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Abstract

We consider matching markets at senior level, where workers might
be assigned to firms at an unstable matching- the status- quo- which
might not be Pareto efficient. It might also be the case that none
of the matchings Pareto superior to the status- quo is Core- stable.
We propose two weakenings of Core- stability: status- quo stability
and weakened stability, and the respective mechanisms which leads
any status- quo to matchings meeting the stability requirements above
mentioned. The fist one is inspired by the top trading cycle procedure,
the other one belongs to the family of Branch and Bound algorithms.
Last procedure find a core stable matching in many-to-one markets
whenever it exists, dispensing on the assumption of substitutability.

1 Introduction

1.1 Motivation

Reports by Roth (1984) and Roth and Parenson (1999) lead to a non ambigu-
ous conclusion: matching institutions should provide core stable outcomes.
While in theoretical settings the normative appeal of the core yields from its
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characterization, the argument, here, is factual. Specifically, clearinghouses
that produce core stable outcomes survive, others do not. In our view, the
relevance of core stability for clearinghouse is tautological: a core stable out-
come is robust to attempts of self- resignation by coalitions of agents. If it
was not the case, groups of agents would have good reasons to oppose the
outcome proposed by the central institution for their freedom to engage in
economic activities. Thus, clearinghouses which design core stable outcomes
makes them easier to enforce.

Nevertheless, inefficiencies might prevent decentralized labor markets from
reaching core stability. Among others, the agenda of offers and acceptances
may bias the assignment of agents; a worker might accept an offer by a firm
and, once committed, receive the offer of a preferred firm she cannot accept
anymore. One might also think about changes in the preferences of agents.
The adoption of centralized mechanisms in matching markets at junior level
allowed to tackle these inefficiencies.

Theses are not the only difficulties experienced by decentralized markets
at senior level. The theoretical analysis is pioneered by Roth, Blum and
Rothblum (1998) in the case of one-to-one markets. The authors define
senior markets as those where some agents are matched to one another,
and matchings are disrupted by changes in the population of agents. They
show that a stable matching disrupted by the retirement of some workers
or the creation of firms leads to a firm quasi-stable matching, namely it is
such that only unmatched firms are involved in blocking pairs. Moreover,
their upgraded version of the Deferred Acceptance (D.A.) Algorithm where
firms make offers, originally introduced by Gale and Shapley (1962), always
restabilizes such matchings. Cantala (2004) extends the result to many-to-
one markets when firms have q- substitutable preferences and also consider
the case where the disruption is due to the closure of positions and the
entering of workers. There, the market reaches stability again if offers are
emitted by workers. He observes two features that explain why instability
might be persistent in the markets. In the case where workers do not have
tenure, the market reaches stability again only if the disruption is the one
studied in Blum et al. (1998) and firms make offers. Furthermore, the
procedures above mentioned may not be successful anymore, in the respective
cases of disruption, if the side of the market that makes the offers is reversed.
Hence instability may last, as well as Pareto inefficiency.

The academic market in Mexico is an example of such markets. First,
the universities are autonomous institutions, in particular their agenda of of-
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fers to senior professors is not coordinated. Thus matchings are likely to be
unstable. Second, professors may hold a tenure. This protective status guar-
antees to senior workers a minimum level of welfare, not only by preventing
them from unemployment, but also by guaranteeing that any switch of job
will be for a preferred position. Third, even if universities are autonomous, it
exists a council that cap them all, the Association National de Universidades
i Instituciones de Educacion Superior (A.N.U.I.E.S.). The aim of the council
is to reach an harmonious development of the institutions, homologizing of
syllabus and academic grades ... . Hence, it exists an institution that might
debate, adopt and implement the centralized procedures that we propose.
We insist that an agreement has to be reached by universities. We take into
account the status- quo matching previous to the negotiation by ensuring
them a match at least as preferred as their present match. More generally,
any situation where an administration wishes to reallocate a staff to depart-
ments at a Pareto superior assignation is an application we are dealing with.

Suppose that the set of matchings Pareto superior to the status- quo is
non empty, is one of those matchings core stable? The answer is negative1,
reassigning all workers might not be compatible with fulfilling some blocking
coalitions. Hence we are restricted to look for core consistent procedures,
namely those which select a core stable matching whenever it exists.

1.2 On manipulability

Roth (1982) shows that there is no stable matching mechanism for which
stating the true preferences is a dominant strategy for all agents. We be-
lieve, however, that clearing houses should not worry so much about the
negative result. Dubins and Freedman (1981) and Roth (1982, 1984) con-
sider markets where preferences are strict and shows that mechanisms which
select the optimal stable matching for one side of the market is strategy-
proof for this side of the market. Demange, Gales and Sotomayor (1986) es-
tablish a general result, when preferences might be not strict and, thus, the
optimal stable matching above defined may not exist. Strategic questions
for the other side of the market are analyzed in Roth (1982a, 1984b) and
Gale and Sotomayor (1985). More recently and specifically about the D.A.
algorithm, Ehlers (2004) considers that workers evaluate the probability to
be matched to desirable firms. In this set- up, manipulating seems to be a

1See Example 2 in the Appendix.
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very sophisticated behavior.
Our issue is also related to the literature on (one- sided) assignment when

agents own property rights, which is comparable to our status- quo. While
in these markets there is conflict between equal treatment of equals, Pareto
optimality and strategy - proofness (Zhou 1990), it exists a large literature,
following Shapley and Scarf (1974) and their “top trading cycle” procedure,
that combines core stability and group- strategy proofness (Roth (1982),
Ma (1994), Svenson (1999), Bird (1984), Moulin (1995), Abdulkadiroğly and
Sönmez (1998, 1999) and Papaï (2000)2). Our first result, in contrast, is that
no core- consistent procedure is strategy- proof, and manipulating might be
straightforward.

