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Abstract

When agents hold non-common priors over an unveri�able state of nature
which a¤ects the outcome of their future actions, they have an incentive to bet
on the outcome. We pose the following question: what are the limits on the
agents�ability to realize gains from speculative bets when their prior belief is
private information? We apply a �mechanism design�approach to this question,
in the context of a pair of models: a principal-agent model in which the two
parties bet on the agent�s future action, and a market model in which traders
bet on the future price. We characterize interim-e¢ cient bets in these environ-
ments, and their implementability as a function of fundamentals. In general,
implementability of interim-e¢ cient bets diminishes as the costs of manipulating
the bet�s outcome become more uneven across states or agents.
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1 Introduction

One of the primary tasks of the mechanism-design literature has been to draw the

limits that asymmetric information imposes on the ability to realize gains from trade.

A milestone in this literature was the result due to Myerson and Satterthwaite (1983),

which stated that in a natural class of bilateral-trade environments, there exists no

mechanism that weakly implements e¢ cient trade in Bayesian Nash equilibrium.

This result, like the rest of the literature that followed in its wake, focuses exclusively

on trade that is motivated by di¤erences in tastes. In principle, one could pose the

same set of questions when the motivation for trade is di¤erences in beliefs. What are

the limits on the ability to realize gains from speculative trade, when the agents�beliefs

are not common knowledge? What are the mechanisms that enable agents to realize

these gains? The mechanism-design literature has ignored these questions.

The primary reason for this neglect seems to be the ubiquity of the common-prior

assumption in economic modeling. As the no-trade theorems (e.g., Milgrom and Stokey

(1982)) have shown, common priors coupled with standard solution concepts rule out

speculative trade. In this paper, we focus on environments in which agents have dif-

ferent prior beliefs regarding a state of nature that may a¤ect the outcome of their

future actions. This creates a motive among the agents to bet on the future outcome.

The agents�priors are private information, although the distribution from which the

priors are drawn is common knowledge. This element of asymmetric information may

inhibit speculative bets. We apply a �mechanism-design approach� in order to exam-

ine whether this barrier to speculative trade can be overcome, how these barriers are

a¤ected by the fundamentals of the environment, and what kind of mechanisms can be

employed to realize the gains from speculative trade.

The observation that asymmetric information may act as a barrier to speculative

trade, even when the common-prior assumption is relaxed, has at least two precedents

in the literature. Morris (1994) provided necessary and su¢ cient conditions (in terms of

the structure of the agents�beliefs) for no-trade results to persist in environments with

heterogeneous priors. Chung and Ely (2005) study the design of auctions in an envi-

ronment with non-trivial high-order beliefs. In particular, they allow for heterogenous

priors, and show that incentive-compatibility constraints exclude mutually bene�cial

bets as part of the revenue-maximizing mechanism.

We demonstrate our mechanism-design approach to speculative trade with a pair

of models. We �rst present a simple principal-agent model, in which the two parties

speculate over which of a pair of actions the agent will take in a future decision problem.
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The agent�s payo¤ from actions depends on an unveri�able state of nature. Therefore,

although the two parties hold di¤erent prior beliefs over the state, they cannot bet on

the state but only on the agent�s action.

Our �rst model is meant to convey the basic intuition underlying our approach

to speculation over a manipulable outcome. We then apply this intuition to study

speculative trade in an imperfectly competitive market where traders bet on the future

market price. We focus on an economy with m identical sellers and n identical buyers,

in which traders have con�icting prior beliefs over the future level of external demand.

We assume that neither the level of external demand nor the traders� actions are

veri�able. Therefore, the traders can given an expression to their heterogenous beliefs

only by betting on the future market price.

In both models, the bets are on outcomes which are susceptible to manipulation

by some, or all of the agents. This is an important feature of our model. It implies

that in order for a bet to be sustainable, its stakes cannot exceed the cost of unilateral

manipulation of its outcome. But this means that potential gains from speculative

bets are bounded as well. An �optimal bet�in such an environment maximizes these

gains (formally, the sum of the agents�interim expected utilities, where each agent�s

expected utility is calculated according to his own prior), subject to the constraint that

none of the agents wish to manipulate its outcome.

Bounded bets could be generated by alternative assumptions, such as risk aversion

or liquidity constraints. We �nd our method appealing for a number of reasons. First,

there are many real-life situations in which agents can manipulate the outcomes they

are betting on. In addition to the situations captured by our pair of models, one may

also think of gambling on the outcomes of contests, where a major concern for gamblers

is the possibility that a contestant might try to lose on purpose in order to win a

bet. Second, from a methodological point of view, quasi-linear utility and unbounded

transfers are standard equipment in the mechanism design literature. Therefore, it

makes sense to retain it, as we apply the mechanism-design approach to speculative

trade.

Most importantly, the bounds on the stakes of bets in our model are endogenous.

Therefore, we are able to obtain novel insights as to how implementability of �optimal

bets� depends on payo¤-relevant details. Indeed, the main result in the principal-

agent model links the implementability of the optimal bet to the structure of the

agent�s state-dependent utility function. When the ratio between the loss from taking

the wrong action in one state and the loss from taking the wrong action in the other

state becomes closer to one, the set of distributions over prior beliefs for which the
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optimal bet is implementable expands. When the ratio is exactly one, the optimal bet

is implementable for any distribution over priors.

Likewise, implementability of the optimal bet in the market model depends on the

ratio between the cost of upward price manipulation for buyers and for sellers. Greater

buyer-seller asymmetry in this respect implies greater di¢ culties in implementing the

optimal bet. Shrinking the gap between the buyers�and sellers�valuation of the traded

good reduces this asymmetry and therefore expands the set of distributions over priors

for which the optimal bet is implementable. Increasing the number of sellers has the

same e¤ect (regardless of the number of buyers), as long as m 6= n. The case of

m = n has a special status in this model: the optimal bet is implementable for every

distribution of prior beliefs, using a natural, auction-like mechanism.

The technical basis for these results is a formal analogy to a more conventional

mechanism-design model due to Cramton, Gibbons and Klemperer (1987) (henceforth,

referred to as CGK). Their work extended the Myerson-Satterthwaite analysis to gen-

eral initial ownership structures, namely �partnerships�. The problem of implementing

optimal bets turns out to be analogous to the problem of dissolving a partnership ef-

�ciently. We demonstrate that the analogy is not merely formal, but also provides an

insight into the nature of the mechanism-design problem in the context of speculative

trade.

2 Betting on an agent�s future action

Consider an agent who faces a choice between two actions: a or b: His payo¤ from each

option depends on the state of nature. There are two possible states. The agent�s vNM

utility function is u in one state and v in the other. With slight abuse of notation, we

denote states by the utility functions that characterize them, given by the following

table:
a b

u A C

v D B

where A� C � 0 and B �D � 0, with at least one strict inequality.
The agent privately learns the state of nature before making his decision. A period

before the realization of the state, the agent and another player, referred to as a

�speculator�, hold di¤erent beliefs regarding the realization of the state. These are

purely di¤erences in prior opinions. Let �1 and �2 be the prior probability assigned to

state u by the speculator and the agent, respectively.
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Because the speculator and the agent have di¤erent priors, they would �nd it mutu-

ally bene�cial to bet on the future state of nature. However, since the state is privately

observed by the agent, such a bet is unenforceable. Instead, the players can bet on the

agent�s action, which is assumed to be veri�able. We refer to the period in which the

state is realized and the action is taken as period 2. The period in which the bet is

negotiated is referred to as period 1:

A bet is a function t : fa; bg ! R that speci�es for every action a monetary transfer
(possibly negative) from the agent to the speculator. If the players agree on a bet t, it

a¤ects the decision problem faced by the agent, such that the agent�s utility from an

action x is u(x)� t(x) in state u and v(x)� t(x) in state v, and the speculator�s utility
from the agent�s action x is t(x), regardless of the state. If no bet is signed, the agent

faces the �bare�decision problem and the speculator receives nothing.

This example captures in a stylized way a number of real-life situations. For in-

stance, the two players can be interpreted as a buyer and a seller. If no deal is signed

between them in period 1, the buyer can purchase the good from an alternative sup-

plier. In period 2, the buyer learns which of two varieties of the good is more suitable

for him. In period 1, he lacks this information. A bet signed between the buyer and

the seller is essentially an advance contract which forces the seller to provide in period

2 whichever variety the buyer demands, at a given price (providing either variety is

costless for the seller). Alternatively, the agent can be interpreted as a central bank of a

small economy, facing a decision whether or not to devalue the currency, depending on

the rate of in�ation. The speculator can be interpreted as a big trader in the exchange

market, who intends to earn speculative gains, due to con�icting beliefs regarding the

future in�ation rate.

