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Abstract. When can a collection of matchings be stable, if pref-
erences are unknown? This question lies behind the refutability of
matching theory. A preference profile rationalizes a collection of
matchings if the matchings are stable under the profile. Matching
theory is refutable if there are observations of matchings that can-
not be rationalized. I show that the theory is refutable, and provide
a characterization of the matchings that can be rationalized.

1. Introduction

Two-sided matching models are described by two sets of agents
(think of workers and firms or men and women) and a preference rela-
tion for each agent in each set over potential partners from the other
set. The theory studies matchings of agents that have the core prop-
erty; the core matchings are called “stable.” Matching models have
been studied very extensively since Gale and Shapley’s (1962) seminal
paper (Al Roth’s online bibliography lists almost 500 papers).

The literature has focused on, given agents’ preferences, determining
which matchings may occur. It assumes that the stable matchings are
the ones that may occur, and proceeds to study the structure of stable
matchings. Instead, I study the problem of which matchings can be
stable when agents’ preferences are not know. Concretely, given a
collection of matchings, µ1, µ2 . . . µk, I ask if there are preferences for
the agents involved so that all these matchings are stable. When this
is the case, I say that the set of matchings is rationalizable.

The problem is important because it is often difficulty to infer agents’
preferences. It is important to understand the implications of the
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theory—its predictions—when preferences are unknown. If one as-
sumes that matchings are observable but preferences are not, one needs
to know if a set of matchings can be incompatible with the theory—
that is, if the theory has testable implications. And, if the theory is
testable, one needs a characterization of the matchings that can be
stable in order to empirically determine the validity of the theory in
particular instances.

The problem of rationalizing matchings is part of a larger research
program of studying refutability in economics. Early results in this
program include Samuelson’s (1947) and Afriat’s (1967) theories of re-
vealed preference. Refutability has been studied in General Equilibrium
Theory and Non-cooperative Game Theory, but not for matching prob-
lems. In matching, one can think of the agents as choosing a partner
from the opposite side of the market, but revealed preference theory
has no bite because agent 1 not choosing agent 2 does not necessarily
mean that 1 is revealed preferred to 2; it can also mean that 2 prefers
not to be with 1.

In this paper, I show: (1) that the theory is testable, so there are non-
rationalizable sets of matchings; and (2) I provide a series of results,
leading up to a characterization, of the rationalizable sets of matchings.

The classical result on stable matchings imply a coincidence of inter-
est within the same side of the market, and opposition of interest across
the market. I show that, essentially, stability is characterized by a ver-
sion of the coincidence/opposition property for any pair of matchings.
In the classical results, certain distinguished matchings have a coinci-
dence/opposition of interest for all agents. And for any two matchings,
the coincidence/opposition holds for certain agents. I show that there
is a coincidence/opposition property that holds for all agents in any
pair of matchings, and that this property is essentially the content of
the theory.

A simple but important insight is that the testable implications of
the theory stem from agents who are matched to the same partner in
more than one matching. Thus, in any empirical test of the theory,
being able to treat some individuals in different matchings as the same
individual is crucial. For example, consider data on a cross-section of
matches between buyers and sellers of a certain good. Each match cor-
responds to the outcome in one market, for example domestic markets
for a good that is not traded internationally. One can then assume that
firms with similar observable characteristics (size, technology) have the
same preferences over potential buyers and are considered to be the
same by the buyers. These are exactly the assumptions in (positive)
empirical work on matching. One recent example is Choo and Siow
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(2006), working on marriage matchings. Choo and Siow assume that
there are “types” of men and women, and that individuals of the same
type have the same preferences over partners and are considered identi-
cal by their potential partners. Choo and Siow build on the theoretical
results of Dagsvik (2000), who also assumes that the population can
be partitioned in types according to their observable characteristics.
An alternative, but related, approach is to model preference as para-
metrically dependent on the agents’ observable characteristics. This
is the approach in econometric studies of matching markets (a recent
example is Hitsch, Hortaçsu, and Ariely (2006)).

In sum, in testing matching theory, it is crucial to control agents’
preferences using observables. My methods are viable using one pro-
cedure for controlling preference, and this procedure is already being
used by empirical researchers.

I should make a distinction between the positive empirical applica-
tions I have in mind and normative applications of matching theory.
The latter have been very successful Roth and Peranson (1999); Roth,
Sönmez, and Ünver (2004); Abdulkadiroglu, Pathak, Roth, and Sönmez
(2005), and in no way rely on rationalizing matchings. The positive ap-
plications, to labor economics and marriage markets, do rely on finding
testable implications of matching theory.

I also obtain some secondary results. The first is that, if a collection
of matchings is rationalizable, then it is typically rationalizable by a
large number of different preference profiles. So matching theory is not
exactly identified, in the econometric sense. This confirms an argument
Choo and Siow (2006) make informally by counting observations and
unknowns. In fact, it is not clear from Choo and Siow’s argument that
the theory is testable; my results imply that it is testable, despite the
existence of fewer observations than unknowns.

Finally, I consider the problem of when purely randomly generated
matchings would be rationalizable. I show the, admittedly unsurpris-
ing, result that the probability of rationalizing a fixed number of ran-
dom matchings remains bounded away from zero as the number of
agents grows. So for large populations, one needs large samples of
matchings for the theory to have power.

2. Statement of the problem.

2.1. Preliminary definitions. In this paper, I use the language of
graph theory, but no results from graph theory. A graph is a pair
G = (V, E), where V is a set and E is a binary relation on V , i.e. a
subset of V × V . The set V is called the vertex set of G, and E is the
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set of edges of G. Say that G is loop-free if (v, v) /∈ E, for all v ∈ V .
Say that G is undirected if (v, v′) ∈ E implies that (v′, v) ∈ E, that is
if E is a symmetric binary relation.