1.3 Two core consistent solutions

We propose two weakenings of the core. Both intend to capture the idea
developed earlier: the “less” agents oppose a matching, as formalized by
blocking coalitions, the easier it is to enforce. First, status- quo stability. We
guarantee to all agents an outcome at least as preferred as the status- quo.
Thus, a blocking coalition that is not compatible with a re- assignation of
all agents to matches at least as preferred as their status- quo is not a valid
objection. Thus, a matching where all blocking coalitions are not valid, faces
no legitimate opposition. In this sense it is stable as a status- quo, or status-
quo stable. We define a procedure inspired by the family of “top trading
cycle” mechanisms, which finds a status- quo stable matching. In particular,
whenever a core stable matching exists, the procedure picks the core stable
matching unanimously preferred by workers among all status- quo matchings
Pareto superior to the status- quo. Notice that status- quo stability itself is
not a Core consistent solution concept. Moreover, the procedure only applies
to one-to-one markets. Our second approach, however, does not suffer such
drawbacks.

Second, weakened stability. Consider again academic markets. Suppose
that a centralizer has to choose between two matchings, both Pareto superior
to the status- quo and none Pareto dominates the other. The first match-
ing is such that a university with a micro position hires a micro specialists
and blocks the matching with a micro professor. The second matching is
such that a university with a macro position hires a micro specialists and

2Papaï (2000) does not assume property rights.
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blocks the matching with a macro professor. We argue that the first block-
ing coalition is a weaker opposition than the second one. It is so because it is
desirable, on an educational point of view, that a position be held by the ad-
equate specialist. Thus, in some applications it makes sense to assume that
blocking coalitions are comparable and that this comparison follows from a
social objective: the more a blocking pair impacts the social welfare, the
stronger objection it constitutes to a matching. In our example of academic
market, we observe that only preferences of university should be taken into
account. They are represented by cardinally measurable and comparable
utility functions. Moreover we adopt an utilitarian approach3. Among all
matchings Pareto superior to the status- quo, we choose the one with the
weakest opposition. Specifically, for all such matchings, we sum all utility
improvements for firms from all blocking coalitions, and pick the matching
which entails the smallest such summation (See (1) 4.1). We believe that our
formalization of the problem is consistent, and appealing in the example of
academic market. We do not claim, however, that it is fully general.

How would perform a D.A. algorithms in our setting? First, the pro-
cedures, adapted in Roth, Blum and Rothblum (1998) and Cantala (2004)
to senior markets, do not take into account welfare restrictions above men-
tioned, except individual rationality. Second it might cycle. One type of
cycling is harmless: even if we consider a case where a status-quo matching
exists, one can easily design an example where a D.A. algorithm would cycle.
To solve the difficulty one might adopt the solution proposed by Roth and
Van de Vate (1988), namely introduce loops detectors in the algorithm that
detects them and launch a new sequence of offers until finding the one that
leads to a stable matching. The solution has no bite whenever there is no
such matching. Finally these procedures require firms to have substitutable
preferences, which is not a weak restriction. We believe that keeping on
sophisticating the D.A. procedures would make it loose their original appeal.

Instead, we make use of a much more versatile family of procedures :
Branch and Bound Algorithms. Four of their properties motivate the choice:
a) they do not require any restriction on the preferences of firms, b) by
construction they do not cycle, c) They can compute all the possible solutions
of the problem- which means, in the case of junior markets, that they might
compute all the stable matchings, d) whenever the problem to solve has no
solution, they specify it.

3It is an abuse of language.
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We establish that the outcome matching of our Weakened Stability Algo-
rithm is the solution to our problem and it is status- quo stable. Moreover,
when the input matching is the empty one, it is core stable whenever a core
stable matching exists, even if the preferences of firms are not substitutable.

2 Preliminaries

2.1 The market

A many-to-one matching market is a quadruple (F ,W, q,�) where F and
W are two disjoint finite sets of agents. F = {f1, ..., fm} is the set of firms
andW = {w1, ..., wn} is the set of workers; generic firms and workers will be
denoted by f and w respectively. Subsets of F andW are denoted by F and
W . The vector of quotas associated with each firm is q = (qf )f∈F , where qf is
the maximum number of workers that can be assigned to firm f . Preference
relations are not symmetrically defined between firms and workers since a firm
can be assigned to many workers whereas a worker can be assigned to at most
one firm. Each firm f has a strict, transitive and complete preference relation
�f over the family of subsets of workers 2W . We interpret the empty set as
firm f not being assigned to any worker. When a firm ranks the empty set
better than a subset, it means that it prefers remaining unmatched to being
assigned to this subset. Each worker w has a strict, transitive and complete
preference relation �w over the set F∪{∅}. We interpret the empty set in �w
as w being unemployed. Preference profiles are (m+ n)-tuples of preference
relations and they are represented by �= (�f1 , ...,�fm ,�w1, ...,�wn).

For any firm f we define the acceptable set of f under q and � to be the
subsets of workers with cardinality smaller or equal to qf , strictly preferred
to the empty set; namely

Af (q,�) ≡ {S ⊆ W | S �f ∅ and |S| ≤ qf} .

Subsets in Af (q,�) are called acceptable. Since only acceptable subsets will
matter, we will represent the preferences of the firm as a list of acceptable
subsets. Likewise, for any w we define the acceptable set of w under � to
be the set of firms strictly preferred to ∅. We denote it by Aw (�). Firms in
Aw (�) are called acceptable. We will represent the preferences of firms and
workers by ordered lists of acceptable partners. A pair (w, f) is acceptable
under q and � if both agents are mutually acceptable. Let A (F ,W, q,�) be
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the set of workers-firm coalitions (W, f) such that W ⊆ Af (q,�) and for all
w ∈W , f ∈ Aw (�).

Let � be a preference profile. Given a set W ⊆ W , let the Choice of
firm f , denoted Ch (W, qf ,�f), be f ’s most preferred subset of W with
cardinality at most qf according to its preference ordering �f .

Definition 1 A matching µ is a mapping from the set F ∪W into the set
of all subsets of F ∪W such that for all f ∈ F and w ∈ W :

(1) µ (f) ∈ 2W and |µ (f)| ≤ qf ,

(2) either |µ (w)| = 1 and µ (w) ∈ F , or µ (w) = ∅,

(3) µ (w) = f if and only if w ∈ µ (f) .

We denote M the space of all possible matchings.

2.2 Stability concepts

A matching µ is blocked by a worker w if she prefers remaining alone than
being matched to µ (w); i.e., ∅ �w µ (w). Similarly, µ is blocked by a firm f if
µ (f) �= Ch (µ (f) , qf ,�f). We say that a matching is individually rational if
it is not blocked by any individual agent. A matching is blocked by a worker-
firm pair (w,f) if worker w prefers being matched to f than to µ (w) and f
would like to hire w; i.e., f �w µ (w) and w ∈ Ch (µ (f) ∪ {w} , qf ,�f).