2.1 Interim-e¢ cient bets

Consider a bet t, and suppose that both players expect that the agent�s actions in

states u and v will be xu and xv. Denote x = (xu; xv). Then, the speculator�s interim

expected payo¤ from (x; t) is �1 � t(xu) + (1 � �1) � t(xv), while the agent�s is �2 �
[u(xu) � t(xu)] + (1 � �2) � [v(xv) � t(xv)]. The term �interim� is �tting because it

refers to the players�expected payo¤s upon learning their prior, which is drawn from a

common distribution. Note that the sum of the players�interim expected payo¤s can

be conveniently written as

�2 � u(xu) + (1� �2) � v(xv) + (�1 � �2) � [t(xu)� t(xv)] (1)
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If the agent could commit to play xu 6= xv, there is no upper bound on the stakes
of the bet that the two players would want to sign: if �1 > �2, they would set t(xu)�
t(xv), and if �1 < �2, they would set t(xv)� t(xu). However, because the agent cannot

commit to his second-period action, the players must take into account his ability to

manipulate the bet�s outcome. For instance, suppose that the players agree on a bet

that satis�es t(b) � t(a) > max(u; v). Then, regardless of the state, the agent will

prefer to choose a, because the amount he saves in side payments outweighs the loss

from taking the wrong action in the �bare�decision problem. But if the agent takes

the same action in both states, the players cannot bene�t from betting on the agent�s

action. Thus, in order to be sustainable, the bet must provide the agent with incentives

to take di¤erent actions in di¤erent states.1

A pair (x; t) is interim Pareto e¢ cient if it maximizes (1) subject to the constraints:

u(xu)� t(xu) � u(xv)� t(xv)
v(xv)� t(xv) � v(xu)� t(xu)

which we call �second-period incentive compatibility�(SPIC) constraints. If (x; t) is a

solution to this constrained optimization problem, we refer to t as an interim-e¢ cient

bet. We refer to the expression (1), evaluated at an interim-e¢ cient pair (x; t); as

the �rst-best (FB) surplus.2 Interim e¢ ciency is the relevant �optimality� criterion

because it captures the players�motive to engage in speculative trade. For any (x; t)

which is interim-ine¢ cient, the players can �nd another pair (x0; t0) which both of them

will prefer to (x; t), given their priors.

It follows from (1) that if �1 > �2; the players would want to set t(xu)� t(xv) to be
equal to the upper bound implied by the SPIC constraints, u(xu)� u(xv): In contrast,
if �1 < �2, they would want to set t(xu)� t(xv) to be equal to its lower bound implied
by the SPIC constraints, v(xu) � v(xv): Turning to the determination of x, it is easy
to see that both bounds on t(xu)� t(xv) are relaxed to their utmost when xu = a and
xv = b: Thus, we have the following characterization.

1Can the upper bound on the bet�s stakes be overcome by some general message game that the
players could carry out in the second period? Even if the state is commonly known in period 2, the
assumption that there are only two players and the restriction to budget-balanced transfers imply
that it cannot. Without a third player or the ability to �burn money�, a second-period mechanism is
unable to punish players for submitting untruthful messages.

2There is a slight abuse of terminology here, as it is customary to consider the ��rst best�as the
solution to an optimization problem, unconstrained by any incentive compatibility concerns. Because
the expression (1) is unbounded if we ignore the SPIC, we consider the ��rst-best�to be the highest
attainable surplus, taking into account the SPIC but ignoring the �rst-period incentive constraints
that arise when the agent�s type is unknown.
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Remark 1 A pair (x; t) is interim e¢ cient if and only if the following two conditions

hold:

(i) x is ex-post e¢ cient - i.e., xu = a and xv = b:

(ii) t satis�es:

t(a)� t(b) =
(
A� C if �1 > �2

D �B if �1 < �2

Thus, the bounds on the stakes of the optimal bet are determined by the agent�s

cost of manipulating the bet�s outcome in each state. In state u, he will lose A� C =
u(a) � u(b) if he switches from a to b. In state v, he will lose B �D = v(b) � v(a) if
he switches from b to a. The upper bound on t(a) � t(b) is binding when the highest
prior on u is assigned by the speculator, and the lower bound on t(a)� t(b) is binding
when the highest prior on u is assigned by the agent.

An important feature of the interim-e¢ cient bet is that no matter what the state

is, the cost to the agent of manipulating the outcome of this bet is (A�C)+ (B�D):
To see this, suppose the state is u: Because the interim-e¢ cient bet is ex-post e¢ cient,

the agent is expected to choose action a and pay t(a) to the speculator. If, instead, the

agent chooses b; then he forgoes a net payo¤ of A � C and raises his payment to the

speculator by B�D: Hence, the total cost of deviating from b to a is the sum of these
two amounts: Now suppose the state is v; and the agent contemplates deviating from

b to a: The agent would incur two types of costs from this deviation: �rst, he would

forgo B �D; the value of b in state v; net of the value of a in this state, and second,
he would raise his payment to the speculator by A � C: Once again, the total cost of
manipulating the outcome is (A� C) + (B �D):

Corollary 1 The FB surplus is max(�1; �2) � (A�C) +max(1� �1; 1� �2) � (B �D).

The FB surplus has an interesting interpretation: it is as if we gave, in each state,

the entire �bare�surplus from the agent�s optimal action to the player who assigned

the highest prior to that state.

2.2 Implementation

We now turn to the question of whether the FB can be implemented, when the players�

priors are not common knowledge. Speci�cally, we assume that the speculator privately
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observes �1 and the agent privately observes �2, and it is common knowledge that both

priors are independently drawn from a continuous cdf F with support [0; 1].

To see why privately known priors could act as a barrier to mutually bene�cial

speculative bets, suppose that A = B = 100 and C = D = 0. Consider a bet in the

form of a lottery ticket which entitles its owner the right to receive 100 from the other

player if and only if the agent�s second-period action is a. Suppose that in order to

obtain the ticket, one must pay a �xed price of 50. Interim e¢ ciency requires us to

allocate the ticket to the player with the highest prior on u. Consider the following

naive allocation rule: each player reports his prior on u, and the highest-reporting

player gets the ticket. Given this rule, players have an incentive to pretend to have

extreme beliefs. When their prior exceeds 1
2
; they want to win the ticket and therefore

bias their report upward. When their prior falls below 1
2
, they do not want the ticket

and therefore bias their report downward. As a result, the interim e¢ cient allocation

fails to be implemented.

We consider the problem of implementing the FB via a direct mechanism. This

means that the agent and the speculator play a two-period game, denoted �. In the

�rst period, each player submits a report �̂i 2 [0; 1] (interpreted as that player�s stated
prior on u), or chooses not to participate. If at least one player chooses the latter, the

agent faces the �bare�decision problem. If both players choose to participate, every

pair of reports �̂ = (�̂1; �̂2) is assigned a transfer function t(x j �̂); which is disclosed to
the agent. In period 2, after the state of nature is realized, the agent chooses an action

x and pays t(x j �̂): In state u, he chooses x to maximize u(x) � t(x j �̂), whereas in
state v, he chooses x to maximize v(x)� t(x j �̂).
We identify the direct mechanism with t(x j �̂), and we say that it implements the

FB for a distribution of priors F if given this distribution, the game � has a PBNE

such that for every pro�le of priors �, expression (1) is equal to the FB surplus.

Proposition 1 There exists a distribution F for which the FB is implementable, if

and only if both A�C > 0 and B�D > 0. Moreover, as the ratio A�C
B�D becomes closer

to one, the set of distributions for which the FB is implementable expands. When

A� C = B �D, the FB is implementable for every distribution F .

Proof. Consider the class of mechanisms t(x j �̂), which satisfy condition (ii) in
Remark 1 for every pro�le of reports �̂. For every such mechanism, it is optimal for

the agent to play xu = a and xv = b, regardless of the history. Our task is to show that

there exists a mechanism in this class, such that if both players choose to participate
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in the mechanism and report their prior truthfully, we have a PBNE in the two-period

game.