A path is a sequence v1, v2, . . . , vK in V with K > 1 and (vk, vk+1) ∈
E for all k, 1 ≤ k ≤ K − 1. Say that v and v′ are connected if there is
a path v1, v2, . . . , vK with v = v1 and v′ = vK or a path v1, v2, . . . , vK

with v = vK and v′ = v1. Say that v and v′ are disconnected if they
are not connected. A connected component of G is a set C ⊆ V such
that, for all v, v′ ∈ C, v and v′ are connected. The set of all connected
components of G form a partition of V .

2.2. The Model. Let M and W be disjoint, finite, sets. I call men
the elements of M and women the elements of W . A matching is a
function µ : M ∪ W → M ∪ W ∪ {∅} such that for all w ∈ W and
m ∈ M ,

(1) µ (w) ∈ M ∪ {∅},
(2) µ (m) ∈ W ∪ {∅},
(3) and m = µ (w) if and only if w = µ (m).

Denote the set of all matchings by M. The notation µ(a) = ∅ has the
interpretation that a ∈ M ∪ W is unmatched in µ, while w = µ(m)
denotes that m and w are matched in µ.

A preference relation is a linear, transitive and antisymmetric binary
relation. A preference relation for a man m ∈ M , denoted P (m) is
understood to be over the set W ∪ {∅}. Similarly, P (w), for w ∈ W ,
denotes a preference relation over M ∪ {∅}. A preference profile is a
list P of preference relations for men and women, i.e.

P =
(
(P (m))m∈M , (P (w))w∈W

)
.

Note that no man or woman is indifferent over two different partners;
preferences with this property are normally called strict.

Denote by R(m) the weak version of P (m). So w′ R(m) w if w′ = w
or w′ P (m) w. The definition of R(w) is analogous.

Fix a preference profile P . Say that a matching µ is individually
rational if, for any m and w, µ(m) R(m) ∅ and µ(w) R(w) ∅. Say that
a pair (w,m) blocks µ if w 6= µ(m), w P (m) µ(m) and m P (w) µ(w).
A matching is stable if it is individually rational and there is no pair
that blocks it. Denote by S(P ) the set of all stable matchings.

This model was first studied in Gale and Shapley (1962); see Roth
and Sotomayor (1990) for an exposition of the theory. It should be
clear that one can adapt the definition of the core as a solution for this
model, and that the set of stable matchings coincides with the core.
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2.3. Statement of the problem. Let H = {µ1, . . . µK} ⊆ M be a
set of matchings. The problem I study is: When is there a preference
profile P such that H ⊆ S(P ). I shall say that H can be rationalized
when this is the case, and that P rationalizes H.

Note that I assume the same sets of agents are involved in each of
the matchings in H. See Section 8 on the consequences of relaxing this
assumption.

Assume that M and W have the same number of elements, and that
µ(m) 6= ∅ and µ(w) 6= ∅, for all m and w, and for all µ ∈ H. These
assumptions are without loss of generality for the purpose of studying
rationalizability. The reason is that, if H is rationalizable, then the
single agents must be the same for all the matchings in H (see Roth
and Sotomayor (1990)) and we can therefore ignore them and assume
that the number of men and women is the same.

I start with two very simple motivating results. The first (Proposi-
tion 1) is that not all matchings can be rationalized, so there is potential
for refuting matching theory. The second (Proposition 2) says that the
source of refutability is quite specific: that some agents match with the
same partner in different matchings.

Proposition 1. If |M | ≥ 3, then M is not rationalizable.

Proof. Suppose, by way of contradiction, that there is P with M ⊆
S(P ). Let µM =

∨
S(P ) and µW =

∧
S(P ). Since |M | = |W | ≥ 3,

there is a pair (m, w) such that m 6= µM(w) and w 6= µW (m).
Let µ′ ∈ M be such that µ′(m) = µW (m) and µ′(w) = µM(w).

There is a matching µ′′ such that µ′′(m) = w. Since M ⊆ S(P ), and
µ′′(m) 6= µW (m), w = µ′′(m) P (m) µW (m). Similarly, m P (w) µM(w).
Then (m, w) blocks µ′. So µ /∈ S(P ) and M * S(P ). �

Proposition 2. If, for all m, µi(m) 6= µj(m) for all µi, µj ∈ H, then
H is rationalizable.

Proof. For each m, define P (m) by w′ P (m) w if and only if there is
µi, µj ∈ H with µi(m) = w′, µj(m) = w and i < j. And ∅ P (m) w if
w 6= µ(m), for all µ ∈ H.

For each w, define P (w) by m′P (w)m if and only if there is µi, µj ∈ H
with µi(w) = m′, µj(w) = m and i > j. And ∅ P (w) m if m 6= µ(w),
for all µ ∈ H.

Let P be the resulting preference profile. It is clear that all matchings
in H are individually rational under P . In addition, for any (m, w) and
µ ∈ H with m 6= µ(w), w P (m) µ(m) implies that µ(w) P (w) m. So
there can be no blocking pair of µ. So H ⊆ S(P ). �
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The following example shows that the constructed preferences in the
proof of Proposition 2 do not imply H = S(P ).

Example 3. Let M = {m1, m2, m3, m4} and W = {w1, w2, w3, w4}.
Consider the matchings µ1 and µ2 defined as:

m1 m2 m3 m4

µ1 w1 w2 w3 w4

µ2 w2 w1 w4 w3 .

Then the matching that matches m1 and m2 as in µ1, and m3 and
m4 as in µ2, is also stable for the preferences constructed in the proof
of Proposition 2.

Propositions 1 and 2 place very rough bounds on what can be ra-
tionalized, in the rest of the paper I build up a characterization of the
sets of matching that can be rationalized.