Definition 2 A matching µ is pair-wise stable if it is not blocked by any
individual agent or any worker-firm pair.

We denote by PS (F ,W , q,�) the set of pair-wise stable matchings of
market (F ,W , q,�).

Let W be a subset of W. A matching µ is blocked by a workers-firm
coalition (W, f) if all workers w in W prefer being matched to f than to
µ (w) and f would like to hire W ; formally if for all w ∈W , f �w µ (w) and
W ⊆ Ch (µ (f) ∪W, qf ,�f). We say that (W,f) forms a blocking coalition
of µ. Let Wf,µ be the set of workers who prefer f to their match under µ
and, thus, they are potential members of blocking coalitions of µ. Formally,
Wf,µ = {w ∈ W | f �w µ (w)}.

Definition 3 A matching µ is group-stable if it is not blocked by any indi-
vidual agent or by any workers-firm coalition.
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We denote by GS (F ,W , q,�) the set of group-stable matchings of mar-
ket (F ,W, q,�). Obviously, if a group- stable matching is also pair-wise
stable, moreover core stability defined by weak dominance and group stabil-
ity coincide in such markets.4

3 Strategy proofness

We aim to design a core consistent procedure which assigns to all agents in
the market a match at least as preferred as their status- quo, and Pareto
undominated. Unfortunately, none of them is strategy- proof.

Definition 4 A mechanism is strategy proof if it is a dominant strategy, for
all agents, to report their true preferences.

We now state the negative result.

Theorem 1 In senior matching markets, there is no core- consistent and
strategy- proof mechanism that chooses a matching Pareto undominated and
which guarantees to all agents a match at least as preferred as the status-
quo.

Example 1 shows that any core- consistent procedure is manipulable.
Example 1 Consider the market (F , W , q, P ) where F = {f1, f2, f3},
qf1 = qf2 = qf3 = 1, W = {w1, w2, w3} and true preferences are

�f1 �f2 �f3 �w1 �w2 �w3
w3 w3 w1 f3 f1 f2
w2 w2 w3 f1 f2 f1
w1 f3

Suppose that the status- quo is

µ0 =

(
f1 f2 f3
w1 w2 w3

)
.

There are two matchings Pareto- superior to the status- quo:

µ1 =

(
f1 f2 f3
w2 w3 w1

)
and µ2 =

(
f1 f2 f3
w3 w2 w1

)
.

4See Roth (1984).
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Notice that µ1 is stable while µ2 is blocked by (f2,w3), thus a core- consistent
procedure should pick µ1. Nevertheless, if f1 reports �′f1 where it prefers w3
to w1 and w2 is not acceptable, the only matching Pareto superior to the
status- quo is µ2, which has to be selected, even if it is not core stable. Thus,
in this market, firm 1 would gain by misrepresenting its preferences through
�′f1 since, manipulating, it is matched to its favorite worker.

4 Status- quo stability

We guaranty the status- quo for all agents. Thus, to be considered as a valid
objection to a matching, blocking coalitions have to be compatible with a
reassignment that make all agents at least as well off as at the status- quo.
In this sense, in Example 1, the blocking pair (f2,w3) is not valid when firm
1 reports �′f1 since, if f2 and w3 are matched, w2 cannot be reassigned to a
firm preferred to her status- quo, f2.

Definition 5 Consider a market (F ,W, q,�), a matching µ is status-quo

stable if for all blocking coalitions (f,W ) ⊆ F × 2W to µ, no matching where
f and W are assigned to each other, possibly with other workers, is Pareto
superior to µ.

In this definition of stability, there is no conflict between blocking coali-
tions and Pareto optimality. Hence, given a status- quo µo, looking for match-
ings status- quo stable and Pareto superior to µo is equivalent to look for the
set of matchings Pareto superior µo which is not Pareto dominated by an-
other matching. Denote the set SQS(µo), by transitivity of preferences it is
not empty whenever the there is at least one matching Pareto superior to
the status- quo. Example 2 shows that picking any matching in SQS(µo) is
not a core consistent procedure.

4.1 Core consistency

Next example shows that in SQS(µo), some matchings can be core stable
and others not.

Example 2 Consider the market (F ,W , q, �) where F = {f1, f2, f3, f4, f5,
f6, f7, f8, f9}, qf1 = qf2 = qf3 = 1,W = {w1, w2, w3, w4, w5, w6, w7, w8, w9}
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and � is given by the following profile

�f1 �f2 �f3 �f4 �f5 �f6 �f7 �f8 �f9
w1 w9 w4 w3 w5 w6 w7 w8 w2
w3 w2 w1 w1 w5 w8 w9
w2 w3 w6 w7

�w1 �w2 �w3 �w4 �w5 �w6 �w7 �w8 �w9
f5 f2 f1 f3 f5 f6 f7 f8 f8
f1 f9 f4 f6 f5 f8 f7 f2
f3 f1 f2

Suppose that the status- quo is

µ0 =

(
f1 f2 f3 f4 f5 f6 f7 f8 f9 ∅ ∅
w2 w3 w1 ∅ w6 w5 w8 w7 ∅ w4 w9

)
.

The two following matchings belong to SQS(µo):

µ1 =

(
f1 f2 f3 f4 f5 f6 f7 f8 f9 ∅ ∅
w3 w2 w1 ∅ w5 w6 w7 w8 ∅ w4 w9

)
,

µ2 =

(
f1 f2 f3 f4 f5 f6 f7 f8 f9
w1 w9 w4 w3 w5 w6 w7 w8 w2

)
,

where µ1 is blocked by (f1, w1) and µ
2 is core stable.

Thus, our aim is not only to reach a matching in SQS(µo) but, whenever
it exists, to select a core stable one. The Status- Quo stability procedure
performs the task for one-to-one markets.

4.2 The Status- Quo Stability (SQS) procedure

The SQS- procedure begins by a graph representation of our problem.

1- Each node represents a match as defined by the status- quo µo; if
µo(f) = w, (f, w) is assigned a node, if µo(f) = ∅, f is assigned a node and
if µo(w) = ∅, w is assigned a node.

