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Abstract

This paper focuses on modelling the mutation process in evolutionary models.
First, we develop a link between the nature of the mutation process, the detailed
balance property and the nature of the game: we show that a game has a detailed
balanced and utility monotonic perturbation if and only if it is an ordinal potential
game. Then, we show that for ordinal potential games the utility monotonicity
property is insufficient to generate robust equilibrium predictions. Therefore, we
argue that the mutation induced solution concept only has limited potential as an
equilibrium refinement device.

1 Introduction

To overcome path dependence of the dynamic process, Kandori et al. [1993] and Young
[1993] introduced noise (mutations, perturbations) in evolutionary models: a state is called
stochastic stable if it is, as the mutation rate converges to zero, a limiting state of the
process with mutation/perturbation. Both Kandori et al. [1993] and Young [1993] use a
uniform mutation rate.

Their (strong) predictions, however, are criticized by Bergin and Lipman [1996] who
show that by allowing the mutation rate to vary across states, any stable state of the model
without mutation can be obtained as a stochastic stable state of a process with mutation.
In other words, the equilibrium correspondence which maps the process with mutations
(perturbation) to the set of stable states is surjective. Therefore, Blume [2003] draws on
state dependent mutation rates to get a more profound understanding of the mutation
process: he assumes that when an individual i prefers x to y, the probability that i will

∗We acknowledge financial support from the Research Foundation–Flanders (FWO–Vlaanderen) and
from the Inter-university Attraction Poles Programme - Belgian Science Policy [Contract NO.P5/21]. The
usual disclaimer applies.

†Sherppa, Ghent University, Hoveniersberg 24, B–9000 Gent, Belgium.

1



move from y to x is larger than the probability that i will move from x to y. The mutation
process is said to exhibit utility monotonicity.

A more methodological critique on Kandori et al. [1993] and Young [1993] concerns
the graph-theoretic principles which underly the results. Although formally correct, the
graph-methodology fails to add intuition and transparency to their analysis and, more
importantly, it does not allow for an exact computation of the limiting distribution of the
perturbed process. Therefore, Markov chains which satisfy the detailed balance conditions
are very interesting: they don’t require the Markov chain tree theorem to find the stochastic
stable states and it is straightforward to find their limiting distribution.

Interestingly, in the literature, it appears that for potential games, the stochastic stable
states of the detailed balanced and utility monotonic Markov chains turn out to be the
states which maximize the potential function of the game (cf. Young [1998]; Blume [2003];
Baron et al. [2003]). However, we know of no result which formally links these three
concepts (potential games, utility monotonicity and detailed balancedness) together.

The first part of this paper derives the following relationship: a game has a detailed
balanced and utility monotonic perturbation if and only if it is an ordinal potential game.

The second part of this paper elaborates on the utility monotonicity property of the
mutation process within the class of ordinal potential games. Although utility monotonicity
it is an intuitive property, it is insufficient to generate robust predictions: we find that for
all ordinal potential games and all stable states of a deterministic evolutionary process, we
can find a utility monotonic and detailed balanced perturbation such that the stochastic
stable states coincide with those stable states. It is, therefore, no solution to the Bergin
and Lipman–critique.1

The paper is organized as follows: section 2 presents the necessary notation and section
3 derives the link between ordinal potential games, utility monotonicity and detailed bal-
ancedness of the mutation process. Section 4 elaborates on the potential of state dependent
mutation as an equilibrium selection device in potential games. Finally, in section 5 we
present the conclusions of this paper.

2 Notation

2.1 Markov Chains, stable sets and invariant distributions

Consider a finite set of states S. A Markov chain is a set of positive {p (x, y)}x,y∈S such
that for all x ∈ S: ∑

y∈S

p (x, y) = 1.

The element p (x, y) is the transition probability of going from state x to state y. With

1Note that, with a refinement of the allowed mutation processes, our result generalizes Bergin and
Lipman [1996], while at the same time, by only considering ordinal potential games, our result is weaker
than theirs. As such our result is neither stronger or weaker than theirs.
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each Markov chain M , we can correspond a binary relation RM ⊆ S × S such that

(x, y) ∈ RM if and only if p (y, x) > 0.