3. An Illustration.

Here I present a simple example that illustrates the ideas behind the
results in the paper. Consider the following example, with three men,
three women and three matchings.

m1 m2 m3 m4

µ1 w1 w2 w3 w4

µ2 w1 w3 w4 w2

µ3 w2 w3 w1 w4

Let us construct preferences that would rationalize H = {µ1, µ2, µ3}.
We can consider all women that a man is never matched to as unac-
ceptable. For example, set ∅ P (m1) w3. To do this can only help in
rationalizing H. The real issue is how to specify preferences among the
mens’ partners in µ1, µ2 and µ3.

Start with how men could rank their partners in µ1 and µ2. For
m1, the rank is trivial because µ1(m1) = µ2(m1). Consider m2. Let
us say (arbitrarily) that w3 = µ2(m2) P (m2) µ1(m2) = w2. Next,
consider m3. Could we have that µ1(m3) P (m3) µ2(m3)? No, because
it would imply that µ1 and µ2 cannot both be stable: (m3, w3) blocks
µ2 if m3 P (w3) m2, and (m2, w3) blocks µ1 if m2 P (w3) m3. Hence,
to set µ1(m3) P (m3) µ2(m3) presents a problem, regardless of what
we assume about P (w3). So, if we are to rationalize H, we have that
µ2(m2) P (m2) µ1(m2) implies µ2(m3) P (m3) µ1(m3).
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Suppose then that µ2(m2) P (m2) µ1(m2) and µ2(m3) P (m3) µ1(m3).
Now µ2(m3) = µ1(m4), so m3 and m4 are in the same situation as m2

and m3. Hence µ2(m3)P (m3)µ1(m3) implies that µ2(m4)P (m4)µ1(m4),
by the same argument as in the previous paragraph. So the men m2, m3

and m4 must agree on how they compare their partners in µ1 and µ2.
What if we had started with µ1(m2)P (m2)µ2(m2)? Then m4 and m2

are in the same situation as m2 and m3 under the previous assumption:
µ2(m4) = µ1(m2). By the same argument, µ1(m2)P (m2)µ2(m2) implies
µ1(m2)P (m2)µ2(m2). Repeating the argument, we obtain that m2, m3

and m4 must agree on how they compare their partners in µ1 and µ2.
The general result is: For any two matchings, µi and µj, all the men

(m, m′) who stand in the relation “m’s partner in µi is m′’s partner
in µj” must agree on how they rank their partners in µi and µj. The
following diagram presents a graph among the men for each pair of
matchings in H. In the first graph, there is a directed edge m2 → m4

because µ1(m2) = µ2(m4); there is an edge m3 → m2 because µ1(m3) =
µ2(m2), and so on.

µ1 − µ2 : m1

��
m2 22m3

ss
m4

ss

µ1 − µ3 : m1 22m2
ss

m3
ss

m4

��

µ2 − µ3 : m1
,,m2FF m3

++
m4ff

The graph corresponding to µ1−µ2 has two connected components,
{m1} and C = {m2, m3, m4}. By our previous argument, all the men in
C must agree on how they rank their partners in µ1 and µ2. Similarly,
reading the corresponding connected components from the diagram, all
the men in C ′ = {m1, m2, m3} must agree on µ1 and µ3. And all the
men in C ′′ = {m1, m3, m4} must agree on µ2 and µ3.

It is clear how these arguments restrict the possible preference pro-
files that might rationalize H, but it does not by itself give a criterion
for deciding that H is not rationalizable. The criterion arises from the
presence of men who have the same partner in different matchings.

Say that µ2(m) P (m) µ1(m) for all m ∈ C. Since m2 ∈ C, and
µ2(m2) = µ3(m2), we must have that µ3(m2) P (m2) µ1(m2). But m2 ∈
C ′ so µ3(m) P (m) µ1(m) for all m ∈ C ′. Similarly, m4 ∈ C with
µ1(m4) = µ3(m4). So µ2(m4)P (m)µ1(m2) now implies that µ2(m)P (m)
µ3(m) for all m ∈ C ′′. The problem is that m1 ∈ C ′ ∩C ′′, so we would
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need that µ2(m1) P (m1) µ3(m1) P (m1) µ1(m1). This is a violation of
the antisymmetry of P (m1), as µ2(m1) = µ1(m1). Hence H is not
rationalizable.

The idea—which is formalized below—is that the presence of men
with the same partner in different matchings gives a relation between
objects such as C, C ′ and C ′′. These relations must satisfy a consistency
condition for H to be rationalizable.

4. Preferences over Partners in Pairs of Matchings

The discussion in Section 3 suggests that two objects are important
in studying rationalizability. The first is the set of connected compo-
nents obtained from pairs of matchings in H, which I denote by C
below. Second are the relations between connected components in C
derived from having agents with the same partners in two different
matchings. In this section I describe the connected components, and
show how these capture the essence of stability.

Fix a pair of matchings µi and µj in H. Consider the (directed)
graph for which M is the vertex-set, and E(µi, µj) is the set of edges,
defined by: (m, m′) ∈ E(µi, µj) if and only if µi(m) = µj(m

′). Denote
by C(µi, µj) the set of all connected components of (M, E(µi, µj)).

There is an analogous graph with the women as vertexes: Let (W, F (µi, µj))
be the graph for which the vertex-set is the set of women, and where
(w,w′) ∈ F (µi, µj) if µj(w) = µi(w). A first result relates the women’s
graph and the men’s graph.

Lemma 4. The following statements are equivalent:

(1) C is a connected component of (M, E(µi, µj))
(2) µi(C) is a connected component of (W, F (µi, µj))

In addition, if C is a connected component of (M, E(µi, µj)), then
µj(C) = µi(C).

Proof. I first prove that (m, m′) ∈ E(µi, µj) if and only if (µi(m), µi(m
′)) ∈

F (µi, µj), which establishes the equivalence of (1) and (2) in the lemma.
First, µi(m) = µj(m) if and only if µj(µi(m)) = µj(µj(m

′)) = m′, as
µj is one-to-one. Hence, (m, m′) ∈ E(µi, µj) if and only if µj(µi(m)) =
m′. Second, (µi(m), µi(m

′)) ∈ F (µi, µj) if and only if µj(µi(m)) =
µi(µi(m

′)). But m′ = µi(µi(m
′)), so (µi(m), µi(m

′)) ∈ F (µi, µj) if and
only if m′ = µj(µi(m)).