2- From each node with a worker w, draw all arrows towards5 firms f
such that both w and f prefer each other to their respective status- quo.

5thus, it is a directed graph.
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3- Identify all cycles and paths defined as follows.

A cycle is an ordered set S of pairs (f, w) which appear only once in S,
where, in the graph constructed as mentioned in 1 and 2:

a. from each node (f, w) in S an arrow points another node in S,
b. (f, w) is pointed by an arrow from another node in S, moreover
c. (f ′, w′) follows (f, w) in S only if w points f ′ in the graph, finally the

first pair in S is said to follow the last one.

A path is an ordered set S with one and only one single worker w, one
and only one firm f and possibly pairs (f ′, w′), they all appear only once in
S and, in the graph constructed as mentioned in 1 and 2,

a. the node with the single worker w points another node in S and is the
first element in the set,

b. for each node (f ′, w′) in S there is one arrow that points another node
in S and (f ′, w′) is pointed by an arrow from another node in S,

c. the node with the single firm f is pointed by another node in S and is
the last element in the set,

d. [(f ′, w′) or f ′] follows [(f, w) or w] in S only of [(f, w) or w] points
[(f ′, w′) or f ′] in the graph.

Let P be the set of all pathes and cycles and denote p an element in P .
We are now ready to construct all possible Pareto improvements that may
lead the market to status- quo stability, and select one of them.

4- A composition c P is a subset of P such that:
a. for all p, p′ ∈ c, p ∩ p′ = ∅ and
b. for all p” ∈ P which does not belong to c, there is at least one p ∈ c

and p” ∩ p �= ∅.

Let C be the set of all compositions. We say that a worker w prefers
composition c to composition c′ if she prefers the firms which follows her in
c to the one in c′.

5- Given a status- quo µo and a composition c in C, the induced matching
µ(µo, c) is such that:

a. if a firm f ′ is involved in the composition c, it is assigned the worker
w of the previous element in c;

b. else it is assigned the same match as at µo.
Let I(µo, C) the set of induced matching by all compositions in C.
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5.1- If I(µo, C) = {∅} then SQ− S(µo) := µo,
Else let i := 1,

5.2- If I(µo, C) = {∅}, SQ− S(µo) := µ
1 as defined below.

Else pick a worker and let her choose within I(µo, C) her favorite
matching in I(µo, C); if she is indifferent between different matchings, pick a
second worker to break ties and so on and so forth until a single matching µi

is selected.
5.3- Let all firms f make offers to workers preferred to their match µi(f).
5.4- If no offer is accepted, SQ− S(µo) := µ

i,
Else I(µo, C) := I(µo, C)�µ

i, i := i+ 1; go to 5.2.
Proposition 1 states that our SQ- S procedure finds a status- stable match-

ing and it is a core consistent procedure.

Theorem 2 Consider a market (F ,W, q,�), qf = 1 for all f ∈ F and a
status quo µo then

1- SQ− S(µo) is status-quo stable and Pareto superior to µo,
2- whenever the set of core-stable matchings Pareto superior

to µo is non-empty SQ− S(µo) is the core stable matching
unanimously preferred by workers (and worst for firms).

Proof of Theorem 2.

We observe that only arrows representing blocking pairs are drawn on the
graph (step 2) since others cannot lead to a Pareto improvement. So as such a
blocking pair to be completed and the market reach a Pareto improvement,
dropped mates (if any) will also have to be assigned a blocking mate (by
definition preferred to the status- quo). Thus, one needs to identify all the
ordered sets of blocking pairs, with the interpretation that [(f ′, w′) or f ′

follows [(f, w) or w] if (w, f ′) is the blocking pair involving w and f ′ to be
completed6, such that:
a- if completed simultaneously, the market experiences a Pareto improvement
and
b- if one or some of them is withdrawn from the set, there is no such Pareto
improvement.
Obviously Cycles and Pathes are such sets; we show that they are the only
ones. It is also clear that no blocking pair can appear twice in the sets
since one cannot complete two blocking pairs simultaneously. We adopt the

6Both w and f ′ might be involved in blocking pairs with other agents in the set.
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convention that a set begins by a node with a worker (and possibly a firm)
pointing toward another node (if there is no “pointing” in the set, neither
there are blocking pairs). Since blocking is simultaneous, the order only
matters to keep track of who blocks with who. Thus, if there is an unmatched
worker in the set, there is no loss of generality in shifting all elements, ranking
this unmatched worker first and following the original ordering; that is why
if there is an unmatched worker in the set, we put it first in the set.
Case 1 The set starts with an unmatched worker w.
If this worker blocks with an unmatched firm f , {w, f} is the Pareto improv-
ing set as defined above, it is a path.
If this worker blocks with a matched firm f , the mate of f , w′, will have to
be assigned a firm f ′ in the set preferred to the status- quo. If this firm is
unmatched, the set is {w, (f,w′), f ′}, it is a path. Else a pair (f ′, w′′) has
to follow (f, w′) so as to assign w′ a firm preferred to her status quo. One
can reiterate the argument, until an unmatched firm appear in the sequence.
If such unmatched firms did not exist, the blocking pairs specified by the
ordered set would not be Pareto improving for the worker of the last pair,
who would remain unmatched. Thus, the set is a path in any case. If there
is more than one unmatched worker in the set, by previous argument they
would generate independent pathes since no pair can appear twice. Hence
one of the pathes might be withdrawn from the set without altering the
Pareto improvement of agents in the other set.
Case 2 The set starts with a pair (f, w).
By our convention, there is no unmatched worker in the set. So as to
compensate f from the fact that w blocks with another firm f ′, the last
element of the set in the sequence has to be a couples (fn, wn) where wn