Apply the following a¢ ne transformations to the players�vNM utilities: add �1(B�
D) to the speculator�s vNM numbers, and subtract (1 � �2)(B � C) from the agent�s

vNM numbers. Let mi(�̂) denote player i�s interim (transformed) expected payo¤ at

the end of period 1, given that both players agreed to participate and that their report

pro�le is �̂. Then:

m1(�̂) = �1 � t(a; �̂) + (1� �1) � t(b; �̂) + �1(B �D)
m2(�̂) = �2 � [A� t(a; �̂)] + (1� �2) � [B � t(b; �̂)]� (1� �2)(B � C)

Because t(x j �̂) satis�es condition (ii) in Remark 1:

m1(�̂) =

(
�1[(A� C) + (B �D)] + t(b; �̂) if �̂1 > �̂2

t(b; �̂) if �̂1 < �̂2

m2(�̂) =

(
�t(b; �̂) if �̂1 > �̂2

�2[(A� C) + (B �D)]� t(b; �̂) if �̂1 < �̂2

We may therefore rewrite mi(�̂) as follows:

mi(�̂) = �i � qi(�̂) + � i(�̂)

where

qi(�̂) =

(
(A� C) + (B �D) if �̂i > �̂j

0 if �̂i < �̂j
(2)

and

� 1(�̂) = �� 2(�̂) = t(b; �̂) (3)

Let �mi denote player i�s expected (transformed) payo¤, when at least one of the

players refuses to participate in the mechanism. Then:

�m1 = �1(B �D)
�m2 = �2(A� C)

It follows that our mechanism-design problem can be restated as follows. A part-

nership of size (A � C) + (B � D) is jointly owned by two players, where player 1�s
initial share is B�D

(A�C)+(B�D) and player 2�s initial share is
A�C

(A�C)+(B�D) . The value that
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each player i attaches to the partnership is �i, and it is common knowledge that �1
and �2 are independently drawn from a continuous cdf F with support [0; 1]. The

problem is to design a direct mechanism that implements e¢ cient dissolution of the

partnership. A direct mechanism is identi�ed with pair (qi(�̂); � i(�̂))i=1;2 , where qi(�̂)

satis�es (2) (ownership rights are fully transferred to the highest-reporting player), and

� i(�̂) satis�es (3) (a balanced budget condition). The question is whether there exists

a PBNE, in which both players choose to participate and report truthfully, such that

e¢ cient dissolution is implemented.

If A � C = 0 or B � D = 0, the Myerson-Satterthwaite impossibility theorem

applies. That is, there exists no distribution F , for which e¢ cient dissolution is PBNE-

implementable. If A�C > 0 or B�D > 0, we can apply Proposition 3 in CGK (1987).
This result establishes that any two-person partnership which is not initially owned by a

single agent can be dissolved e¢ ciently for some distribution F . Proposition 1 in CGK

(1987) shows that as initial shares become more equalized, the family of distributions

F for which e¢ cient dissolution is implementable expands. When initial shares are

equal, e¢ cient dissolution is implementable for any F .

The main lesson from this result is that implementability of optimal bets diminishes

as the agent�s incentives to manipulate the bet�s outcome become more uneven across

states. To develop an intuition for this result, it is helpful to make the following analogy.

Think of a lottery in which a ball is drawn from an urn containing balls marked with

the letter u and balls marked with the letter v: Neither the agent nor the speculator

know the composition of the balls in the urn, but each has his own beliefs regarding

the likelihood of drawing each type of ball. The party that draws the ball from the

urn receives from the other party a monetary award if and only if the ball drawn is

labeled u (otherwise, no payments are made). However, the agent can pay an amount

of (A � C) + (B �D) and guarantee that the lottery�s outcome will be in his favor -
that is, if he draws the ball it will be labeled u and if the speculator draws the ball

it will be labeled v. Therefore, the speculator has no incentive to participate in this

lottery if the monetary award exceeds (A� C) + (B �D):
Assume the monetary award is (A � C) + (B � D); and consider the problem of

deciding who will draw the ball, the agent or the speculator. Assume that if the two

parties cannot agree, then there is a third party that lets the agent draw a ball, and

pays him A�C if he draws a u ball. Thus, even if the agent can guarantee a favorable
outcome in this lottery by paying the above amount (A � C) + (B � D), he has no
incentive to do so. The speculator, however, does not have this outside option.

The value that each party assigns to the right to draw a ball depends on his sub-
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jective prior probability of winning. It is interim-e¢ cient to assign this right to the

party with the highest prior. In order for the parties to agree to this assignment, the

party who surrenders it to the other party needs to be compensated by the latter. In

negotiating the terms of this compensation, each of the parties has some bargaining

power. The agent can credibly threaten that he would veto any compensation scheme

that leaves him worse o¤ than his outside option (receiving A�C if he draws a u ball).
The speculator, on the other hand, can argue that without him, the monetary award

would be A� C and not (A� C) + (B �D): Hence, the value of his consent is equal
to the value of a lottery that pays a monetary award of B �D:
It follows that the e¢ cient assignment of the right to draw a ball is equivalent to

the following problem. The agent and the speculator can jointly produce (A � C) +
(B � D) units of a perfectly divisible asset. On his own, the agent can produce only
A�C units of this asset, while the speculator can produce none. The jointly produced
asset is worth �1[(A� C) + (B �D)] to the speculator and �2[(A� C) + (B �D)] to
the agent, where the values of �1 and �2 are privately and independently drawn from

the same distribution. The question is, can we design a mechanism that ensures the

assignment of the jointly produced asset to the party that values it the most, subject

to the constraint that both parties have an incentive to produce this asset?

This is precisely the question asked by CGK in the context of an e¢ cient dissolution

of a partnership, where one partner initially holds A�C
(A�C)+(B�D) of the partnership and

another partner holds the remaining share. Thus, if A � C � B � D, such that the
agent�s initial share in the jointly owned �ball drawing rights�is close to one - in other

words, if the agent enters the negotiation over the bet as a �seller�of the right to draw

a ball, while the speculator enters as a �buyer� - the same forces that underlie the

Myerson-Satterthwaite theorem make it hard to allocate the ball-drawing right to the

player with the highest prior on u. As the gap between A � C and B � D shrinks,

each player enters the negotiation both as a seller and a buyer, and thus he has what

is often referred to as �countervailing incentives�when reporting his prior.

When A � C = B � D, the FB can be implemented using a natural indirect

mechanism. Suppose that in period 1, the two players play a �rst-price, sealed-bid

auction in order to determine which of them gets a lottery ticket that entitles its owner

to a prize of 2(A�C) if and only if the agent chooses a in period 2. Both the revenues
from the auction and the cost of paying the prize are equally distributed between the

two players. Let � denote the two-period game induced by the auction.
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Proposition 2 � implements the FB for any distribution F . (We omit the proof

because an analogous result with the same kind of proof is proved in Section 3.)

Let us summarize the lessons from our results. When two players bet on outcomes

which are susceptible to manipulation by one of them, an interim e¢ cient bet is es-

sentially an assignment of the right to receive an amount of money in one state. The

amount is determined by the cost of manipulation (speci�cally, it is equal to the sum

of the costs of manipulation in the two states). E¢ cient allocation of the right depends

only on the players�beliefs. However, implementability of the e¢ cient allocation di-

minishes as the costs of manipulation become more uneven across states. When they

are in�nitely uneven, we get a Myerson-Satterthwaite impossibility result. When they

are completely even, we get a CGK possibility result.

Note that the model studied in this section assumes that if the two players do

not sign any bet, the agent receives the entire surplus of the bare decision problem.

Alternatively, we could assume that although the agent takes the action in period 2,

all the surplus is reaped by the speculator (which would �t some variations on the

buyer-seller story) None of our results would change. Similarly, our results would not

change if we assumed that the second-period surplus is equally divided between the

two players in each state.

3 Betting on future market prices

The previous section demonstrated the basic insight that e¢ cient speculation over a

manipulable outcome is analogous to an e¢ cient dissolution of a partnership. In this

section, we apply this insight to a market setting, in which traders with non-common

prior beliefs regarding the size of future demand bet on future prices. As in Section 2,

we study a two-period model. In period 2, the following market game is played. There

are m sellers and n buyers. Each seller s = 1; :::;m is able to supply a single unit of

an indivisible good at a cost of c � 0: Sellers derive no utility from consuming the

good. Each buyer b = m+1; :::;m+ n is willing to pay 1 for a single unit, and derives

no utility from consuming additional units. There is also an external demand for �

units at a price of 1. External demand behaves stochastically. There are two states of

nature, l (no external demand) and h (high external demand), such that v = 0 in state

l and v = h (abusing notation) in state h. We assume that h > m.

The market agents trade according to the following simultaneous-move procedure,

adapted from Dubey (1982). Every agent (buyers and sellers alike) submits a buy
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order, consisting of a bid price and a number of demanded units. In addition, every

seller submits a sell order, namely an ask price for the unit he is able to produce. Both

bid and ask prices must lie in [0; 1]. The market price is the highest market-clearing

price, given the aggregate supply and demand curves induced by the agents�buy and

sell orders. If there exists no market-clearing price, the outcome is �no trade�. If a

seller turns out to purchase a unit from himself, he does not incur the production cost

c. If the numbers of demanded and supplied units are unequal at the market-clearing

price, we apply an e¢ cient rationing rule.