To prove the second statement in the lemma, note that w ∈ µi(C)
if there is m ∈ C with w = µi(m). Since m ∈ C there is m′ ∈ C
with (m, m′) ∈ E(µi, µj). Then w = µj(m

′) and therefore w ∈ µj(C).
Similarly, if w ∈ µj(C) then w ∈ µi(C). �
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Lemma 5. Let H be rationalized by preference profile P . If µi, µj ∈ H,
and C ∈ C(µi, µj), then either (1) or (2) hold:

µi(m) P (m) µj(m) for all m ∈ C

and µj(w) P (w) µi(w) for all w ∈ µi(C);(1)

µj(m) P (m) µi(m) for all m ∈ C

and µi(w) P (w) µj(w) for all w ∈ µi(C).(2)

Further, if P is a preference profile such that: for all µi, µj ∈ H, and
C ∈ C(µi, µj), either (1) or (2) hold, and in addition

∅ P (m) w if and only if w /∈ {µ(m) : µ ∈ H}
∅ P (w) m if and only if m /∈ {µ(w) : µ ∈ H} ,

then P rationalizes H.

Remark. In part, Lemma 5 is a refinement of the classical result on op-
position and coincidence of interest in matching markets. The classical
result says that the agents on the same side of the market agree, and
agents on opposite sides disagree, on their preferences among certain
pairs of matchings. The first part of Lemma 5 says that the coinci-
dence/opposition holds for any pair of matchings, but it holds within
the connected components of the corresponding graph.

The second part of the lemma says that this opposition and coin-
cidence is all that stability requires—up to the ability to construct
well-defined preferences with the opposition and coincidence property.
As I show in the rest of the paper, to construct such preferences is not
trivial.

Lemma 5 is a variation on well-known results. For example, Knuth
(1976) contains a weaker statement in his Theorem 3 of Chapter 2, and
then a stronger statement in his Corollary 1. But the idea of studying
the components of the graphs (M, E(µi, µj)) is new, and, as we shall
see, crucial to studying refutability. It is clear from the second part of
the lemma that the existing results on conflict/coincidence are either
too weak or too strong as a characterization of stability.

Proof. I prove first the first statement. If C is a singleton there is
nothing to prove. Assume, then that C has two or more elements.
Note that C is a cycle, C =

{
m1, . . . mL

}
, with (ml, ml+1) ∈ E(µi, µj)

(modulo L) for l = 1, . . . L. This is because, for each m ∈ M there is
a unique m′ ∈ C with (m′, m) ∈ E(µi, µj) and a unique m′′ ∈ C with
(m, m′′) ∈ E(µi, µj).

Now, say that µi(m
l) P (ml) µj(m

l) for some l. I shall prove that
µi(m) P (m) µj(m) for all m ∈ C. We must have µi(m

l+1) P (ml+1)
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µj(m
l+1) because µj(m

l+1) P (ml+1) µi(m
l+1) would imply that µi and

µj are not both stable: (ml, ml+1) ∈ E(µi, µj), so µi(m
l) = µj(m

l+1);
thus (ml, µi(m

l)) blocks µj if ml P (µi(m
l)) ml+1 and (ml+1, µi(m

l))
blocks µi if ml+1 P (µi(m

l)) ml. The result that µi(m) P (m) µj(m) for
all m ∈ C follows by induction.

Let w ∈ µi(C). We must have that µi(w) 6= µj(w) or the component
of (W, F (µi, µj)) that w lives in would be a singleton and would not
coincide with µi(C) (Lemma 4). Now I show that µj(w)P (w)µi(w): if
we instead have µi(w) P (w) µj(w), then (µi(w), w) would block µj, as
µi(w) ∈ C and thus w P (µi(w)) µj(µi(w)).

So we have established that µi(m
l) P (ml) µj(m

l) for some l implies
statement (1) of the lemma. The argument hat µj(m

l) P (ml) µj(m
l)

for some l implies statement (2) is analogous.
I now prove the second part of the lemma. Let µ ∈ H. It is clear

that µ is individually rational by the requirement on P . Let w and m
be such that w P (m) µ(m). Let i and j be such that w = µi(m) and
µ = µj. There must exists such a i because ∅ P (m) w if w is not m’s
partner in some matching in H. Let C ∈ C(µi, µj) with m ∈ C. Then
w ∈ µi(C) and, by statement (1) of the lemma, µj(w)P (w)µi(w0 = m.
Hence (m, w) is not a blocking pair. Since (m, w) was arbitrary, µ is
stable. �

5. Relations Between Components, and a Necessary
Condition for Rationalization

The discussion in Section 3 suggests that there are relations between
components of the pairwise graphs, relations that come from the pres-
ence of some agents who are with the same partner in two (or more)
matchings. The discussion also suggests that the rationalizability of H
depends on the restrictions imposed by these relations. Here I define
the relations and show how they give a simple necessary condition for
H to be rationalizable.

Let C be the set of all elements of C(µi, µj), for any two distinct
µi, µj ∈ H with i < j. That is,

C = ∪{C ⊆ M : |C| ≥ 2 and ∃(µi, µj) s.t. i < j and C ∈ C(µi, µj)} .

Note that a set may be a connected component of more than one graph
(M, E(µi, µj)). If a set C is in C(µi, µj) and in C(µh, µk) I abuse
notation and regard each “copy” of C as a different element of C.
As a result, for each C ∈ C there is a unique pair (µi, µj) such that
C ∈ C(µi, µj). This abuse does not, I believe, confuse, and it makes
the notation lighter.
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I define two binary relations on the elements of C, and denote them
by 4 and 5.