blocks with f . We observe that no unmatched firm can be included in the
set, since the firm will not point any other agent, in particular couples, as
required. Thus, the set is a cycle.
Hence, P contains all sets of blocking pairs such that, if they are completed
simultaneously, all agents involved in the set will improve with respect to
the status- quo. Of course it might be that unmatched firms or workers,
or matched worker- firm pairs are involved in many pathes and cycles and,
nevertheless one cannot complete simultaneously many blocking pairs. A
composition of P (Step 4) is a set of compatible cycles and pathes such that
no other element in P is compatible with them.
We argue now that there is no matching Pareto superior to the one generated
from a composition since the algorithm stops:
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· either at step 5.4 when a matching is stable (in which case there is no
matching Pareto superior to it, else some agents would block);
· or at 5.1, when µ1 is selected. Consider step (5.2) that lead to the selection
of µ1. If only one worker is necessary to select µ1, it means that this worker
strictly prefers µ1 to any other matching in I(µo, C). If many workers are
necessary to pick µ1, notice that each time a matching in I(µo, C) is discarded
by a worker, the discarded matching is strictly worst than µ1 for this worker.
Thus, µ1 is not Pareto dominated by any matching in I(µo, C).
We prove now that the procedure picks the workers optimal stable matching
whenever it exists. We know from the lattice Lemma (Knuth 1976) that in
one-to-one markets, if two stable matchings are not comparable for workers,
by letting them choose their best mate between both matchings, not only the
picking function leads to a matching but a stable one. Of course, if the two
matchings are Pareto superior to the status- quo, so is the new matching.
Thus, if there exist stable matchings Pareto superior to the status- quo, one
of them is unanimously preferred by workers. That is why we let workers
choose their favorite matchings in I(µo, C) and check if the chosen one is
stable, i.e., if no offer emitted by firms is accepted by any worker, this is the
outcome matching. Else another matching is chosen by new workers until
a stable matching is found. If the all set of status- quo matching has been
scrutinized and none of the matching is stable, the outcome matching is the
first tentative matching.�

4.3 Comments

Note that, if none of the status- quo stable matchings is core stable, workers
might not agreement on a ranking of matching in SQS(µo), thus the order
in which they are picked in the procedure might affect the output matching.

Suppose now that the market is disrupted by changes in the population of
agents. Then, a preferred status- quo does not insure a preferred outcome of
the SQ−S procedure. Indeed, if one is the best alternative for her/its match,
she/it will not let one switch to another position. That is, the status- quo
gives power to both matched agents. thus, the advantage of being guaranteed
a minimum welfare might be balanced by the fact that switching to a better
position is conditioned by the simultaneous improvement of the match.

This simultaneous improvement requires a central intervention since, un-
like in “top trading cycle procedures”, agents might belong to two different
Pathes or Cycles, hence compatible reassignments will not occur without
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coordination. Moreover stage 5 is necessary for the SQ-S procedure to be
core consistent. This suggests that dealing with the problem requires a cen-
tral institution. Indeed weakened stability and the related procedure are
centralized in nature.

Finally, the status- quo stability procedure suffers two main drawbacks:
first, like any “top trading cycle” procedures, it is not operative in large
markets, second, it is not adaptable to many- to- one markets when firms
have preferences which are not responsive. We will argue that the Weakened
Stability algorithm does not suffer such inefficiencies.

5 Branch and Bound Algorithms and weak-

ened stability

5.1 The optimization problem

We assume that preferences of firms are represented by cardinally measurable
and comparable utility functions, generically denoted uf for firm f . Moreover
we choose the reversed order representation: the lower the utility, the better;
and the best subset of worker is assigned utility 0.

The more a blocking coalition improves the welfare of a firm, the stronger
objection it constitutes to a matching. We follow an “utilitarian” approach
and, for all matchings, we sum the utility improvement for firms from all
blocking coalitions.

Definition 6 Consider a market (F ,W , q,�); for a matching µ, let

i ≡
∑

All blocking coalition (S,f) of µ.

uf(µ(f))− uf (S),

then µ is said to be weakened stable of order i.7

Notice that a matching weakened stable of order 0 is core stable. Denote
by WSi(µo)

8 the set of matchings that are weakened stable of order i for
matching µo. We now define the utilitarian social welfare function W (µ) =

7The order of stability depends on the utility representation chosen, which is no problem
for our purpose.

8We let the reference to the market implicit so as to save notations.
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∑
f∈F uf(µ(f)) that we aim to minimize, choosing a matching within the set

of weakened stable matchings of the lowest order.
Formally, given a status- quo µo, our problem is

minµ is Pareto superior to µ0W (µ)
s.t.

µ ∈WSi(µo) and
WSj(µo) = ∅ if j < i.

(1)

Hence, a matching µ is selected instead of another matching µ′ if its order
of weakened stability is lower or, in case of a tie, W (µ) < W (µ′). In other
words, if one considers two matchings µ and µ′, µ is preferred to µ′ in the
following cases: a- whenever the order of stability of µ is lower than the
one of µ′, b- whenever the order of stability of µ or µ′ are the same but
W (µ) < W (µ′); otherwise µ and µ′ are indifferent. Notice that the status-
quo is the solution to the program when it is not Pareto dominated. The
following algorithm find this (these) optimal matching(s).

5.2 The Weakened Stability (W.S.) algorithm

Denote WSP (µo) the set of matchings produced by the algorithm when the
input matching is µo. For all firm f ∈ F , let Bf(µo) = {W ⊆ 2W |W �f
µo(f)} be the set of subsets of workers f prefers to its status- quo, and for
all worker w ∈ W, let Bw(µo) = {f ∈ W|f �w µo(w)} be the set of firms
w prefers to her status- quo. Let A = ×f∈F(Bf(µo) ∪ {∅}), where for all
elements in A, the subset of worker in the f th entry is interpreted as being
assigned to firm f . Notice that A contains all matchings Pareto superior to
µo, that is why we will restrict our attention to assignations in A. We also
observe that some of the matchings in A may not be Pareto superior to µo
since preferences of workers are not taken into account in A. Finally, some
assignations in A may even not be matchings since, for instance, a worker
might be assigned to many firms.

The W.S. algorithm belongs to the family of Branch and Bound (B.B.)
algorithms. This technique is one of the most commonly used in optimization
problems9 when all or some of the decision variables are discrete (integer or
mixed programing) and no characterization of optima exists; namely unlike

9Branch and Bound algorithms are used to solve, for instence, the classical assignment
problem in operation research.
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first and second order conditions in differential calculus environments. As
a consequence, the all set of decision variables, A in our case, has to be
scrutinized.

In our problem, there are as many decision variables as firms in the mar-
ket, hence, the number of solutions can be very large: we call solution any
matching, a matching that solves (1) is an optimal solution. The efficiency
of B.B. algorithms relies on the fact that, instead of analyzing a particular
solution at a time, they discard sets of solutions. We denote R ≡ (W1, ... ,
Wn, ∅, ... , ∅), R ⊆ A, the set of solutions where the subset of workers Wf is
assigned firm f for f = 1, ... , n, and there is not specific subset assigned to
firms f = n+ 1, ... , F .