Agents have quasi-linear utilities. A buyer�s payo¤ is min(1; qd)� pqd if he ends up
buying qd units at a price p. A seller�s payo¤ is (p� c) � qs � pqd if he ends up selling
qs units and buying qd units at a price p (qd gets the values 0; 1; 2; :::, and qs gets the

values 0; 1). Denote agent j�s payo¤ function by uj.

The realization of � is common knowledge in period 2. In period 1, however, agents

have con�icting prior beliefs regarding the likelihood of each state. Let �j denote the

prior probability that agent j assigns to state h. For a seller s, �s can be interpreted as

his degree of �optimism�regarding future external demand. Conversely, for a buyer b,

�b is his degree of �pessimism�in this regard. Denote � = (�j)j=1;:::;m+n: It is common

knowledge that every agent j independently draws his prior belief �j from a continuous

cdf F with support [0; 1].

A bet is a multilateral contract, which maps a set of veri�able contingencies to

budget-balanced monetary transfers among the n buyers andm sellers. We assume that

neither the state of nature nor the agents�actions are veri�able. The only contingencies

that can be contracted upon are whether trade occurs in the second period and at

what price. For every action pro�le a in the market game, let x(a) 2 [0; 1] [ D
represent the veri�able market outcome induced by a, where x(a) = D if a induces

no trade, and x(a) is the market price if a induces trade. Thus, a bet is a pro�le

of functions t = (t1(�); :::; tm+n(�)); where tj : [0; 1] [ D ! R; tj(x) is the monetary
transfer received by agent j when the second-period outcome is x; and

Pm+n
i=1 ti(x) = 0

for all x 2 [0; 1] [D:
If agents sign a bet in period 1, their second-period payo¤ function is modi�ed, such

that agent j�s payo¤ from an action pro�le a is uj(a) + tj(x(a)). Consider an agent j

who signed the bet and expects the second period action pro�le in state ! 2 h; l to
be a!. Denote a = (ah; al) and x = (x(ah); x(al)): Given the agent�s �rst-period prior

belief, his expected utility is:

Uj(a; t) � �j[uj(ah) + tj(x(ah))] + (1� �j)[uj(al) + tj(x(al))]
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We conclude the description of the model with a few comments:

� Second-period trade takes place once and for all. If an agent purchased a number
of units which he cannot consume, he cannot resell them.

� Short-selling is ruled out: a seller cannot o¤er more than one unit and a buyer
cannot o¤er any unit. Consequently, there is an asymmetry in the agents�ability

to in�uence market outcomes. If the market price is p < 1, then every agent can

unilaterally induce a higher price p0 2 (p; 1], by demanding a su¢ ciently large
quantity at p0. In contrast, downward price manipulation is typically impossible,

because a comparable �dumping�strategy is unavailable. The implication is that

the only relevant second-period constraint facing agents as they sign bets will be

to prevent unilateral upward manipulation of market prices.

� Observe that the assumptions imposed on the stochastic behavior of external
demand simplify the SPIC constraints. Because the size of external demand in

state h is higher thanm, trade must take place in state h at a price of 1, regardless

of the agents�actions. When agents contemplate signing a bet in period 1, they

all agree that the veri�able market outcome in state h will be xh = 1.

3.1 Interim-e¢ cient bets

We now explore the limits that the agents�ability to manipulate market prices imposes

on potential gains from speculative bets. Consider the following constrained optimiza-

tion problem. For every pro�le of priors �, choose a bet t(�) and a state-contingent

action pro�le a(�) so as to maximize

X
j

Uj[a(�); t(�)] (4)

subject to constraint that for every state ! 2 fh; lg, the outcome a!(�) is a Nash
equilibrium in the modi�ed market game in which agent j�s payo¤ function is uj(a!)+

tj(x(a
!)): We call this SPIC, drawing on the terminology of Section 2. In order to

be sustainable, a bet must satisfy the SPIC constraints - that is, it must provide the

agents with incentives not to manipulate the market price.

A solution (a�(�); t�(�)) to the constrained optimization problem is interim Pareto

e¢ cient. In other words, for any pair (a; t) which is not a solution, the agents can �nd
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a bet t0 and a state-contingent action pro�le a0, such that every agent will prefer (a0; t0)

to (a; t), given his prior. We refer to the optimal value of (4) as the �FB surplus�.

Occasionally, we refer to set of solutions (a�(�); t�(�)) as �the FB�and to t�(�) as an

�optimal bet�.

The following pair of examples illustrates how the SPIC constraints a¤ect the sus-

tainability of bets. In both examples, m = n = 1. The buyer is denoted b and the

seller is denoted s. Our �rst example describes a bet which cannot be sustained, once

SPIC constraints are taken into account. Suppose that b and s sign a bet requiring

s (b) to pay A to his opponent if trade occurs (does not occur) in period 2. Thus,

ts(D) = �tb(D) = A, and ts(x) = �tb(x) = �A for every x 2 [0; 1]. As we observed at
the end of Section 2, occurrence of trade in state h is assured, regardless of the players�

actions. Suppose that there were an action pro�le al such that x(al) = D. Then, the

agents��rst-period interim expected utilities would be:

Us(a; t) � �s � [1� c� A] + (1� �s) � A
Ub(a; t) � �b � [1� 1 + A]� (1� �b) � A

However, the buyer can impose trade in state l by demanding one unit at p = 1. Both

before and after this deviation, his bare-game payo¤ is zero, but the deviation tilts the

outcome of the bet in his favor. Therefore, as long as A > 0, there is no action pro�le

that satisfy the SPIC constraints.

Now suppose that b and s sign an alternative bet requiring s to pay p� c if there is
trade at a price of p > c, and zero if there is no trade, or if there is trade at a price of

p � c. This contract resembles a call option which is settled in cash, giving the buyer
the right to purchase a unit of the good for a price of c in period 2. In state h trade

occurs at p = 1, regardless of the agents�actions. Suppose that in state l, s (b) o¤ers

(demands) one unit at p = c. Let us show that this action pro�le constitutes a Nash

equilibrium in the market game modi�ed by the bet. The seller can manipulate the

outcome of the bet only by raising the ask price to p > c and demand at least one unit

at the same price. However, his bare-game payo¤ will remain zero and in addition he

will have to pay p� c to the buyer. The buyer can manipulate the outcome by raising
his bid price to p. The increase in the side payment that the buyer receives as a result

of this deviation is exactly o¤set by the decrease in his bare-game payo¤. Therefore,

none of the agents wish to manipulate the bet�s outcome. It follows that the bet and

the constructed action pro�le satisfy the SPIC constraints.

Let us turn to the characterization of interim e¢ ciency. First, we show that it does
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not compromise ex-post e¢ ciency.

Proposition 3 Let (a�(�); t�(�)) be interim e¢ cient. Then, both ah and al are ex-post
e¢ cient in the bare game (as well as in the modi�ed game).

This result is not self-evident. In order to have a non-trivial bet, there market

outcome must vary across states. But when n > m, the competitive market price

in the bare game is 1 in both states. Therefore, the price in state l is forced to be

non-competitive. Therefore, the optimal bet must assume the role otherwise played by

prices, namely providing the incentives needed for an e¢ cient allocation. Our result

shows that indeed this can be done.

Ex-post e¢ ciency has the following implication. Let �ls and �
l
b denote the probabili-

ties that a seller and a buyer trade in state l. Then, �ls = min(1;
n
m
) and �lb = min(1;

m
n
).

Denote i� = mini �i Given that F is continuous, we shall be able to ignore the case in

which several agents share the same prior.

Proposition 4 The FB satis�es the following properties.

(FB1) If m > n, then pl = c. If m � n, pl can be any price in [c; 1).

(FB2) The FB surplus is equal to

(1�c) �minfm;ng+(m�1) �
X
b

(�j�min
i
�i)+[m�1+�ls(1�c)] �

X
s

(�s�min
i
�i) (5)

(FB3) An optimal bet t�(�) must satisfy:

ts 6=i�(1)� ts 6=i�(pl) = �ls(p
l � c) +m� 1

tb6=i�(1)� tb6=i�(pl) = �lb(1� pl) +m� 1

(FB4) The FB surplus can be achieved with the following class of bets:
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ts 6=i�(x) =

(
Ts for p � p� or D

Ts + �
l
s(p

l � c) + pm� p for p� < p � 1

tb6=i�(x) =

(
Tb for p � p� or D

Tb + �
l
b(1� pl) + pm� 1 for p� < p � 1

ti�(x) = �
X
j 6=i�

tj(x) for all x

where Ti can be any agent-speci�c constant.

The FB constrains pl to be competitive when there are more sellers than buyers.

Otherwise, pl can take any value in [c; 1). Recall that ph = 1 by our assumptions on

external demand. Observe that pl and ph are independent of the pro�le of priors.