Definition (4). Let C, C ′ ∈ C. Say that C 4 C ′ if there are three
distinct numbers, i,j, and k, in {1, 2, . . . K}, such that

• either C ∈ C(µi, µj), C ′ ∈ C(µi, µk)
or C ∈ C(µj, µi), C ′ ∈ C(µk, µi), and

• there is m ∈ C ∩ C ′ with µj(m) = µk(m).

Definition (5). Let C, C ′ ∈ C. Say that C 5 C ′ if there are three
distinct numbers, i,j, and k, in {1, 2, . . . K}, such that

• either C ∈ C(µi, µj), C ′ ∈ C(µk, µi)
or C ∈ C(µj, µi), C ′ ∈ C(µi, µk), and

• there is m ∈ C ∩ C ′ with µj(m) = µk(m).

Let E4 be the set of pairs (C, C ′) with C 4 C ′ and E5 be the set
of pairs (C, C ′) with C 5 C ′. So E4 is another way of writing the
binary relation 4 and E5 is just the binary relation 5. This duplicate
notation is useful.

Now, (C,E4 ∪ E5) represents the (loop-free and undirected) graph
with vertex-set C and where there is an edge between C and C ′ if either
C 4 C ′ or C 5 C ′.

Theorem 6. If H is rationalizable then (C,E4 ∪ E5) can have no
cycle with an odd number of 5.

Theorem 6 follows from Theorem 7 below.
In a sense, the necessary condition in Theorem 6 is the content of

the theory of stable matchings. I will show in the rest of this section,
and in Section 6, that as long as the necessary condition in Theorem 6
is compatible with a specification of well-behaved preferences, then H
can be rationalized.

A first requirement of the compatibility with well-behaved prefer-
ences is that C, E4 and E5 cannot imply intransitiveness. I express
this requirement by making 4 a larger relation: I define a monotone
increasing sequence

{
Ek
4

}
, and work with the larger binary relation

D4 = ∪∞k=1E
k
4. Let E0

4 = E4. Given Ek
4, for k ≥ 0, let Ek+1

4 be those

edges (C, C ′) between elements in C such that either (C, C ′) ∈ Ek
4

and/or there is i, j, h and C̃ ∈ C with C ∩ C̃ ∩ C ′ 6= ∅ such that
C ∈ C(µi, µj) and either 1 or 2 hold:

(1) i < j < h, C̃ ∈ C(µj, µh), C ′ ∈ C(µi, µh), and C and C̃ are
connected in

(
C,Ek−1

4
)
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(2) i < h < j, C̃ ∈ C(µh, µj), C ′ ∈ C(µi, µh), and there is a path in(
C,Ek−1

4 ∪ E5
)

between C and C̃ with an odd number of 5s.

Let D4 = ∪∞k=1E
k
4. Note that D4 = EL

4, for some L ≥ 1, as the

sequence of Ek
4 is monotone increasing and C is finite.

Theorem 7. If H is rationalizable then (C,D4 ∪ E5) can have no
cycle with an odd number of 5.

The proof of Theorem 7 requires Lemmas 5 and 8.
Let H be rationalizable. Define the function d : C → {−1, 1} as

follows. For each C ∈ C, let i, j be such that C ∈ C(µi, µj). Say
that d(C) = 1 if (∀m ∈ C)(µi P (m) µj) and −1 otherwise. Note that
Lemma 5 says that all m ∈ C must agree on their preferences over
µi(m) and µj(m).

Lemma 8. Let H be rationalizable and (C1, . . . CN) be a cycle in
(C,E4 ∪ E5). For each n and L, mod N ,

(3) d(Cn) = ΠL
l=n(−1)

1{Cl5Cl+1}d(CL)

Proof. Let P rationalize H. I only prove the case L = n + 1; the
result then follows by induction. Let Cn 4 Cn+1. There are i, j and
k such that (say) Cn ∈ C(µi, µj) and Cn+1 ∈ C(µi, µk). There is
m∗ ∈ Cn ∩Cn+1 with µj(m

∗) = µk(m
∗), so µi(m

∗)P (m∗)µj(m
∗) if and

only if µi(m
∗) P (m∗)µk(m

∗). Since m∗ ∈ Cn ∩Cn+1, Lemma 5 implies

(∀m ∈ Cn) (µi(m) P (m) µj(m)) iff (∀m ∈ Cn+1) (µi(m) P (m) µk(m)) .

Hence d(Cn) = d(Cn+1). Similarly when Cn ∈ C(µj, µi) and Cn+1 ∈
C(µk, µi).

On the other hand, when Cn 5 Cn+1 and i, j and k are such that
Cn ∈ C(µi, µj) and Cn+1 ∈ C(µk, µi), the existence of m∗ ∈ Cn ∩Cn+1

with µj(m
∗) = µk(m

∗) implies (Lemma 5) that d(Cn) = 1 if and only
if d(Cn+1) = −1. �

Proof of Theorem 7. Let H be rationalizable by preference profile P .
First note that Lemma 8 implies Theorem 6 because any cycle C1, . . . CN

with an odd number of 5s implies that d(C1) = (−1)d(C1).
We prove Theorem 7 by induction. In the previous paragraph we

proved that (C,E4 ∪ E5) =
(
C,E0

4 ∪ E5
)

can have no cycle with an
odd number of 5, and Lemma 8 implies that the formula (3) holds in(
C,E0

4 ∪ E5
)
. Suppose this statement is true of

(
C,Ek

4 ∪ E5
)
; if we

prove that it is true of
(
C,Ek+1

4 ∪ E5
)

then the proof of the theorem
is done.
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Let (C, C ′) ∈ Ek+1
4 \Ek

