that

F (z) < n�i
n
and �(n�i

n
; �B) = �(n�i

n
; ��j).

Finally, from Lemma 3 we know that �(F (z); ��i+1) > �(F (z); �B) for any z such
that F (z) � n�i

n
. Therefore �(F (z); ��i+1) > �(F (z); � j � 2 ~Qj) for any z such that

F (z) � n�1
n
.

Lemma 5 Assume 2 � i � n�2. Consider a vector �B 2 ~Qi+1 such that �B1 > �
B
j ,

with 2 � j � i. Assume a vector �C 2 ~Qi+1 such that �Cl = �
B
l for j +1 � l � i+1

and �C1 = � � � = �Cj =
��

i+1X
l=j+1

�Bl

j
. If 3 � j � n � 2 then �(F (z); �C) > �(F (z); �B)

for any z such that F (z) � n�j+1
n
. If j = 2 then �(F (z); �C) > �(F (z); �B) for any

z such that F (z) < n�1
n
and �(n�1

n
; �C) > �(n�1

n
; �B).

Proof. Notice that �B1 > �
C
1 and �

B
j < �

C
j . Vector �

C can be obtained from vector
�B applying the following algorithm in j � 1 steps.

Algorithm 3 Step 1. From vector �B construct vector �B1 such that �B11 = �C1 ; �
B1
2 =

�B2 + �
B
1 � �C1 ; �B1l = �Bl for 3 � l � i + 1. Given that �B2 � �B3 it will now be the

case that �B12 > �B13 � � � � � �B1i+1. Therefore �B11 +(j�1)�B12 > ��
i+1X
l=j+1

�Bl . Since

�B11 = �C1 =

��

i+1X
l=j+1

�Bl

j
, the last inequality can be rearranged as �B12 >

��

i+1X
l=j+1

�Bl

j
.

Therefore we can move to the next step and repeat the process.
Step k, 2 � k � j � 2. From vector �Bk�1 construct vector �Bk such that

�Bkk = �Ck ; �
Bk
k+1 = �Bk�1k+1 + �Bk�1k � �Ck ; �Bkl = �Bk�1l for 1 � l � k � 1 and

k + 2 � l � i + 1. Notice that, by construction �Bkl =

��

i+1X
l=j+1

�Bl

j
for 1 � l � k and
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�Bkl = �Bl for k+2 � l � i+1. Given that �Bk�1k+1 � �Bk�1k+2 it will now be the case that

�Bkk+1 > �
Bk
k+1 � � � � � �Bki+1. Therefore k

j
(��

i+1X
l=j+1

�Bl ) + (j � k)�Bkk+1 > ��
i+1X
l=j+1

�Bl .

The last inequality can be rearranged as �Bkk+1 >

��

i+1X
l=j+1

�Bl

j
. Therefore we can move

to the next step and repeat the process.
Step j�1. From vector �Bj�2 construct vector �Bj�1 such that �Bj�1j�1 = �Cj�1; �

Bj�1
j =

�Bj�2j + �Bj�2j�1 � �Cj�1; �
Bj�1
l = �Bj�2l for 1 � l � j� 2 and j+1 � l � i+1. Notice

that �Bj�1 = �C by construction.

From Lemma 2 we know that �(F (z); �Bk) > �(F (z); �Bk�1) for any z such
that F (z) < n�k

n
for 1 � k � j � 1. This means that if 3 � i � n � 3 then, by

construction, we will have �(F (z); �C) > �(F (z); �B) for any z such that F (z) �
n�j+1
n
. If i = 2 then j will necessarily be equal to 3 and, by construction, we will

have �(F (z); �C) > �(F (z); �B) for any z such that F (z) < n�1
n
. Further it will be

the case that �(n�1
n
; �C) > �(n�1

n
; �B).