Turning to the FB surplus, the �rst term represents the bare-game surplus resulting

from ex-post e¢ cient trade. The second and third terms represent speculative gains.

Under an optimal bet, the agent i� with the lowest prior on h essentially bets on a

low price (pl) against each of his opponents j. The stakes of such a �bilateral bet�

are constrained by the opponent�s cost of manipulating the market price from pl to ph.

The fact that only upward price manipulation is relevant in this regard originates from

the assumption of no short-selling (see our discussion in Section 2).

For a buyer, manipulating the price upward in state l involves buying m � 1 un-
consumed units at a price of p = 1. Note that in calculating this cost, we leave out the

change in the price of the unit the consumer does consume. The intuition is that the

changed price for the consumed unit is part of the transfer associated with the out-

come x = ph, rather than a cost involved in unilaterally inducing this outcome. The

seller�s cost of upward price manipulation involves two components. First, he needs

to purchase m � 1 units which he does not consume, at a price of p = 1. Second, he
purchases one unit from himself, thereby losing the gain from selling it to a buyer.

The speculative gain from each of the �bilateral bets� between i� and j is equal

to the stakes of the bet, multiplied by the di¤erence between the agents�priors. The

structure of the bet is simple and independent of the pro�le of priors. As long as trade

occurs at a price p � pl or does not occur at all, the transfer is �xed. If the market

price exceeds pl, agent i� pays an additional amount which is linear in the price.
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3.2 Implementation

We now turn to the problem of �nding a mechanism that implements the FB, when

the agents�priors are their private information, and it is common knowledge that each

agent independently draws his prior from F . A mechanism is a game played in the �rst

period, whose outcome is a bet that modi�es the payo¤ function of the second-period

market game. We say that the mechanism weakly implements the FB if the two-period

game induced by the mechanism has a Perfect Bayesian Nash Equilibrium (PBNE) in

which the sum of the agents�interim expected utilities - at the end of the �rst period

and before the second-period game begins - equals the FB

We require the mechanism to satisfy a participation constraint. Every agent can

veto the mechanism, in which case the agents play a Nash equilibrium of the bare

market game in period 2. Therefore, the interim expected utility that any agent earns

in the PBNE of the two-stage game induced by the mechanism cannot be lower than

his interim expected utility in the Nash equilibrium of the bare game. Note that when

m = n, there are multiple equilibria in the bare game. In this case, the participation

constraint is non-standard, in the sense that the agents�reservation utility is determined

in equilibrium, rather than being exogenous.

Let us begin with the case of m 6= n, in which the bare-game equilibrium is unique.
We consider implementation via a direct mechanism. This means that the agents play

a two-period game, denoted ��. In the �rst period, every agent submits a report

�̂j 2 [0; 1] or chooses to veto the mechanism. If all agents choose to participate,

their pro�le of reports �̂ = (�̂1; :::; �̂m+n) is assigned a pro�le of transfer functions

t(x; �̂) = (t1(x j �̂); :::; tm+n(x j �̂)): In period 2, the state of Nature is realized and the
agents play the market game whose payo¤s are modi�ed by t(x j �̂): We identify the
direct mechanism with t(x j �̂), and we say that it implements the FB for a distribution
of prior beliefs F if given this distribution, the game �� has a PBNE such that for every

pro�le of priors �, the sum of the agents�interim expected utility at the end of period

1 is equal to the FB surplus.

Proposition 5 Let m 6= n: If m = 1, The FB is not implementable for any F . If

m > 1, there exists a distribution F for which the FB is implementable.

As in the previous section, the technical basis for this result is a formal analogy

to the partnership dissolution model due to CGK. Implementability of e¢ cient disso-

lution of the partnership diminishes as the initial ownership structure becomes more
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asymmetric. The analogous asymmetry in the model of Section 2 concerns the agent�s

cost of manipulating the bet�s outcome in each state. In the current market model,

price manipulation is relevant only in state l. However, buyers and sellers face di¤erent

manipulation costs, as we saw in the discussion of expression (5).

The buyer-seller asymmetry plays an important role in Proposition 5. Whenm = 1,

buyers face zero manipulation costs because they do not need to buy unconsumed units

in order to drive prices up. In contrast, the seller has positive manipulation costs,

because in order to drive the price up he needs to buy the good from himself and

forego the income from selling to it a buyer. Therefore, we have an extreme buyer-

seller asymmetry that results in a Myerson-Satterthwaite impossibility result. When

m > 1, the asymmetry becomes less extreme, and we can apply the possibility result

due to CGK.

Let us turn to comparative statics.

Proposition 6 Fix F , and suppose that the FB is implementable for some m;n; c,

m 6= n. Then:
(i) The FB is also implementable for c0 2 (c; 1)
(iii) The FB is also implementable for m0; n0 satisfying m0 > m and n0 6= m0.

As c tends to 1, manipulation costs become similar for buyers and sellers. Similarly,

when the number of sellers becomes larger, the di¤erence between buyers�and sellers�

valuation of a single unit becomes negligible relative to the number of units that need

to be purchased in order to drive the price up. Therefore, these changes in the market

model�s fundamentals facilitate implementability of the optimal bet.

The case of m = n turns out to be special, because of the multiplicity of equilibria

in the bare game. Consider the following indirect mechanism. In period 1, every

agent chooses whether to exercise a veto option. If at least one agent exercises his

veto option, the agents play the bare market game in the second period. If none of

the agents exercise the veto option, the agents play a �rst-price, sealed-bid auction to

determine which of them will receive a lottery ticket. The ticket entitles its owner to a

prize of Z = 2n � (n� 1+c
2
) if and only if trade occurs at a price p < 1. After the ticket

is allocated to the winner, the agents play the market game in the second period. Both

the revenues from the winner�s bid and the cost of paying the prize are distributed

equally among all agents.

The betting auction modi�es second-period payo¤s as follows (the bids are sunk

at that stage, and therefore we can ignore them). If the market price is below 1;
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then in addition to the bare-game payo¤, the auction winner receives a net payment

of (2n � 1) � (n � 1+c
2
). The other agents�net payo¤ is their bare-game payo¤ minus

n� 1+c
2
. If the market price is equal to 1, or if there is no trade, then the agents�net

payo¤ is equal to their bare-game payo¤. Let � denote the two-stage game induced by

the betting auction.

Proposition 7 Let m = n. Then, � implements the FB for all distributions F: More-

over, in the PBNE that implements the FB, ph = 1 and pl = 1+c
2
in period 2, regardless

of the history.

We have already commented on the two types of asymmetry between buyers and

sellers. On one hand, manipulation-cost asymmetry means that driving the price from

pl up to ph = 1 is more costly for sellers than for buyers. When m = n; the cost

di¤erential is 1 � c: On the other hand, if ph > pl in the bare-game equilibrium that

is played whenever at least one agent exercises his veto option, this introduces an

asymmetry in the opposite direction. However, if we select a bare-game equilibrium

such that ph � pl = 1�c
2
, the two e¤ects o¤set each other. Because any price in [c; 1]

can be sustained in equilibrium in the bare game, we can set pl = 1+c
2
, such that this

condition is satis�ed.

Note that the PBNE that implements the FB has the property that market prices

are history-independent. In other words, the bets induced by the mechanism are

�purely speculative�, in the sense that they do not a¤ect the outcome in the second-

period market.

The upper bound on bid and ask prices
In the market model developed above, bid and ask prices are bounded in [0; 1]. What

is the economic justi�cation for this assumption? Recall that the agents�valuations

are common knowledge in the model. Therefore, it is also common knowledge that if

an agent submits a bid price above 1, he must be exploiting his market power to tilt

the outcome of a previously signed bet. An external regulatory agency may respond

to such a transparent attempt to manipulate the price by shutting down the market,

or by punishing the manipulator. This type of regulatory intervention is sometimes

observed in sporting events and other contests.

Suppose that we relax this assumption, and allow agents to submit any non-negative

bid and ask price. Whenm = n = 1, this perturbation does not alter our analysis. The

reason is that every agent can unilaterally impose no trade whenever the market price
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is strictly between 0 and 1. The SPIC constraints that follow are su¢ ciently strong to

render the bounds on bid and ask prices irrelevant.

When there are more than two agents, relaxing the bound on prices implies that

optimal bets do not exist, because the agents can sustain bets with arbitrarily high

stakes. The trick is to set pl between c and 1, and let ph be arbitrarily high (note that

external demand therefore becomes irrelevant). In this way, the cost of manipulating

the price from pl to ph is also arbitrarily large, which allows agents to raise the stakes

of their bet without limit.