We denote by T (RM), the transitive closure of RM
2

A set A ⊆ S is a stable set of the Markov process M if (i) for all x, y ∈ A, (x, y) ∈ T (R)
and (ii) for all x ∈ A, y ∈ S−A, (y, x) /∈ RM , i.e. for all x, y ∈ A there is positive probability
of going from x to y in finite time and the probability of going from a state in A to a state
outside A is zero. Each Markov chain has at least one stable set and two different stable
sets must have nonempty intersection. The elements in the stable sets of M are called the
stable states of the Markov process.

A Markov chain is said to be irreducible if and only if for all x, y ∈ S: (x, y) ∈ T (RM).
An irreducible Markov chain has the property that the probability of going from any state
in S to any other state in S in finite time is positive. The stable set of an irreducible
Markov chain is unique and is equal to S.

A probability distribution {P (x)}x∈S over S is an invariant distribution of the Markov
chain M if for all x ∈ S: ∑

x∈S

P (x)p(x, y) = P (y).

Lemma 1. Every Markov chain has an invariant distribution

Proof. Consider the S dimensional simplex ∆. Consider the function f : ∆ → R|S| such
that for an element P = {P (x)}x∈S of ∆:

f (P ) (y) =
∑
x∈S

P (x) p (x, y) .

As ∑
x∈S

f (P (x)) =
∑
x∈S

∑
y∈S

P (y) p (y, x) =
∑
y∈S

P (y)
∑
x∈S

p (y, x) =
∑
y∈S

P (y) = 1

We have that for all P ∈ ∆, f (P ) ∈ ∆. The function f is a continuous function from ∆
to ∆, hence by Brouwer’s fixed point theorem, there must be an element P ∈ ∆ such that
f (P ) = P . From the definition of f , this element must be an invariant distribution of the
markov chain.

We will mainly be interested in the elements of S for which an invariant distribution
{P (x)}x∈S has positive support, i.e. x ∈ S has positive support if P (x) > 0. We have the
following results connecting the stable sets and the support of an invariant distribution.

Lemma 2. If an invariant distribution {P (x)}x∈S of the Markov chain M has positive
support on x ∈ S, then x is contained in a stable set of M .

2(x, y) ∈ T (RM ) if and only if there exists a sequence x1, . . . , xn of elements in S, such that x1 =
x, xn = y and ∀t = 1, . . . , n− 1 : (xt, xt+1) ∈ RM .
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Proof. We begin by stating following facts, which are straightforward derived from the
definition of the invariant distribution:

• If x has positive support and (y, x) ∈ RM , then y has positive support.

• If x has positive support, and p (x, x) 6= 1, then there is an element y 6= x with
positive support such that (x, y) ∈ RM . We denote this by (x, y) ∈ R∗

We now continue with the rest of the proof. Assume on the contrary that x has positive
support and that x is not in a stable set. Then from the definition of stables sets, there is
an element y in a stable set of M such that (y, x) ∈ T (RM). As x has positive support,
every element z ∈ S for which (z, x) ∈ RM has also positive support (by the first fact
above). Hence there must be an element z ∈ S such that z has positive support, z is in
no stable set of M and (v, z) ∈ RM for some element v in a stable set of M . As z has
positive support (and p (z, z) 6= 1, which follows from the fact that {z} is not a stable set),
there must be at least one element w ∈ S such that (z, w) ∈ R∗. Also from the definitions
of stable sets, it follows that for all w ∈ S for which (z, w) ∈ R∗, w is in no stable set.
Consider the set:

V = {w ∈ S |(z, w) ∈ T (R∗)} .

This set is finite (as S is finite) and does not contain an element in a stable set of M .
Further every element in V has positive support. Now we have that:∑

w∈V

P (w) =
∑
w∈V

∑
w′∈W

P (w′) p (w′, w) <
∑
w′∈V

P (w′)
∑
w∈S

p (w′, s) =
∑
w′∈V

P (w′)

A contradiction. The first equality follows from the definition of the invariant distribution.
The inequality follows from the fact that p (z, v) > 0.

From the first fact in above proof, if an element of a stable set has a positive support,
then every other element of this stable set also has positive support. Therefore, an invariant
distribution of an irreducible Markov chain has support on the whole of S.

Lemma 3. If M is an irreducible Markov chain, it has a unique invariant distribution

Proof. Assume that {P (x)}x∈S and {Q (x)}x∈S are two distinct invariant distributions.
Let ∆ be the S − 1 dimensional simplex. And consider the function Z : R → R|S| with for
β ∈ R, Z (β) given by:

{βP (x) + (1− β) Q (x)}x∈S .