Lemma 6 Consider a vector �C 2 ~Qi+1 such that �Ci+1 = x; �Cj =
��x
i
with 0 <

x < �
i+1

for 1 � j � i and 2 � i � n � 2. If �(F (z); �C) > �(F (z); ��i+1) then
�(F (z); ��i) > �(F (z); �C).
Proof. The inequality �(F (z); �C) > �(F (z); ��i+1) can be rewritten as

�� x
i

((F (z))n�1 + � � �+�
n� 1
i� 1

�
(F (z))n�i(1� F (z))i�1) +

x

�
n� i
i

�
(F (z))n�i�1(1� F (z))i �

�

i+ 1
((F (z))n�1 + � � �+ (F (z))n�i�1(1� F (z))i) > 0

The above expression can be rearranged as

(
�� x
i

� �

i+ 1
)((F (z))n�1 + � � �+ (13)�

n� 1
i� 1

�
(F (z))n�i(1� F (z))i�1) >

(
�

i+ 1
� x)(F (z))n�i�1(1� F (z))i

Call A the expression ((F (z))n�1 + � � � +
�
n�1
i�1
�
(F (z))n�i(1 � F (z))i�1) and call B

the expression (F (z))n�i�1(1� F (z))i. Inequality (13) is satis�ed for A
B
> i.

The inequality �(F (z); ��i) > �(F (z); �C) can be rewritten as

�

i
A� �� x

i
A� xB > 0 (14)

Inequality (14) is satis�ed for A
B
> i.
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From Lemma (4) we know that �(F (z); ��i+1) > �(F (z); � j � 2 Qj) for any z
such that F (z) � n�i

n
and for 2 � i � n � 2 and 1 � j � i. In particular, this

means that V (z) will be equal to �(F (z); ��n�1) for any z such that 0 � F (z) � 2
n
.

For those z such that 2
n
� F (z) � 3

n
we will have to check the family of functions

�(F (z); � j � 2 Qn�1) and �(F (z); ��n�2). In general, assuming 0 � i � n � 3, in
order to �nd V (z) for those z such that n�i�1

n
� F (z) � n�i

n
we will have to check

the families of functions �(F (z); � j � 2 Qj) for i+ 2 � j � n� 1 and the function
�(F (z); ��i+1).
Consider now a vector �C 2 Qi+1 such that �C1 = � � � = �Ci > �Ci+1, for 2 � i �

n � 2. From Lemma (5) we know that, for those z such that n�i
n
< F (z) � n�i+1

n
,

the function �(F (z); �C) is greater than any other function of the family �(F (z); � j
� 2 Qi+1) with exclusion of �(F (z); ��i+1).
From Lemma (6) though, we know that if �(F (z); �C) > �(F (z); ��i+1) then it is

the case that �(F (z); ��i) > �(F (z); �C).
Therefore, in order to �nd the envelope function V (z) for those z such that

2
n
� F (z) � 3

n
, it will be su¢ cient to check the two functions �(F (z); ��n�1) and

�(F (z); ��n�2). In general, assuming 0 � i � n � 3, in order to �nd V (z) for those
z such that n�i�1

n
� F (z) � n�i

n
we will have to check the functions �(F (z); ��j) for

i+ 1 � j � n� 1.
From this follows that �(F (z); ��i) � z for 1 � i � n� 1 are su¢ cient conditions

for V (z) � z on the interval [0; 1].
Finally, given Proposition (8), by continuity we can establish the following result.

Proposition 9 Provided that the last prize is equal to zero, g(z) is interior for
any z on the interval [0; 1] independently of the distribution of � among the �rst

n� 1 prizes if and only if n
n���(F (z); ��

i j
nX
j=1

��ij = �) � z on the interval [0; 1] for

1 � i � n� 1.

Appendix B

Proof of Proposition (3). Given a vector �A such that �A1 � � � � � �An ; �An = 0

and
nX
j=1

�Aj = �
A consider �B such that �Bi = c�

A
i for any 1 � i � n; c > 1. Notice

that
nX
j=1

�Bj = �B = c�A. Since �(F (z); �B) = c�(F (z); �A) we conclude that

�(F (z); �B) > �(F (z); �A) for any z 2 (0; 1].

Consider � such that n
n���(F (z); ��

i j
nX
j=1

��ij = �) > z for z 2 (a; b) with

0 � a < b � 1 for i such that 1 � i � n � 1. Given that F (z) has a continuous

and bounded density there exists c > 1 such that n
n���(F (z); ��

i j
nX
j=1

��ij =
�
c
) � z

for any z 2 [0; 1] and i such that 1 � i � n � 1. Therefore, by continuity there
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exists �� > 0 such that n
n���(F (z); ��

i j
nX
j=1

��ij = �) � z on the interval [0; 1] for

1 � i � n� 1 if and only if � � ��.
Given the result presented in Proposition (8) we can conclude that, provided

that the last prize is equal to zero, � � �� is a necessary and su¢ cient condition
for the solution to be interior for all players independently of the distribution of �
among the �rst n� 1 prizes.
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