The stack, S, is the set of solutions that the algorithm still has to scru-
tinize. At each iteration, the algorithm picks a set of solution R ≡ (W1, ... ,
Wn, ∅, ... , ∅) in S, deletes it from the stack (S := S \ R), and perform the
following tests:

a) When the tentative optimal solution10 is core stable, is the objective
function of the tentative solution smaller than the upper bound of R?

b) Are all unassigned firms worst than the status- quo for some of the unas-
signed workers?

c) Can one assign to each of the unassigned firms in R a group of workers
preferred to the status- quo?

If the answer to at least one question is positive, the optimal solution
cannot belong to R, another set of solution in the stack is considered. Else,
one cannot discard solutions in R = (W1, ..., Wn, ∅, ..., ∅), we break off R
in subfamilies of the form R′ = (W1, ... , Wn, Wn+1, ∅, ... , ∅). There are
as many subfamilies as subsets of workers unassigned in R preferred to the
status- quo by firm n + 1. Thus, for each Wn+1 in Bn+1 and W\ ∪nf=1 Wf

Pareto superior to the status- quo, a subfamily of solutions R′ = (W1, ... ,
Wn+1, ∅, ... , ∅) has to be inspected. These solutions are included in the
stack, i.e., S := S ∪ {R′} for all such R′.

To formalize the algorithm, for all R = (W1, ... , Wn, ∅, ... , ∅) we define
ZL(R), the upper bound of the objective function of problem (1)11 reached
by solutions in R; formally

10The tentative optimal solution is the solution which is optimal within the set of solu-
tions already scrutinized.

11ZL(R) ≥ minµ∈RW (µ)
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ZL(R) =
n∑

f=1

uf(Wf )+
F∑

f=n+1

min{uf(Wf )|Wf ∈ Bf(µo),Wf ⊆ W\∪
n
f=1Wf}.

Thus, ZL(R) is the minimal value reached by the objective function when all
firms n+ 1, ... , F are assigned their favorite subset of workers among those
not assigned at R. We call R the assignment in R for which the value of the
objective function is ZL(R). It might be that R is neither a matching nor
stable, in any case if this lower bound does not improve upon the tentative
optimal solution when the last one is stable of order 0, no matching in R will
be optimal, therefore solutions in R are discarded12.

We keep the record of the following information: in WSP (µt) the best
current solution in the process, in it its order of weakened stability and in
ZU the value of its objective function. Notice that WSP (µt), it and ZU are
ordered sets where the first entry corresponds to the first tentative solution
and the last entry corresponds to the tentative current solution.

We now describe the algorithm in detail, given a market (F ,W , q,�) and
a status- quo µo.

1. Initial Round

• For all f ∈ F define the function Bf :M→ 22
W

such that

Bf (µ) = {S ⊆ 2W | #S ≤ qf and S �f µ(f)}. [Define the subsets
of workers preferred by firms to a matching µ.]

• For all w ∈ W define the function Bw :M→ 2F∪{∅} such that

Bw(µ) = {m ∈ F∪{∅}|m �w µ(w)}. [Define the set of firms
preferred by workers to a matching µ.]

• For all f ∈ F define the function Wf : 2
2W×2F∪{∅} → 22

W

such
that

Wf (µ) = {W ∈ W | W ⊆ Bf(µ) and for all w ∈ W , f ∈ Bw(µ)}.
[Define the set of subsets of workers who block µ with f .]

• Define the function i0 : (2
2W )#F → � such that

i(µ) =
∑

f∈F

∑
W∈Wf (µ)

uf (µ(f)) − uf (W ) [i(µ) is the order of

stability of matching µ.]

12The use of the tentative optimal objective values motivates the term Bound in Branch
and Bound Algorithm.
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• For all R ⊂ A, define the function ZL : A→ � such that ZL(R) =∑n

f=1 uf(Wf)+
∑F

f=n+1min{uf(Wf)|Wf ∈ Bf (µo),Wf ⊆ W\∪nf=1
Wf}.

• WSP (µt) = µo. [The initial tentative optimal solution is the
status- quo.]

• ZU = ZL(µo). [The objective value of the initial tentative solution
is the one of the status- quo.]

• i0 := i(µo) [io is the order of stability of the status- quo.]

• S = {(∅, ..., ∅)}. [At the beginning, we have to review all possible
solutions.]

• t ≡ 1.

Iteration

2. Selection within the stack S, of a solution.

If S = ∅ then stop. [If the stack is empty, there are no more subsets to
analyze and the tentative optimal solution is the solution to (1).]
Otherwise, let R be such that R = argminR′∈S ZL(R

′), S := S\{R}.
[We select the family of solutions with minimal lower bound.]13

3. Fathoms. One discards R or checks whether the optimal solution may
belong to R.

3.1 If it−1 = 0 and ZU < ZL(R) then go to 2. [If the tentative optimal
solution is core stable and its objective function is smaller than
the lower bound of R, solutions in R are discarded.]

3.2 If {fn+1, ..., fF , {∅}} ∩Bw(µo) = ∅ for (at least) one w ∈ W\ ∪
n
f=1

Wf , then go to 2. [If all unassigned firms are worst than the status-
quo, the solution cannot belong to R for (at least) one unassigned
worker, R is discarded.]

13So as the algorithm to be more efficient, one would idealy choose the family of solution
with lower bound of stability. Nevertheless this lower bound is not computable, that is
why we use as lower bound the value of the objective function.

19



3.3 If for some firm f ∈ {fn+1, ..., fF} no Wf ∈ Bf (µo) is such that
Wf ⊆ {W ∪ {∅}}\ ∪nf=1 Wf , then go to 2. [If one cannot assign
a group of workers preferred to the status- quo to each of the
unassigned firms, R is discarded.]

3.4 If n + 1 < F go to 4 [If more than one firm is not assigned any
subset of workers, the solution is portioned in subsets of solutions
...].