Actually constructing a second-period Nash equilibrium that will sustain an ar-

bitrarily high ph is not trivial. The reason is that such a price exceeds the buyers�

willingness to pay. If buyers could refrain from purchasing the good at ph > 1 without

a¤ecting the market price, they would opt to do so. The equilibrium construction takes

this into account: only one buyer b� purchases the good in h. The bet is designed such

that when p = ph, some other market agent i gives b� a transfer that compensates him

for purchasing the good at ph > 1. The reason i is willing to incur this cost is that

he bets with a third agent that the second-period price will be ph, and the speculative

gains in this bilateral bet are su¢ cient to cover the compensatory transfer to b�.

To conclude, while the bounds on market prices are irrelevant in the m = n = 1

case, they are crucial for our results when there are more than two agents.

The domain of bets
Our model assumes that bets are a function of whether trade occurs, and at which

price. What would happen if bets could be a function of the agents� entire action

pro�le? Once again, there is a di¤erence between the case of m = n = 1 and the case

of more than two agents. In the former case, it can be shown that our analysis continues

to hold. The intuition is as follows. Let (ahs ; a
h
b ) and (a

l
s; a

l
b) denote the equilibrium

action pro�les in states h and l. Among the deviations that need to be prevented in

order to sustain a bet, are: (i) the seller�s deviation in h and the buyer�s deviation in l

into the pro�le (als; a
h
b ), and (ii) the seller�s deviation in l and the buyer�s deviation in

h into the pro�le (ahs ; a
l
b). These constraints alone place an upper bound on the sum

of the agents�interim expected utilities, which cannot exceed the FB surplus. Thus,

the agents cannot do better than signing a bet that conditions only on whether trade

occurs, and at what price.

In contrast, when there are more than two agents, allowing the agents to condition

bets on action pro�les gives rise to bets with arbitrarily large stakes. The reason is

that agents i and j can bet on the action that agent k will take. Because i and j

take k�s action as given in Nash equilibrium, they cannot manipulate it and therefore
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nothing prevents them from raising the stakes of their bet without limit. We only need

to ensure that ahk 6= alk, in order for the bet to be possible. But this can be achieved
because the speculative gains earned by i and j are su¢ cient to provide k with an

incentive to take di¤erent actions in the two states.

To conclude, when m = n = 1, the assumption that bets are a function of a coarse

partition of the set of possible outcomes is not necessary for our results. When there

are more than two agents, this assumption is crucial.

An alternative model of demand uncertainty
Our market model assumes that demand �uctuation takes the form of �noise traders�,

whose presence in the market is uncertain. Alternatively, we can assume that there

are no noise traders, but the buyers�value of the good is (abusing notation) h in state

h and l in state l, with h > l.

We have analyzed this alternative model in the special case of m = n = 1. The FB

is ex-post e¢ cient. When h > l > c, the second-period equilibrium has the property

that ph > pl if �s > �b and ph < pl if �s < �b - that is, the assignment of prices to

states is sensitive to the priors. The FB is implementable (via a variant on the above

�betting auction�mechanism for any distribution F . The reason is that as in the

�noise traders�version of the model, when m = n = 1 the �bare�market game has a

continuum of equilibria.

4 Discussion

High-order uncertainty. In our models, the distribution from which the agents in-

dependently draw their priors is common knowledge. Thus, we assume away high-order

uncertainty regarding the agents�prior beliefs. One may argue that if agents cannot

agree on their �rst-order beliefs, it is hard to imagine that they can agree on high-order

beliefs. In addition, Yildiz (2004) argues that the coexistence of Nash equilibrium and

non-common priors over states of nature is methodologically problematic, because in

reality it is usually more di¢ cult to predict strategic behavior than the behavior of

�nature�. Our motivation for this assumption is primarily technical: we wish to par-

allel the benchmark mechanism-design models in the literature. In some contexts we

�nd the assumption reasonable. For instance, in the context of the �central bank�

story of Section 2, high-order certainty approximates the fact that opinions regarding

the future rate of in�ation are often surveyed and made public.

Non-common priors vs. state-dependent utility. Our model is formally in-
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distinguishable from a model in which every agent j assigns probability 1
2
to each

state, and his utility function is multiplied by a state-dependent constant (�j in one

state and 1 � �j in the other state). The motivation for signing side contracts under
this re-interpretation is risk sharing rather than speculative trade. Note that this re-

interpretation requires us to assume that the utility from money is state-dependent,

whereas the trade-o¤ between money and consumption is state-independent. It is

hard to imagine other motivations than non-common priors for such preferences. Of

course, as we have seen, the formal analogy between our mechanism-design approach

to speculative trade and models of preference-based trade proved analytically useful.

Related literature. A distinctive feature of our model is the focus on bets made

between parties who can manipulate the bet�s outcome. Bets are essentially side trans-

fers that modify the payo¤s of the second-period game. A similar insight was used

by Allaz and Vila (1993) to derive a rationale for forward markets, in an environment

without uncertainty. They show that producers may wish to use forward contracts in

order to improve their situation in a future, imperfectly competitive spot market. In

their model, producers �rst trade in forward contracts, and then play a Cournot game

in which their payo¤ functions are modi�ed by the positions they took in the forward

market. The authors assume that the forward market is perfectly competitive and

includes traders who are not active in the spot market. Dong and Liu (2005) study

an imperfectly competitive forward market in which all traders are also actors in a

competitive spot market.

Wilson (1968) investigates the problem faced by a group of agents who need to make

a collective decision that generates a surplus whose value depends on an uncertain state

of nature. The question is, how should this surplus be divided among the agents in

order to ensure Pareto optimality of the collective decision? Wilson allows for non-

common priors. Therefore, e¢ cient sharing rules may involve side bets on the value of

future surplus. The outcome of these bets can be manipulated by the agents, because

the surplus depends on the collective decision that is made. Wilson (1968) provides

a necessary and su¢ cient condition for Pareto optimality of a sharing rule, and gives

examples of such rules in speci�c environments.

Finally, the present paper follows up Eliaz and Spiegler (2004,2005). These papers

analyze the problem of designing a pro�t-maximizing menu of contracts for a monop-

olist who faces consumers who di¤er in their ability to forecast their future tastes.

In Eliaz and Spiegler (2004), the agent�s preferences are dynamically inconsistent, and

agent types di¤er in the prior probability they assign to the possibility that their tastes

will not change (interpreted as their degree of naivete). Eliaz and Spiegler (2005) an-
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alyze a similar problem with dynamically consistent preferences. Both papers study

environments in which non-common priors turn out to be necessary for price discrimi-

nation.
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Appendix: Proofs

Proof of Proposition 3

Lemma 1 The outcome in state h ex-post e¢ cient.

Proof. In state h, the market price is ph = 1, regardless of the agents� actions.

Therefore, in equilibrium they will act as price takers: each seller will o¤er one unit

and demand zero units, while each buyer is indi¤erent between demanding one unit

and demanding zero units. Therefore, the outcome is ex-post e¢ cient.

Lemma 2 Trade occurs in state l:

Proof. Assume the contrary. Each agent can manipulate the outcome and impose
trade at p = 1, by demanding a single unit at a price of 1: Moreover, each seller can

impose this at no cost by simultaneously submitting a bid of 1 and and an ask of 0; in

which case he would buy the good from himself (it must be the case that all the other

sellers quote a strictly positive ask price - otherwise, trade would occur). It follows

that the SPIC constraints in the no-trade state must include the following inequalities:

ts(D) � 1� 1 + ts(1)
tb(D) � 1� 1 + tb(1)

By budget balancedness, �iti(D) = �iti(1) = 0. Hence, ti(D) = ti(1) for all i, such

that total surplus is equal to the bare-game surplus, given the agents�behavior. But

since the bare-game outcome is ex-post ine¢ cient in state l, it obviously does not

maximize total surplus.

Lemma 3 If pl > c, then every seller o¤ers his unit. If pl < 1; every buyer demands
at least one unit.

Proof. If pl > c, an inactive seller s can be active by o¤ering his unit at p = pl. This
will not change the market price, and will increase his payo¤ by p � c with positive
probability. If pl < 1, an inactive buyer b can be active by demanding one unit at

p = pl. This will not change the market price, and his payo¤ will increase by 1 � p
with positive probability.

Lemma 4 pl � c.
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Proof. Assume the contrary. Then, there must be exactly one seller s� who actually
sells his unit - otherwise, any individual seller could deviate by asking a price above c,

and he would avoid the unpro�table exchange without a¤ecting the market price. In

addition, there is no buyer who bids above p - otherwise, the market price would exceed

p, because aggregate supply consists of exactly one unit. It follows that every agent

can unilaterally impose any price p0 > p, by demanding one unit at p0. In particular,

every seller can impose p0 by demanding one unit at p0 while submitting an ask price

below p.