The function Z defines a straight line in R|S| and contains the elements P and Q in ∆.
From the definition of the invariant distribution, it is easy to see that every element on this
straight line in ∆ is an invariant distributions of the Markov chain. Also, the function must
intersect the boundary of ∆. This intersection defines a probability distribution on S, lets
say {O (x)}x∈S for which there is an element v ∈ S for which O (v) = 0. This contradicts
with the fact that the support of an invariant distribution of an irreducible Markov chain
has support on the whole of S.
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Consider an invariant distribution {P (x)}x∈S of a Markov chain M . We say that it
satisfies the detailed balance condition if and only if, for all x, y ∈ S:

P (y)p(x, y) = P (x)p(y, x).

A distribution which satisfies the detailed balance condition is automatically an in-
variant distribution. A Markov chain which has an invariant distribution satisfying the
detailed balance condition is said to be detailed balanced.

2.2 Markov chains and perturbations induced by a game

A game in strategic form, G = (N, S, {ui}i∈N), consists of a finite set of individuals N =
{1, . . . , n}; a set of strategy profiles (states) S =

∏
i∈N Si, where Si is the finite set of

strategies of individual i; and a set of functions ui : S → R, which present the payoffs to
the individuals.

A strategy profile s = (s1, . . . , sn) can be written as (si, s−i), where s−i represents the
strategies of the individuals in N − {i}. For each individual i we define a binary relation
≈i⊆ S × S such that: x ≈i y if and only if x−i = y−i. Since ≈i is an equivalence relation
(transitive, reflexive and symmetric), it partitions S into equivalence classes: for an element
x ∈ S we denote the equivalence class of x with respect to ≈i as [x]i.

Consider the following discrete–time model. At each time step one –random– individual
i ∈ N is given the opportunity to consider revising his strategy. He therefore maximizes
his payoff, assuming that all the other individuals keep their strategy fixed. Formally, if at
time t strategy s is played, and if at time t + 1 individual i is selected, then at time t + 1
strategy s′ will be played, where s′ ∈ [s]i and s′i ∈ arg maxsi∈Si

ui(si, s−i). We assume that
when arg maxsi∈Si

ui(si, s−i) contains more than one element, each is chosen with equal
probability.

This dynamic model defines a Markov chain MG = {p(x, y)}x,y∈S with S as the set
of states. If there is an i ∈ N such that y ∈ arg maxz∈[x]i

ui (z) then p (x, y) > 0, else
p (x, y) = 0.

Consider an element δ ∈ R+
0 . A perturbation of the game G is a set of Markov chains

{ΣG(δ)}δ∈R+
0
, such that: (i) ΣG(.) is continuous in δ; (ii) limδ→∞ΣG(δ) = MG; and, (iii)

for all δ ∈ R+
0 , ΣG(δ) is irreducible.

Let ΣG(δ) be a perturbation of G. As ΣG(δ) is irreducible, it has a unique invariant
distribution, say Pδ. This distribution has support on the whole of S and as ΣG(.) is
continuous in δ, Pδ is also continuous in δ. A state x ∈ S is said to be stochastic stable if
limδ→∞Pδ(x) > 0. The distribution P∞ = limδ→∞ Pδ is the stochastic stable distribution
of the perturbation ΣG. As Pδ is continuous, P∞ is also an invariant distribution of MG.
Therefore, every stochastic stable state is also a stable state: the set of stochastic stable
states is a refinement of the set of stable states. Now remark that if a perturbation ΣG(δ)
of MG satisfies the detailed balance condition, P∞ necessarily satisfies the detailed balance
condition for MG.
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3 Potential games, detailed balance conditions and

‘utility monotonic’ perturbations

A game G is an exact potential game (henceforth, potential game) if there exists a function
V : S → R, such that, for all i ∈ N, x ∈ S and y ∈ [x]i:

ui(x)− ui(y) = V (x)− V (y).

Note that a potential function V of a potential game G is unique, up to a constant
term (Monderer and Shapley [1996]).

A game G is a weighted potential game if there exists a function V : S → R, and for
all i ∈ N there are elements wi ∈ R+

0 , such that, for all i ∈ N , x ∈ S an y ∈ [x]i:

ui(x)− ui(y) = wi(V (x)− V (y)).