Else for f = F define WF = {W ⊆ W\ ∪F−1f=1 Wf such that [...
else subsets in WF are the only ones which complete R to form a
matching Pareto superior to the status- quo ...]

a- W ∈ BF (µo),

b-F ∈ Bw(µo) for all w ∈W

c- if µo(w) �= ∅ for w ∈ W\ ∪F−1f=1 Wf , then w ∈ WF}. [... in
particular matched workers at the status quo have to be included.]

3.4.1 If WF = ∅, go to 2.

Else, let N ≡ #WF and l ≡ 1.

3.4.2.1 If l ≤ N , select oneW ∈WF , delete it fromWF and construct
R′ = (W1, ... , W ).

Else t = t + 1, go to 2. [One completes R assigning F to an
acceptable subset of workers, including a fortiori those who are
matched at the status- quo.]

3.4.2.2 If i(R′) < it−1 or (i(R
′) = it−1 and ZL(R

′) ≤ ZU)

then it = i(R
′), WSP (µt) = R

′, ZU = ZL(R
′). [A new tentative

solution has been detected.]

In any case l = l + 1, go to 3.4.2.1..

4. Branching: in case we cannot discard R, we break it off in smaller
subsets. Notice that only Pareto superior matchings are included in
the stack.

S := S ∪ {(W1, ... , Wn+1, ∅, ... , ∅) ⊆ A such that

a- (W1, ... , Wn, ∅, ... , ∅) = R, [New solutions in S are subfamilies of
R ...]
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b-Wn+1 ⊆ W\∪nf=1Wf , [... obtained by complementing R with subsets
of available workers ...]

c-Wn+1 ∈ Bfn+1(µo), fn+1 ∈ Bw(µo) for all w ∈Wn+1}. [ ... compatible
with the Pareto criterion.]

Then go to 2.

We are not ready to state our main result.

Theorem 3 Consider a market (F ,W , q,�) and a status quo µo thenWSP (µt)
is a solution to (1).

Proof of Theorem 3.
We observe that the algorithm is well- behaved in the sense that it always

ends. To see this, notice first that, when an iteration ends up by a branching,
one does not add new solutions to the stack but keep the subset of solutions
selected within a partition of the solution consider during the iteration (only
the solutions that might be Pareto superior to the status- quo). Since the
number of firms is finite, so is the number of iterations which end up by a
branching. Furthermore, because at iterations which do not end up by a
branching, a solution is deleted from the stack and the algorithm does not
cycle by construction, the stack will end up empty.

So as to prove that the algorithm gives the optimal solution to problem (1),
we argue that none of the three following errors occurs.

Error 1: A solution has not been scrutinized when it should have been.
At the initial Round, all possible solutions preferred to the status- quo by
firms are included in the stack. Solutions are eliminated from the stack
when it is analyzed. Then, either it is discarded, selected as a new tentative
solution or one proceeds to branching. In this case only solutions which are
Pareto superior to the status- quo are introduced in the stack (other solutions
cannot be optimal for (1)) and, thus, will be analyzed later on.

Error 2: A solution has been discarded which should not have been discarded.
In a given iteration, assume that the tentative optimal solution, µt, registered
in WSP (µt), it and the corresponding lower bound ZU , is correct, i.e., its
is optimal within the set of solutions already scrutinized. The solution R is
discarded at the following steps:
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3.1. When the tentative matching is core stable and the lower bound of R
is greater than the objective value of the tentative solution, no solution in R
can be optimal.
3.2. If for (at least) one worker unassigned at R none of the firms unassigned
at R is at least as good as the status- quo, no solution in R can be incentive
compatible with µo for this worker.
3.3 If for (at least) one firm unassigned at R none of the subsets of workers
unassigned at R is at least as good as the status- quo, no solution in R can
be incentive compatible with µo for this firm.
3.4. solutions in R which are not Pareto Superior to the status- quo are
discarded, they cannot be optimal solutions to (1).
3.4.2 and 3.4.3 All matchings in R Pareto superior to the status- quo are
compared to the tentative solution and discarded if their order of stability is
higher than the one of status- quo or. in case of a tie, when their objective
value is higher.
Hence, if the tentative solution is correct, so is the fact to discard families of
solutions at 3.1, 3.2, 3.3, 3.4, 3.4.2 and 3.4.3.

Error 3: a solution has been selected as tentative optimal solution which
should not have been selected.
In a given iteration, assume that the tentative optimal solution, µt, registered
in WSP (µt), it and the corresponding lower bound ZU , is correct, i.e., its
is optimal within the set of already scrutinized solutions. The solution R is
selected at the following steps:
3.4.3 All solutions in R which are Pareto superior to the status- quo are
compared to the tentative solution and selected as the new tentative solutions
if their indicia of stability and their value are lower than those of the tentative
solution.
Hence, if the tentative solution is correct, so is the fact to select a new
tentative solution at 3.4.3.�

In particular, if the status quo is the empty matching, our algorithm
finds a core stable matching whenever such matching exists, dispensing of
the condition of q-substitutability.

Corollary 1 Consider a market (F ,W , q,�) and let the status-quo µo be
the empty matching. Then, when a core stable matching exists, the output of
the WS algorithm is core stable.
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Moreover a solution to (1) cannot be Pareto dominated since, by transi-
tivity of preferences, all blocking coalitions to a matchings are also blocking
coalitions to a Pareto inferior matching.

Corollary 2 WSP (µt) is status- quo stable.

6 Concluding remarks

The WS algorithm selects the best core stable for firms in particular settings
where it always exists. There, results by Dubins and Freedman (1981), Roth
(1982-1984) and Demange, Gale and Sotomayor (1986) commented in the
introduction apply. Nevertheless, for simple, Examples 3 in the Appendix
and Proposition 1 suggest that the lack of existence of a core stable solution
is no pathological case in such markets. Unfortunately, neither seems ma-
nipulability of core consistent procedures (Example 1) to be a sophisticated
behavior. We believe that the Weakened Stable procedure is a convincing
approach to deal with the problem for the following reasons. First, it is a
core consistent procedure and core stability has shown to be a remarkable
property of enforceability. Second there is no conflict between Weakened
stability and Pareto efficiency: if a matching dominates another in Pareto
terms, its order of stability is lower. Third, comparability of workers’ ca-
reer is a usual practice. In many countries civil servants are associated an
index taking into account their seniority, professional performance or family
situations that make them comparable. Thus, building up a social welfare
function does seem reasonable. In our example of academic market, the
social welfare function is indeed an objective function for universities. More-
over, these functions depends on observable variables, coping partially with
the problem of manipulability. Finally Branch and Bound algorithm are so
versatile tools that a large scope of variations from problem (1) is certainly
solvable by these procedures.
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Abdulkadiroğly A. and Sönmez T. (1999) “House allocation with existing
tenants,” Journal of Economic Theory, 88, 233-260.