Set p0 = c and let us write down the SPIC constraints induced by the above analysis:

p� c+ ts�(p) � ts�(c)

ts(p) � ts(c) for every s 6= s�

�b � (1� p) + tb(p) � 1� c+ tb(c) for every b

where �b is the probability that buyer b will consume one unit. Note that �b�b � 1

(possibly with inequality, because some buyers may demand more units than others).

Summing these inequalities yields p� c+ 1� p � n � (1� c), a contradiction.

If pl = 1, then the market outcome is the same in both states. Therefore, total

surplus is equal to the bare-game surplus. As we show in Proposition 4, the agents can

attain a strictly higher surplus than the maximal bare-game surplus. Therefore, pl = 1

cannot be induced by an optimal bet.

If pl 2 (c; 1), then by Lemma 3, each seller o¤ers his unit, and each buyer demands
at least one unit. By e¢ cient rationing, the outcome is ex-post e¢ cient in state l.

If pl = c, then by Lemma 3, each buyer demands at least one unit. The outcome

can be ine¢ cient only if some sellers refrain from o¤ering their unit. Then, we can

modify the action pro�le such that each seller o¤ers his unit. This would not add new

SPIC constraints, and it can only relax existing SPIC constraints, thereby increasing

total surplus. �

Proof of Proposition 4
By Proposition 3, the FB is ex-post e¢ cient. We already know that ph = 1 and

pl 2 [c; 1]. In state h, the agents cannot a¤ect the market outcome, and they behave
as price takers. Our focus will thus be on the action pro�le in state l. Ignore for the

moment SPIC constraints that concern manipulation of the market price downward.

The following SPIC constraints - concerning the agents�ability to manipulate the price
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upward - must hold:

�ls(p
l � c) + ts(pl) � p�mp+ ts(p) (6)

�lb(1� pl) + tb(pl) � 1�mp+ tb(p) (7)

for all p > pl.

If minfm;ng = 1; then there is at least one agent who can unilaterally impose

no-trade in state l, hence there are additional SPIC constraints that prevent such a

deviation. We can minimize these constraints by having all agents quote the same

price. Hence, if m = 1 and n > 1; or if n = 1 and m > 1; only a single agent - either

the single buyer or the single seller - can impose no trade. To prevent him from doing

so, we can impose an in�nite �ne on him whenever there is no trade. That is, if m = 1

and n > 1 we set ts(D) = �1; and if n = 1 and m > 1; we set tb(D) = �1:
If m = n = 1; then each agent can unilaterally impose no trade in every state. This

means that we need to satisfy additional SPIC constraints:

pl � c+ ts(pl) � ts(D) (8)

1� pl + tb(pl) � tb(D) (9)

Note that when m = n = 1 the SPIC constraints (6) and (7) with respect to p = 1

become

pl � c+ ts(pl) � ts(1) (10)

1� pl + tb(pl) � tb(1) (11)

Hence, by setting ts(D) = ts(1) and tb(D) = tb(1); we make the constraints (8) and

(9) equivalent to (10) and (11). It follows that the additional constraints required

to prevent no-trade when minfm;ng = 1, can be satis�ed without imposing further

restrictions on tj(p), beyond those implied by (6) and (7).

For each p > pl de�ne,

zs(p) � �lsp+ ts(p)� �lspl � ts(pl)
zb(p) � ��lbp+ tb(p) + �lbpl � tb(pl)
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The SPIC constraints can then be written more compactly as follows:

zs(p) � (m+ �ls � 1)p� �lsc (12)

zb(p) � (m� �lb)p+ �lb � 1 (13)

By budget-balancedness,

�zs(p) � [(m� 1)(m+ �ls � 1) + n(m� �lb)]p� �ls(m� 1)c� n(1� �lb)
�zb(p) � [m(m+ �ls � 1) + (n� 1)(m� �lb)]p� �lsmc� (n� 1)(1� �lb)

Hence, the SPIC constraints imply that for all p > pl;

zs(p) � �[(m� 1)(m+ �ls � 1) + n(m� �lb)]p+ �ls(m� 1)c+ n(1� �lb)
zb(p) � �[m(m+ �ls � 1) + (n� 1)(m� �lb)]p+ �lsmc+ (n� 1)(1� �lb)

Total expected surplus is given byX
s

f�s[�ls(ph � c) + ts(ph)] + (1� �s)[�ls(pl � c) + ts(pl)]g

+
X
b

f�b[�lb(1� ph) + tb(ph)] + (1� �b)[�lb(1� pl) + tb(pl)]g

which (because ph = 1) may be written more compactly as,X
j

�jzj(1) + minfm;ng � (1� c)

By budget balancedness, we may write the above expression for the total surplus as

follows: X
j 6=i�
(�j � �i�)zj(1) + minfm;ng � (1� c)

By (12) and (13), the surplus is bounded from above byX
s 6=i�
(�s � �i�)[(m� 1) + �ls(1� c)] +

X
b6=i�
(�b � �i�)(m� 1) + minfm;ng � (1� c)

= (m� 1)
X
j 6=i�
(�j � �i�) + �ls(1� c)

X
s 6=i�
(�s � �i�) + minfm;ng � (1� c)

Note that the upper bound is independent of the value of pl. In order to attain the

upper bound, the constraints (12) and (13) must be binding for p = 1. This yields the
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result FB3. It remains to show that there exist a price pl 2 [c; 1] and transfer functions
that attain the upper bound on surplus. For each seller s 6= i�; let

ts(p) =

(
ts(p

l) for p � pl

ts(p
l) + �s(p

l � c) + p(m� 1) for pl < p � 1

and for each buyer b 6= i�; let

tb(p) =

(
tb(p

l) for p � pl

tb(p
l) + �b(1� pl) +mp� 1 for pl < p � 1

To maintain budget balancedness, set

ti�(p) = �
X
j 6=i�

tj(p)

for every price p. By construction, the SPIC constraints are satis�ed and the upper

bound on surplus is met, as long as pl < 1.

It remains to examine the SPIC constraints that concern downward price manip-

ulation. When n � m, the above-constructed transfer function necessarily satis�es

these constraints, for every pl 2 [c; 1). When m > n, we can set pl = c, such that these

constraints are satis�ed. �

Proof of Proposition 5
De�ne i�(�̂) to be the lowest indexed agent among those agents with the lowest

reported prior on h: Consider a direct mechanism t(x; �̂) de�ned as the FB bet (given

by (FB4) in Proposition 4) as if �̂ = �. Note that the value of Ti is left undetermined,

and so we shall allow it be a function of �̂. We ask if for some distributions F; there

exists a direct mechanism such that in the two-stage game it induces, there is a PBNE

which satis�es (IR) and (IC), and induces t(x; �̂). Thus, the bets signed under di¤erent

pro�les of reported priors di¤er only in their T .

Let us �rst construct second-period continuation strategies, treating the cases n >

m and n < m separately.

Case 1: n > m
If at least one agent refuses to participate in the �rst-period mechanism, each seller

o¤ers one unit and each buyer demands one unit at a price of 1. This state-contingent

action pro�le constitutes a NE in the bare game, hence in the second-period subgame

in question. Now suppose that all agents agreed to participate in the �rst-period
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mechanism. In state h, each seller o¤ers his unit at any price, and buyers behave

arbitrarily. In state l, each seller o¤ers one unit and each buyer demands one unit at

a price pl 2 [c; 1). As demonstrated in Proposition 4, this action pro�le constitutes a
NE in the game modi�ed by t(x; �̂). Moreover, it induces the FB surplus. Although

by construction �ls = 1 and �
l
b =

m
n
in this case, for the sake of transparency we will

use the more agnostic notation �ls and �
l
b (observing that �b�

l
b = �s�

l
s = m).

Case 2: n < m
If at least one agent refuses to participate in the �rst-period mechanism, then in state

h, each seller o¤ers one unit at an arbitrary price and each buyer behaves arbitrarily.

In state l, each seller o¤ers one unit and each buyer demands one unit at a price of c.

This state-contingent action pro�le constitutes a NE in the bare game, hence in the

second-period subgame in question. Now suppose that all agents agreed to participate

in the �rst-period mechanism. In state h, each seller o¤ers his unit at any price, and

buyers behave arbitrarily. In state l, each seller o¤ers one unit and each buyer demands

one unit at a price pl = c. This action pro�le constitutes a NE in the game modi�ed by

t(x; �̂). Moreover, it induces the FB surplus. Although by construction �ls =
n
m
and

�lb = 1 in this case, for the sake of transparency we will use the more agnostic notation

�ls and �
l
b (observing that �b�

l
b = �s�

l
s = n).