Finally, a game G is an ordinal potential game3 if there exists a function V : S → R,
such that, for all i ∈ N , x ∈ S and y ∈ [x]i:

ui(x)− ui(y) ≥ 0 ↔ V (x)− V (y) ≥ 0.

Consider a perturbation ΣG(δ) = {pδ(x, y)}x,y∈S of the game G. We say that ΣG(δ)
is utility monotonic if there exists a function h : S × S → R such that such that, for all
i ∈ N , x ∈ S and y ∈ [x]i:

pδ(y, x)

pδ(x, y)
= eδh(x,y).

and h (x, y) ≥ 0 if and only if ui (x)− ui (y) ≥ 0. We call h a utility monotonic function of
the perturbation ΣG.

Lemma 4. If ΣG(δ) is detailed balanced and utility monotonic, with utility monotonic
function h, there exists a function V : S → R, such that:

h(x, y) = V (x)− V (y).

Proof. Let x ∈ S and y, z ∈ [x]i. Let {Pδ(x)}x∈S be the limiting distribution of ΣG(δ) =
{pδ(x, y)}x,y∈S and consider the identity:

Pδ(x)

Pδ(y)

Pδ(y)

Pδ(z)
=

Pδ(x)

Pδ(z)
.

As ΣG(δ) is utility monotonic and detailed balanced, we know that, for all i ∈ N , x ∈ S
and y, z ∈ [x]i:

h(x, z) = h(x, y) + h(y, z).

3For a characterization on ordinal potential games, see Voorneveld and Norde [1997].
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If we put x = y = z, we have: h(x, x) = 0; if we put x = z, we have:

h(x, y) = −h(y, x).

Consider an element z ∈ S and let zi
x = (zi, x−i). Define the function g(i, .) as:

g(i, x) = h(x, zi
x).

We have that:

h(x, y) = h(x, zi
x)) + h(zi

x, y).

= h(x, zi
x)− h(y, zi

x).

= g(i, x)− g(i, y).

Now consider i, j ∈ N and x, y, z, v ∈ S, such that y ∈ [x]i, z ∈ [y]j, v ∈ [z]i and x ∈ [v]j.
From the identity:

Pδ(x)

Pδ(y)

Pδ(y)

Pδ(z)

Pδ(z)

Pδ(v)

Pδ(v)

Pδ(x)
= 1,

we derive that:

(g(i, x)− g(i, y)) + (g(j, y)− g(j, z)) + (g(i, z)− g(i, v)) + (g(j, v)− g(j, x)) = 0.

This implies that the game (N, S, {g(i, .)}i∈N) is a potential game (see Monderer and
Shapley [1996], corollary 2.9). Therefore, there exists a function V : S → R such that, for
all i ∈ N , x ∈ S and y ∈ [x]i:

g(i, x)− g(i, y) = V (x)− V (y).

Corollary 1. A game G has a detailed balanced and utility monotonic perturbation with
utility monotonic function h, given by:

h(x, y) = ui(x)− ui(y) ↔ G is a potential game
h(x, y) = wi(ui(x)− ui(y)) ↔ G is a weighted potential game
ui(x)− ui(y) ≥ 0 ↔ h(x, y) ≥ 0 ↔ G is an ordinal potential game

Proof. Follows directly from Lemma 4.

Corollary 2. If G is an ordinal potential game, then, for an ordinal potential function
V of G, any detailed balanced and utility monotonic perturbation ΣG(δ) = {pδ(x, y)}x,y∈S

satisfies:
pδ(y, x)

pδ(x, y)
= eδ(V (x)−V (y)).

Furthermore, the stochastic stable states are those states which maximize the ordinal po-
tential function V .

Proof. Follows from the proof of Lemma 4 and the definition of stochastic stability.
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This last result shows that for ordinal potential games, there is a one to one correspon-
dence between the set of potential functions and the set of detailed balanced and utility
monotonic perturbations.