4. I shall prove that d(C) = d(C ′). Let i, j, h

and C̃ ∈ C with C ∩ C̃ ∩ C ′ 6= ∅ such that C ∈ C(µi, µj) is in the
situation described by Item 1 or Item 2. Suppose that they are in
the situation described by Item 1. Since C and C̃ are connected in(
C,Ek−1

4
)
, by Lemma 8, we have d(C) = d(C̃). Suppose, without loss

of generality, that d(C) = 1. Let m ∈ C∩C ′∩C̃; then d(C) = d(C̃) = 1
implies µi(m)P (m)µj(m) and µj(m)P (m)µh(m). So µi(m)P (m)µh(m)
and we must have d(C ′) = d(C) Suppose now the situation described by
Item 2. The existence of a path with an odd number of 5s connecting
C and C̃ implies that d(C) 6= d(C̃). Suppose, without loss of generality,
that d(C) = 1. Let m ∈ C ∩ C ′ ∩ C̃; then 1 = d(C) 6= d(C̃) implies
µi(m) P (m) µj(m) and µj(m) P (m) µh(m). So µi(m) P (m) µh(m) and
we must have d(C ′) = d(C)

Now, since d(C ′) = d(C) for all (C, C ′) ∈ Ek+1
4 \Ek

4, and holds in(
C,Ek

4 ∪ E5
)
, (3) holds in

(
C,Ek+1

4 ∪ E5
)
. Then

(
C,Ek+1

4 ∪ E5
)

has no cycles with an odd number of 5s. �

6. A Necessary and Sufficient Condition for
Rationalization

The graph (C,D4 ∪ E5) captures some of the requirements put by
transitivity of preferences, but not all. In this section I express the
remaining requirements as a system of polynomial inequalities. The
idea is that C ∈ C(µi, µj) be assigned a value of 1 if all m ∈ C prefer
µi over µj and value −1 if they prefer µj. It is then simple to control
the transitivity of preferences by controlling the values one can assign
to the different C. The result is a characterization of the H that can
be rationalized.

The characterization poses the question of when the rationalizing P
is unique; in econometrics such a situation is called (exact) identifica-
tion. It is easy to show (Proposition 10) that, when H is rationalizable,
the rationalizing P will generally not be unique.

One first step in the characterization is that all C and C ′ that are
connected in (C,D4) must have the same value, so we can treat them
as the same object. Let C be the set of all connected components of
(C,D4). Let (C, D) be the graph that has C as vertex-set, and where
(C, C ′) ∈ D if there is C ∈ C and C ′ ∈ C ′ with C 5 C ′.

If (C,D4 ∪ E5) has no cycle with an odd number of 5s, (C, D)
is a well-defined loop-free graph: For any two C and C ′ in the same
component C ∈ C it cannot be that C 5 C ′, as there is a path from C
to C ′ in (C,D4) and C5C ′ would imply a cycle with exactly one 5.
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Let B be a ternary relation on C defined as follows: (C, C ′, C ′′) ∈ B if
there is i, j, and h, i < j < h, and C ∈ C∩C(µi, µj) C ′ ∈ C ′∩C(µj, µh)
and C ′′ ∈ C ′′ ∩C(µi, µh) with C ∩ C ′ ∩ C ′′ 6= ∅.

Theorem 9. H is rationalizable if and only if (C,D4 ∪ E5) has no
cycle with an odd number of 5s, and for the resulting graph (C, D),
there is a function d : C → {−1, 1} that satisfies:

(1) C 5 C ′ ⇒ d(C) + d(C ′) = 0,
(2) (C, C ′, C ′′) ∈ B ⇒ (d(C) + d(C ′)) d(C ′′) ≥ 0.

Further, there is a rationalizing preference profile for each function d
satisfying (1) and (2).

Proof of Theorem 9. I only prove the “if” statement; “only if” is straight-
forward given the results in the previous section. Let (C,D4 ∪ E5)
have no cycle with an odd number of 5s, and d be a function in the
conditions of the theorem. Abusing notation, interpret d as defined on
C by letting d(C) = d(C) for all C ∈ C. Note that, for all C there is
some C 3 C.

For each m ∈ M , construct preferences P (m) by setting ∅ P (m) w
for all w /∈ {µ(m) : µ ∈ H}, w P (m) ∅ for all w ∈ {µ(m) : µ ∈ H}, and
µi(m) P (m) µj(m) if either i < j and d(C) = 1 for C ∈ C(µi, µj) with
C 3 m, or j < i and d(C) = −1 for C ∈ C(µj, µi) with C 3 m.

For each w ∈ W , define P (w) by ∅P (w)m for all m /∈ {µ(w) : µ ∈ H},
m P (w) ∅ for all m ∈ {µ(w) : µ ∈ H}, and µi(w) P (m) µj(w) if either
i < j and d(µi(C)) = −1 for µi(C) ∈ C(µi, µj) with µi(C) 3 µi(w)
or j < i and d(µi(C)) = 1 for µi(C) ∈ C(µj, µi) with µi(C) 3 µi(m).
Extend P (m) and P (w) arbitrarily to pairs of agents that are ranked
below ∅.

Note that P (m) and P (w) are antisymmetric. I show that P (m)
is transitive. The proof that P (w) is transitive is analogous. Let
µi(m)P (m)µj(m) and µj(m)P (m)µh(m). I shall prove that µi(m)P (m)
µh(m).