Bird C.G. (1984) “Group incentive compatibility ina a market with indi-
visible goods,” Economics Letters, 14, 309-313.

Blum Y. Roth A.E. , and Rothblum U.G. (1997). “Vacancy chains and
equilibration in senior-level labor markets,” Journal of Economic Theory 76,
362-411.

Cantala D. (2004). “Restabilizing matching markets at senior level,”
Games and Economic Behavior, 48- 1, 1-17.

D’Aspremont C. and Gevers L. (1977). “Equity and informational basis of
collective choice,” The Review of Economic Studies, Vol. 44, No 2, 199-209.

Gale D. and Shapley L. S. (1962). “College admissions and the stability
of marriage,” American Mathematical Monthly 69, 9-14.

Knuth D. E. (1976). “Marriages stables”. Montreal: Les Presses de
l’Université de Montreal. {2,3}

Ma J. (1994). “Strategy- proofness and the strict core in a market with
indefeasibilities,” International Journal of Game Theory, 23, 75- 83.

Maskin E. (1978). “A theorem on Utilitarianism,” The review of Eco-
nomic Studies, Vol. 45, No 1, 93-96.

Moulin H. (1995) Cooperative microeconomics. Princeton: Princeton
University Press.

Papaï S.(2000) “Strategyproof assignment by hierarchical exchange,” Econo-
metrica 68, 1403-1433.

Roth A.E. (1982) “Incentive compatibility in markets with indivisible
goods,” Economics letters, 9, 127- 132.

Roth A.E. (1984). “The evolution of the labor market for medical interns
and residents: a case study in game theory”, Journal of Political Economy
92, 991-1016.

Roth A.E. and Peranson E. (1999). “The redesign of the matching mar-

24



ket for American physicians: some engineering aspects of economic design”,
American Economic Review 89, 748-780.

Roth A.E. and Sotomayor M.O.A. (1990). “Two-sided matching. A study
in Game Theoretical Modeling and Analysis”, Econometric Society Mono-
graph, Vol. 18, Cambridge: Cambridge University Press.

Roth A.E. and Vande Vate John H. (1990). “Random paths to stability
in two-sided matching.” Econometrica, November 1990, 58(6), 1475-1480.

Shapley L. and Scarf H. (1974) “On cores and indivisibility.” Journal of
Mathematical Economics, 1, 23-37.

Svenson (1999) “Strategy- proof allocation of indivisible goods.” Social
Choice and Welfare, 16, 557- 567.

Zhou L. (1990). “On a conjecture by Gale about one-sided matching
problems.” Journal of Economic Theory, 52, 123-135.

8 Appendix

Example 3 Senior market where no matching Pareto superior to the status-
quo is stable.

Consider the market (F , W, q, �) where F = {f1, f2, f3}, qf1 = qf2 =
qf3 = 1, W = {w1, w2, w3} and � is given by the following profile

�f1 �f2 �f3 and �w1 �w2 �w3
w3 w1 w1 f3 f3 f1
w1 w2 w2 f2 f2 f3

w3 f1

Suppose that the status- quo is

µ0 =

(
f1 f2 f3
w1 w2 w3

)
,

The only matchings Pareto superior to belong to µ0 is:

µ =

(
f1 f2 f3
w3 w1 w2

)
,
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which is blocked by (f3, w1).

We investigate now the sufficient conditions which guarantee the existence
of a group stable matching Pareto superior to a status- quo. We recall the
following definitions.

Definition 7 A matching µ is worker quasi-stable if it is individually ratio-
nal and for any blocking coalition (S, f) , µ (w) = ∅, for all w ∈ S.

Definition 8 A matching µ is firm quasi-stable if it is individually rational
and for any firm f, worker w ∈ µ (f) and subset of workers S ⊆ Wf,µ,

w ∈ Ch (µ (f) ∪ S, qf ,�f).

Definition 9 A matching µ is quasi-stable if it is individually rational and
for all blocking coalition (S, f), for all w ∈ µ (f), w ∈ Ch (µ (f) ∪ S, qf ,�f )
and µ (w) = ∅, for all w ∈ S.

Proposition 1 Consider a market (F ,W , q,�) and a matching µ0. Suppose
that the set of matchings Pareto superior to µo is non- empty, we know that
one of them is core-stable when firms have q-substitutable preferences and the
input matching is quasi-stable.

Proof. The argument is constructive: if the matching of departure is quasi-
stable, in particular it is firm quasi- stable. Since firms have q-substitutable
preferences, Proposition 1 in Cantala (2004) shows that applying his modified
version of the D.A. algorithm leads to a core stable matching and that all
along the sequence of tentative matchings, workers are never dismissed and all
assignations are firm quasi-stable. Since original blocking pairs only involve
unmatched workers by quasi-stability, resolving them makes no firm worst
off and no new blocking coalition appear along the process. Thus, all agents
get better assignment, no new blocking pair appears, all tentative matchings
are quasi- stable and the resulting matching, say µ, is Pareto superior to the
status-quo matching. Finally since µ is stable, it is Pareto efficient.

One cannot dispense of q-substitutability since, then, it might be that
no stable matching exists. Next example shows that quasi-stability is also
necessary for Proposition 1 to hold.

Example 4 Consider the market (F , W , q, P ) where F = {f1, f2, f3},
qf1 = qf2 = qf3 = 1, W = {w1, w2, w3} and � is given by the following
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profile
�f1 �f2 �f3 �w1 �w2 �w3
{w1} {w3} {w2} {f1} {f1} {f3}
{w2} {w1} {w3} {f2} {f3} {f2}

Suppose that the worker quasi stable status- quo is

µ0 =

(
f1 f2 f3 ∅
w2 ∅ w3 w1

)
,

which is worker quasi- stable. The only matching Pareto superior to µ0 is

µ1 =

(
f1 f2 f3
w2 w1 w3

)

which is blocked by (f1, w1).
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