If for all i ∈ N , x ∈ S and y ∈ [x]i: h (x, y) = ui (x)−ui (y), the perturbation with utility
monotonicity function h is called the log linear perturbation. This perturbation is detailed
balanced if and only if the game is a potential game. This result, stated in Corollary 1, has
also been noticed by various authors Baron et al. [2003], Blume [2003]) and has fruitfully
been applied to many models, especially two by two symmetric population games. These
games are always potential games. The state which maximizes the potential function,
and hence is stochastic stable, is the risk dominant strategy. This result is analogous to
the result that has been obtained by using the uniform mutation model (Kandori et al.
[1993] and Young [1993]). This has given the widespread view that the risk dominant
strategies quite robust against changes in the form of mutation rates. The next section
however shows that this result is not as robust as may seem: there are utility monotonic
and detailed balanced perturbations which does not select the risk dominant strategy.

4 Stochastic stable states and ordinal potential games

Previous section shows that ordinal potential games are a very interesting class of games
when considering utility monotonic perturbations. Namely, they are the only class for
which some of these perturbations also satisfy the detailed balance conditions. Further-
more, the value of the potential function determines which states are stochastic stable and
which are not. However, a potential of an ordinal potential game is not unique. It is there-
fore of interest to investigate which stochastic stable states are robust against variation of
the potential function, or equivalent, variation of the perturbation. This section establishes
a rather disappointing result (which proof can be found in the appendix):

Theorem 1. If G is an ordinal potential game, and y is a stable state of MG, then there
exists a detailed balanced and utility monotonic perturbation of G such that y is a stochastic
stable state of this perturbation.

Theorem 2. If G is an ordinal potential game, and {P (x)}x∈S is an invariant distribution
of MG, then there exist a detailed balanced and utility monotonic perturbation of G such
that the stochastic stable invariant distribution of this perturbation is equal to {P (x)}x∈S.

5 Conclusions

The introduction of mutation yielded evolutionary models considerable predictive power.
Bergin and Lipman [1996], however showed that this predictive power crucially depends
on the nature of the mutation process. Blume [2003], therefore, draws on state dependent
mutation rates and assumes the mutation process to exhibit utility monotonicity.

For a special class of games, i.c. ordinal potential games, we check whether the utility
monotonicity property indeed allows us to refine the equilibrium selection. First, we derive
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a link between the nature of the mutation process, the detailed balance property and the
nature of the game: we show that a game has a detailed balanced and utility monotonic
perturbation if and only if it is an ordinal potential game. Then, we show that for all
ordinal potential games and all stable states of a deterministic evolutionary process, we
can find a utility monotonic and detailed balanced perturbation such that the stochastic
stable states coincide with those stable states. Therefore, for ordinal potential games,
utility monotonicity of the mutation process is insufficient to overcome the Bergin and
Lipman–critique.

We therefore argue that where the mutation induced solution concept proves very useful
in solving the path dependence of dynamical processes, its effectiveness as an equilibrium
refinement device is limited.

Appendix: Proof of theorem 1

The proof draws heavily on the theory of binary extensions. It is therefore of interest to
give a short overview of this research field.

Consider a binary relation R ⊆ S × S. The asymmetric part of R, denoted by P (R) is
defined by (x, y) ∈ P (R) iff (x, y) ∈ R and (y, x) /∈ R. The symmetric part of R, denoted
by I (R) is given by (x, y) ∈ I (R) iff (x, y) ∈ R and (y, x) ∈ R. The transitive closure of
R is denoted as in section 2 by T (R).

A binary relation R is reflexive if for all x ∈ S: (x, x) ∈ R, it is transitive if for all
x, y, z ∈ S: (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R and R is complete if for all x, y ∈ R:
(x, y) ∈ R or (y, x) ∈ R. A reflexive and transitive relation is called a quasi-ordering and
a complete quasi-ordering is called an ordering.

For a binary relation R, the set of maximal elements of R, denoted by M (R) is given
by:

M (R) = {x ∈ S |there is noy ∈ S : (y, x) ∈ P (R)} .

The set of greatest elements of a binary relation R is denoted by G (R) and is defined
as:

G (R) = {x ∈ S | for all y ∈ S : (x, y) ∈ R} .

A binary relation R′ is said to be an extension of R if R ⊆ R′ and P (R) ⊆ P (R′). The
following result is from Suzumura Suzumura [1976]:

Lemma 5. A binary relation R has an ordering extension if and only if for all x, y ∈ S:
if (x, y) ∈ T (R) implies (y, x) /∈ P (R).