Case 1. Let i < j < h, m ∈ C ∈ C(µi, µj), m ∈ C ′ ∈ C(µj, µh) and
m ∈ C ′′ ∈ C(µi, µh). Note that µi(m) P (m) µj(m) implies d(C) = 1
and µj(m)P (m)µh(m) implies d(C ′) = 1. If C and C ′ are connected in
(C,D4), then, by the construction of D4, C and C ′′ are also connected.
So (3) implies that d(C ′′) = d(C) = 1; thus µi(m) P (m) µh(m). Now
let C and C ′ not be connected in (C,D4). If C and C ′′ are connected
then there is nothing to prove, as (3) gives d(C ′′) = d(C) = 1 and
µi(m) P (m) µh(m). Similarly, we obtain µi(m) P (m) µh(m) if C ′ and
C ′′ are connected. Suppose then that C, C ′ and C ′′ are not connected
in (C,D4). Let C, C ′, C ′′ ∈ C be such that C ∈ C, C ′ ∈ C ′, and C ′′ ∈ C ′′;
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C, C ′, and C ′′ are all different because C, C ′ and C ′′ are disconnected.
Since m ∈ C ∩ C ′ ∩ C ′′, (C, C ′, C ′′) ∈ B. Now, d(C) = d(C ′) = 1 imply
d(C) = d(C ′) = 1, so Item (2) of the theorem requires that 2d(C ′′) ≥ 0,
i.e. d(C ′′) = 1. Hence µi(m) P (m) µh(m).

The argument in Case 1 also yields that,

(4)
i < j < h
µj(m) P (m) µi(m)
µh(m) P (m) µj(m)

 implies µh(m) P (m) µi(m).

This gives us µi(m) P (m) µh(m) in the case h < j < i by applying (4)
to (i′, j′, h′) defined as i′ = h, j′ = j and h′ = i.

Case 2. Let i < h < j, m ∈ C ∈ C(µi, µj), m ∈ C ′ ∈ C(µh, µj) and
m ∈ C ′′ ∈ C(µi, µh). So d(C) = 1 and d(C ′) = −1.

First, if C 4C ′′ we have d(C) = d(C ′′) so there is nothing to prove.
Suppose then that C 4 C ′′ is false. It cannot be that C ′ 4 C ′′, since
that would imply C ′4C by the construction of D4, and d(C ′) 6= d(C)
implies that C ′ and C are disconnected in (C,D4). So it must be
the case that all of C, C ′ and C ′′ are disconnected in (C,D4). Let
C, C ′, C ′′ ∈ C be as in Case 1. Then (C ′′, C ′, C) ∈ B. By Item (2) of
the theorem, d(C ′′) must satisfy (d(C ′′)− 1) ≥ 0. So d(C ′′) = 1 and
µi(m) P (m) µh(m).

The argument in Case 2 also covers the case h < i < j, by a reasoning
similar to the one for h < j < i at the end of Case 1.

Case 3. Let j < i < h, m ∈ C ∈ C(µj, µi), m ∈ C ′ ∈ C(µj, µh) and
m ∈ C ′′ ∈ C(µi, µh). Now we have d(C) = −1 and d(C ′) = 1. First, if
C ′4C ′′, then d(C ′′) = 1 so there is nothing to prove. Second, it cannot
be that C 4 C ′′, since that would imply C 4 C ′ by the construction
of D4, and d(C ′) 6= d(C) implies that C ′ and C are disconnected in
(C,D4). Let C, C ′, C ′′ ∈ C be as in Case 1. Then (C, C ′′, C ′) ∈ B.
By Item (2) of the theorem, d(C ′) must satisfy (d(C ′′)− 1) ≥ 0. So
d(C ′′) = 1 and µi(m) P (m) µh(m).

The argument in Case 3 also covers the case j < h < i by a reasoning
similar to the one in Case 1.

Finally, I show that all µ ∈ H are stable under the constructed
preferences. Let µ ∈ H. It is clear that µ is individually rational.
Let w and m be such that w P (m) µ(m). Let i and j be such that
w = µj(m) and µ = µi. There must exists such a j because ∅P (m)w if
w is not m’s partner in some matching inH. Without loss of generality,
say that i < j. Let C ∈ C(µi, µj) with m ∈ C, so d(C) = −1. Then
w ∈ µi(C), so the construction of P (w) implies that µi(w)P (w)µj(w).
So µi(m) P (w) m, and hence (m, w) cannot block µ. �
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Finally, I show that, generally, matching theory is not exactly identi-
fied; if H is rationalizable there are generally many different preference
relations that rationalize it. The source of the different preferences is
that, if m is not matched to w in any matching in H, then the data
in H contains very little information on m’s standing in w’s preference
relation.

Let Um be the set of women m is not matched to in a matching in
H. Say that two preference profiles are essentially different if there is
at least agent on which the preference for two acceptable partners is
different.

Proposition 10. If H is rationalizable, then it is rationalizable by at
least

(2 |M |)|M | Πm∈M |Um|
essentially different preference profiles.

Proof. Let P rationalize H. For each w ∈ Um, I can modify P by
setting ∅ P (w) m and vary P (m) by placing w in any of the possible
|W | (= |M |) places in the ranking of m’s preferences. This will not
change the fact that all µ ∈ H are individually rational, and the only
blocking pair it could give rise to is (m, w), but having set ∅ P (w) m
guarantees that (m, w) will not be a blocking pair. The same is true
if I set ∅ P (m) w. So we obtain 2 |M | different preference relation for
each w ∈ Um. �

7. The lattice structure of stable matchings.

Here I discuss the problem of the universe of lattices that can be
stable sets of matching problems; this problem is related to the question
of rationalizability. Recall the classical result in matching theory that
the set of stable matchings is a non-empty distributive lattice. The
problem, first stated by Knuth (1976), is to characterize the distributive
lattices that can be stable matchings for some instance of the matching
problem.

Blair (1984) gave what seems to be both the first and definitive
answer to the problem. Blair proves that, for any distributive lattice
L, there is a set of men and women, and a preference profile, so that the
resulting set of stable matchings is lattice isomorphic to L. Blair’s proof
is constructive; Gusfield, Irving, Leather, and Saks (1987) improve
on his construction by requiring a smaller set of men and women to
generate any given lattice.

The interpretation of Blair’s result in the literature is that the lat-
tice structure of the set of stable matchings has no properties beyond
distributivity. In the words of Roth and Sotomayor (1990):
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“We might (. . .) hope to say something more about what
kinds of lattices arise as sets of stable matchings, in order
to use any additional properties thus specified to learn
more about the market. (Blair’s) Theorem shows that
this line of investigation will not bear any further fruit.”