Our objective is thus to examine whether there exist distributions F for which

agreeing to participate in the mechanism and reporting one�s true prior, together with

the second-period continuation strategies described above, constitute a PBNE. Apply

the following a¢ ne transformation to the agents�utilities:

vs � us + (1� �s) (m� c)� (1� c) (14)

vb � ub + (1� �b) (m� 1) (15)

Denote:

qs(�̂) � �ls(p
l � c) + (m� 1)� [ts(1; �̂)� ts(pl; �̂)]

qb(�̂) � �lb(1� pl) + (m� 1)� [tb(1; �̂)� tb(pl; �̂)]
� s(�̂) = ths (�̂)

� b(�̂) = thb (�̂)

In addition, let Vj(x�; t�; �̂) be the expectation of vj, given(x�; t�; �̂). Then, we can

write:
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vi(�̂) = (1� �i) � qi(�̂) + � i(�̂)

When n > m, if at least one agent refuses to participate in the �rst-period mech-

anism, then the expectation of us is 1 � c, and the expectation of ub is 0. Let �Vj(�j)
denote the expectation of vj in this case. Then:

�Vs(�s) = (1� �s) (m� c)
�Vb(�b) = (1� �b) (m� 1)

Denote

�qs(�s) � m� c
�qb(�b) � m� 1

Then,
P

j �qj(�j) = m(m� c) + n(m� 1).
When n < m, if at least one agent refuses to participate in the �rst-period mecha-

nism, then the expectation of us is �s(1�c), and the expectation of ub is (1��b)(1�c).
Let �Vj(�j) denote the expectation of vj in this case. Then:

�Vs(�s) = (1� �s) (m� 1)
�Vb(�b) = (1� �b) (m� c)

Denote

�qs(�s) � m� 1
�qb(�b) � m� c

Then,
P

j �qj(�j) = m(m� 1) + n(m� c).
Letting E�j(�) be the expectation operator with respect to ��j, and de�ne

V (�̂j; �j) � E�j[(1� �i) � qj(�̂j; ��j) + � j(�̂j; ��j)]

Our mechanism design problem is thus reduced to the problem of �nding a pair of

pro�les, (q(�̂))i and (�(�̂))i, that satisfy the following properties:
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(EFF) for every agent j, and for every pro�le of reports �̂,

qj(�̂) =

(
m(m� c) + n(m� 1) if j = i�(�̂)

0 if j 6= i�(�̂)

if n > m, and

qj(�̂) =

(
m(m� 1) + n(m� c) if j = i�(�̂)

0 if j 6= i�(�̂)

if n < m.

(IC) for every agent j and for every �j,

V (�j; �j) � V (�̂j; �j)

for all possible reports �̂j

(IR) for every agent j and for every �j,

V (�j; �j) � �Vj(�j)

But this is precisely the problem of e¢ ciently dissolving a partnership of m + n

agents. When n > m, each of m partners owns a fraction

rs(m;n; c) �
m� c

m(m� c) + n(m� 1) (16)

and each of n partners owns a fraction

rb(m;n; c) �
m� 1

m(m� c) + n(m� 1) (17)

When n < m, each of m partners owns a fraction

rs(m;n; c) �
m� 1

m(m� 1) + n(m� c) (18)

and each of n partners owns a fraction

rb(m;n; c) �
m� c

m(m� 1) + n(m� c) (19)

In both cases, each partner j draws his value 1 � �j of the entire partnership
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independently from a common continuous distribution: Note that if m = 1; then this

partnership is owned entirely by the single seller. By Proposition 2 of CGK, a one-

owner partnership cannot be dissolved e¢ ciently for any distribution F: But if m > 1;

then by Proposition 3 of CGK, any partnership not owned by a single agent can be

dissolved e¢ ciently for some distribution F . �

Proof of Proposition 6
By Proposition 5, the implementation problem is equivalent to the e¢ cient dis-

solution of a partnership with initial shares given by (16) and (17) when n > m,

and by (18) and (19) when n < m. A simple glance at the formulas shows that

rs(m;n; c)=rb(m;n; c) becomes closer to one when: (i) the number of sellers increases

(as long as m 6= n); (ii) c increases and becomes closer to one. By Proposition 1 of

CGK, if the original partnership can be e¢ ciently dissolved for some F; then so are

the modi�ed partnerships. �

Proof of Proposition 7
Regardless of the state and of the history, assume that in period 2, each seller o¤ers

one unit and each buyer demands one unit. In state h, their ask/bid prices can be

chosen arbitrarily, and in state l, they all quote the same price pl = 1+c
2
.

This action pro�le constitutes a Nash equilibrium in the second-period subgame.

Consider �rst the case of m = n > 1. In state h, no agent can unilaterally alter the

outcome. In state l, an agent can alter the outcome of the bet by demanding n units

at a price of 1. In order to prevent him from doing so, the following conditions must

hold for every seller s and every buyer b. If the seller won the betting auction, he must

satisfy 1+c
2
� c+Z � 1� n. If he lost, he must satisfy 1+c

2
� c� Z

2n
� 1� n. Similarly,

if the buyer won the betting auction, he must satisfy 1 � 1+c
2
+ Z � 1 � n, and if he

lost, he must satisfy 1 � 1+c
2
� Z

2n
� 1 � n. Note that the �rst-period bids are sunk,

hence they are left out of these constraints. Given the value of Z, it is easy to check

that all four constraints hold.

When m = n = 1, we need to consider the agents�ability to impose no trade in

state l. If the seller won the betting auction, the additional SPIC constraints are:

1� 1 + c
2

� Z � 0

1 + c

2
� c+ Z � 0
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and if the buyer won the auction, the constraints are:

1� 1 + c
2

+ Z � 0

1 + c

2
� c� Z � 0

Because Z = 1�c
2
when n = 1, these additional constraints are satis�ed.

Suppose all agents expect the above NE to be played in the second period. Suppose

also that for all realizations of priors, the agent with the highest prior on l wins (because

F is atomless, we can ignore ties). It is easy to check that according to the mechanism,

ti(p
h)� ti(pl) is consistent with the speci�cation of optimal bets given by Proposition

4. Therefore, the sum of the agents�expected payo¤s at the end of the �rst-period

auction is equal to the FB surplus.

It remains to show that if agents expect to play the second-period NE described

above, then the �rst-period auction has a BNE with the following properties: (1) no

agent chooses to exercise his veto option; (2) the winning agent assigns the highest

prior to state l.

Let �j(�j) denote the probability that agent j wins the auction, given that his prior

on state h is �j. The interim expected payo¤ of a seller s, given a pro�le of bidding

strategies (�j)j; is given by

�j(�j)Uj=i�(x
�; t�) + [1� �j(�j)] � E��j [Uj 6=i�(x�; t�)j j 6= i�] (20)

where:

Us 6=i�(x
�; t�) = (1� �s)(

1 + c

2
� c� Z

2n
) + �s(1� c) +

�i�

2n

Us=i�(x
�; t�) = (1� �i�)[

1 + c

2
� c+ (1� 1

2n
)Z] + �i�(1� c)� (1�

1

2n
)�i�

Ub6=i�(x
�; t�) = (1� �b)(1�

1 + c

2
� Z

2n
) + �s(1� 1) +

�i�

2n

Ub=i�(x
�; t�) = (1� �i�)[1�

1 + c

2
+ (1� 1

2n
)Z] + �i�(1� 1)� (1�

1

2n
)�i�

If at least one agent vetoes the auction, then the seller�s interim expected payo¤ is

Us(x
�; t0) = �s(1� c) + (1� �s)(

1 + c

2
� c) = (1� �s)(

c� 1
2
) + (1� c)
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while the buyer�s interim expected payo¤ is

Ub(x
�; t0) = (1� �b)(1�

1 + c

2
)

Apply the following a¢ ne transformations to the agents�vNM utility functions:

vs = us + (1� �s)(n� c)� (1� c)
vb = ub + (1� �b)(n� 1)

Applying this transformation to the expected payo¤of agent j from his bidding strategy

�j(�j) yields

�j(�j) � [(1� �j)Z � �j] + [1� �j(�j)]
1

2n
E��j [�i�(�i�)j j 6= i�] (21)

where Z = 2n(n � 1+c
2
): Applying the same transformation to each agent�s �default�

payo¤ yields

Vj(x
�; t0) = (1� �j)

Z

2n
(22)

We wish to show that there exists a pro�le of monotonic bidding strategies (�j(�j))j
that constitute a BNE in which the value of (21) is at least Vj(x�; t0): By (21) and

(22), the auction may be interpreted as follows. An asset of size Z is owned in equal

shares by a collective of 2n agents: Each agent j is risk-neutral and the value he assigns

to the asset (or any fraction of it) is 1 � �j; where �j is independently drawn from a

cdf F: In order to decide which of the agent gets full ownership rights of the asset, the

agents play a �rst-price auction. The revenues from the auction are distributed equally

among all 2n agents. By Proposition 6 in CGK, this auction has an BNE satisfying

the participation constraint. �
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