Another result reads:

Lemma 6. If R satisfies the conditions of Lemma 5, then every ordering extension of R
is also an ordering extension of T (R).
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Proof. Let R′ be an extension of R. If (x, y) ∈ T (R), then obviously from the requirement
that R′ is transitive: (x, y) ∈ R′. Now assume that on the contrary that (x, y) ∈ P (T (R))
and (x, y) /∈ P (R′). From completeness of R′, we have that (y, x) ∈ R. From (x, y) ∈
T (R), we have that there is a sequence x − 1, ..., xn such that x1 = x, xn = y and for
all t = 1, .., n − 1: (xt, xt+1) ∈ R. There must also be a t such that (xt, xt+1) ∈ P (R),
otherwise we would have that (y, x) ∈ T (R), in contradiction with (x, y) ∈ P (T (R)). From
transitivity of R′, we have that (xt+1, xt) ∈ R′ in contradiction with (xt, xt+1) ∈ P (R) and
the requirement that R′ is an extension of R.

Every quasi-ordering satisfies the requirement of Lemma 5, and has therefore an order-
ing extension. For a quasi-ordering R, let E (R) be the nonempty set of ordering extensions
of R. The following result is due to Banerjee and Pattanaik Banerjee and Pattanaik [1996]:

Lemma 7. The set of maximal elements of a quasiordering is equal to the union of the
sets of greatest elements of its ordering extensions. Or formally; for a quasi-ordering R:

M (R) =
⋃

R′∈E(R)

G (R′) .

Proof. Now we can begin with the proof of Theorem 1: Consider an ordinal potential game
G =

(
N, S, {ui}i∈N

)
. The better than relation B is defined by:

(x, y) ∈ B if and only if ∃i ∈ N : y ∈ [x]i and ui (x) ≥ ui (y) .

The following result if from Voorneveld and Norde Voorneveld and Norde [1997]

Lemma 8. A game, with finite strategy set, is an ordinal potential game if and only if for
all x, y ∈ S: (x, y) ∈ T (B) implies (y, x) /∈ P (B).

From Lemma 5, we have that a game is an ordinal potential game if and only if the
better than relation B has an ordering extension. Consider such a relation R and define a
real valued function V : S → R such that (x, y) ∈ B if and only if V (x) ≥ V (y). Such a
function can be found there the set of strategy profiles, S is finite. It is easy to see that the
function V is a potential function of the game G. Furthermore, every potential function
of the game G defines in a similar way an ordering extension of the relation B. The set of
elements of S which maximizes the potentials of G is then equal to the set:⋃

R′∈E(B)

G (R′) =
⋃

R′∈E(T (B))

G (R′) = M (T (B)) .

The first equality sign comes from Lemma 6 and the second equality sign comes from
Lemma 7 and the fact that B is reflexive. The set of elements which maximizes a potential
of G is thus equal to the maximal elements of the relation T (B). To complete the proof,
we only have to show that M (T (B)) is equal to the union of the stable sets of the Markov
chain MG.
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Consider the relation RMG
. From its definition we can derive that:

RMG
⊆ B; P (RMG

) ⊆ P (B) ; T (RMG
) ⊆ T (B) .

Further if there exist an element y ∈ S such that (y, x) ∈ B then there is an element
z ∈ S such that (z, x) ∈ RMG

. If in addition for no z ∈ S: (z, x) ∈ P (RMG
), then

(y, x) ∈ I (B) and (y, x) ∈ I (RM).
It is easy to see that the union of the stable sets of G is equal to the set M (T (RMG

)).
If x ∈ M (B) and there is an y ∈ S such that (y, x) ∈ P (T (RMG

)), we have that (y, x) ∈
P (T (B)), a contradiction with maximality of x. Now assume that x ∈ M (T (RMG

)) and
there is an y ∈ S such that (y, x) ∈ P (T (B)). This implies that there is a sequence
x1, ..., xn such that x1 = y, xn = x and for all t = 1, ..., n − 1: (xt, xt+1) ∈ B and for at
least one t: (xt, xt+1) ∈ P (R). Consider the element xn−1. From maximality of x and
(xn−1, x) ∈ R, we must have that (xn−1, x) ∈ I (RMG

), hence xn−1 is also maximal. By
iteration, we have that y is maximal. From this (x, y) ∈ I (T (RMG

)) ⊆ I (T (B)). This
contradicts with (y, x) ∈ P (T (B)).
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