Gusfield and Irving (1989) make a similar observation:

“There is no special structure that holds in general for
marriage lattices . . . that does not also hold for general
distributive lattices.”

Roth and Sotomayor’s, and Gusfield and Irving’s, is one interpre-
tation of Blair’s result, but it may be useful to think of the result in
a different way. While only distributivity is preserved by lattice ho-
momorphism, the lattice structure of stable matchings may still have
additional properties, properties that are not shared by other lattices
of matchings. In fact, one can rewrite Lemma 5 as a characterization of
the lattices of stable matchings. The lemma implies that these lattices
have properties in addition to distributivity.

The additional properties refer to the opposition and coincide of in-
terest property of any pair of stable matchings. This opposition/coincidence
property is characteristic of lattices of stable matchings, and may not
be present in other lattices, even in other lattices of matchings. Con-
cretely, Lemma 5 implies that, if µi and µj are stable, then, for any
C ∈ C(µi, µj), either (5) or (6) must hold:

(µi ∧ µj)|C = µi|C and (µi ∨ µj)|C = µj|C(5)

(µi ∧ µj)|C = µj|C and (µi ∨ µj)|C = µi|C .(6)

One can endow a set of matchings with ∨ and ∧ operations so that
it is a distributive lattice, but violates (5) and (6). One example is the
set of matchings in Section 3; these cannot be endowed with a lattice
structure that respects (5) and (6) because any such structure would
involve the matchings being totally ordered, and we have seen that a
total order is incompatible with stability.

I should emphasize that one can make this point using existing re-
sults. For example, if µi and µj are stable, ∨ cannot be such that
µi(m)∨µj(m) /∈ {µi(m), µj(m)} (see e.g. Roth and Sotomayor (1990)).
The contribution here is that, by the second part of Lemma 5, (5) and
(6) are also sufficient for a set of matchings to be stable.

Finally, Lemma 5 provides an answer to one interpretation of Knuth’s
problem. Knuth wrote “Can one obtain all distributive lattices from
suitable preference matrices ?” (I refer to preference matrices as prefer-
ence profiles). If we interpret the question as: given M and W , can all
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distributive lattices of matchings be obtained with suitable preference
profiles? The answer is negative, as exemplified by the matchings in
Section 3.

8. Different agents for different matchings

I have assumed that the sets of agents involved in each of the match-
ings in H is the same. In empirical applications, it is likely that some
agents who are present in one matching are not present in others. The
results above can be modified to account for different sets of agents.
The modification is straightforward but cumbersome, so I only outline
how the basic argument extends. I need to emphasize, though, that the
source of refutability comes from some agents having the same partner
in different matchings. The looser are the ties across matchings, the
more degrees of freedom one has in rationalizing the observations.

Say that Mi and Wi are the sets of men and women who are matched
by µi. A straightforward modification of the arguments above gives
that, if there is a path from m to m′ in (Mi ∩Mj, E(µi, µj)), then
µi(m) P (m) µj(m) implies that µi(m

′) P (m′) µj(m
′). One can now

partition each component in (Mi ∩Mj, E(µi, µj)) which is not a cycle
into the paths that start at the different elements of the component.
Saying that µi(m)P (m)µj(m) for one m implies that all the paths that
start at m, or at one of m’s successors in (Mi ∩Mj, E(µi, µj)), agree on
how they compare their partners in µi and µj. Adapting the definitions
of 4 and 5 gives the appropriate versions of the results above.

9. Probability of rationalizing

The results on rationalizability have some implications for the statis-
tical “power” of matching theory. Power refers here to how likely it is
that purely random outcomes will look as if they were generated by the
theory; i.e. how likely it is that one can rationalize random matchings.

I show that, for a fixed number of observed matchings, in a large
population, the probability of rationalizing purely random matchings
is bounded away from zero. The result says that large populations
require large sample sizes, which is probably not surprising.

Let Mn be a set of men and Wn a set of women, each with n elements.
LetMn be the resulting set of possible matchings with no single agents.
Endow Mn with the uniform distribution, and consider sets Hk of k
matchings chosen independently at random from Mn.

Proposition 11. If k is fixed,

lim inf
n→∞

P {Hk is rationalizable } ≥ e−k(k−1)/2
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Proof. Fix k and n. Consider the realizations of Hk such that, for
all m, µi(m) 6= µj(m) for all µi, µj ∈ Hk, then Hk is rationalizable
in (Mn, Wn) by Proposition 2. For each such realization of Hk, form
a k × n array (ast) by setting ast = µs(mt). Then each woman will
appear exactly once in each row, as the µs are matchings. And each
woman will appear at most once in each column, by the assumption
that for all m, µi(m) 6= µj(m) for all µi, µj ∈ Hk. The resulting array
thus forms a latin rectangle (see e.g. Denes and Keedwell (1974)).

Thus there are as many realizations ofHk in the hypothesis of Propo-
sition 2 as there are k×n latin rectangles. In turn, Erdös and Kaplanski
(1946) proved that, as n →∞, the number of k × n is asymptotic to

(7) (n!)ke−(k
2).

On the other hand, an arbitrary realization of Hk forms an array
where each woman appears exactly once in each row, but may be re-
peated in columns. So each row is a permutation of the women, and
there are as many Hk as ways of making k permutations, that is (n!)k.
The probability then of a draw of Hk in the hypothesis of Proposition 2

is asymptotic to e−(k
2), which gives the result. �

As I remarked above, the message in Proposition 11 is probably
not surprising, but it hopefully illustrates a potential for statistical
applications of the rationalizability results developed in the paper. The
proof of the proposition builds on the very crude sufficient condition for
rationalizability in Proposition 2 of Section 2; there is clearly potential
for refining this result.
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