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Abstract

There are various ways in which strategic games may exhibit forms of symmetry. A common aspect
of symmetry, which enables the compact representation of games even when the number of players
is unbounded, is that players are incapable of distinguishing between the other players. We define four
classes of symmetric games by additionally considering thefollowing two characteristics: the availability
of identical payoff functionsand the ability todistinguish oneselffrom the other players. Based on
these varying notions of symmetry, we investigate the computational complexity of finding pure Nash
equilibria. It turns out that in all four classes of games equilibria can be found efficiently when the
number of actions available to each player is held constant.For most succinct representations of multi-
player games, the same computational problem has been shownto be intractable. Furthermore, we show
that the availability of identical payoff functions greatly simplifies the search for equilibria.

1 Introduction

In recent years, the computational complexity of game-theoretic solution concepts (both in cooperative
as well as in non-cooperative game theory) has come under increasing scrutiny. A major obstacle when
considering non-cooperative strategic-form games with an unboundednumber of players is the exponential
size of the naive representation of the payoffs. More precisely, a general game in strategic form withn
players andk actions per player comprisesn·kn numbers. Computational statements over such large objects
are somewhat questionable for two reasons [cf. Papadimitriou and Roughgarden, 2005]. First, the value
of efficient, i.e., polynomial-time, algorithms for problems whose input size is already exponential in a
natural parameter (the number of players) is doubtful. Secondly, most, if not all, “natural” multi-player
games will hardly be given as multi-dimensional payoff matrices but rather in terms of some more intuitive
(and compact) representation. A natural and straightforward way to simplify the representation of multi-
player games is to somehow formalize the similarities between players. As a matter offact, symmetric
gameshave been studied since the early days of game theory [see,e.g., von Neumann, 1928, Gale et al.,
1950, Nash, 1951]. The established definition states that a game is symmetric ifthe payoff functions of
all players are identical and symmetric in the other players’ actions,i.e., it is impossible to distinguish
between other players. When explicitly looking atmulti-playergames, there are other conceivable concepts
of symmetry. For instance, dropping the requirement of identical payoff functions yields a more general
class of multi-player games that still admits a compact representation. In this paper, we define four classes of
succinctly representable symmetric multi-player games and study the computational complexity of finding
pure Nash equilibria in games belonging to these classes. The complexity classes appearing in the paper
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Indistinguishability of
oneself and other players

Identical
payoff functions

Indistinguishability
of other players

weakly symmetric – – X

strongly symmetric – X X

weakly anonymous X – X

strongly anonymous X X X

Table 1: Four classes of symmetric games

are the following: the class AC0 of problems that can be solved usingconstant-depth Boolean circuits
with unbounded fan-in1, the class L of problems solvable using onlylogarithmic space,2 the class NP
of problems whosesolutions can be verified in polynomial time. The following relations between these
complexity classes are currently known (P is the class of problems that can be solved in polynomial time,
which is commonly regarded as efficient solvability): AC0

⊂ L ⊆ P ⊆ NP. The hardest problems in
a given class are called “complete” for that class. For example, NP-complete problems are problems for
which no efficient (polymonial-time) algorithm is known.

2 Symmetries in Multi-Player Games

We start by introducing strategic games and the different notions of symmetrystudied in this paper.

Definition 1 (Normal-form game) A game in normal-formis a tupleΓ = (N,(Ai)i∈N,(pi)i∈N) where N
is a set ofplayersand for each player i∈ N, Ai is a nonempty set ofactionsavailable to player i, and
pi : ("i∈NAi) → R is a function mapping each action profile of the game (i.e., combination of actions) to a
real-valuedpayoff for player i.

The unifying feature of the different notions of symmetry we consider is that the available actions are
identical for all players, denotedA = A1 = · · · = An, and that players are incapable of distinguishing be-
tween the other players. The four different classes of symmetric games are then defined by two additional
characteristics, namely (i)identical payoff functionsfor all players and (ii) the ability todistinguish oneself
from the other players (see also Table 1). We formally define these classes as follows.

Definition 2 Let Γ = (N,(Ai)i∈N,(pi)i∈N) a normal-form game with Ai = A j = A for all i, j ∈ N. For any
permutationπ : N → N of the set of players, letπ ′ : AN → AN be the permutation of the set of action profiles
given byπ ′((a1, . . . ,an)) = (aπ(1), . . . ,aπ(n)).

3 Γ is called

• weakly symmetricif pi(a) = pi(π ′(a)) for all i ∈ N and allπ with π(i) = i,

• strongly symmetricif pi(a) = p j(π ′(a)) for all i , j ∈ N and allπ with π( j) = i

• weakly anonymousif pi(a) = pi(π ′(a)) for all i ∈ N, and

• strongly anonymousif pi(a) = p j(π ′(a)) for all i , j ∈ N.

1The fan-in is the number of input wires of a logical gate.
2Both space and time are measured relative to the size of the input.
3That is,π ′ is an automorphism on the set of action profiles that preserves the number of players that play a particular action.
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If two players of aweakly symmetricgame exchange their actions, all other players’ payoffs remain
the same. For two-player games, weak symmetry is not a restriction (action setsof equal size can simply
be achieved by adding dummy actions for one of the players). This may be one of the reasons why weak
symmetry has not received much attention so far.

The additional restriction of identical payoff functions instrongly symmetricgames means that two
players exchanging actions exchange their payoffs as well (while all other players’ payoffs again remain
the same). Numerous well known games like the Prisoner’s Dilemma, Matching Pennies, or Chicken are
examples of (two-player) strongly symmetric games. Nash [1951] has shown that strongly symmetric games
always possess asymmetricequilibrium inmixedstrategies. However, this theorem affords us no computa-
tional advantage when considering pure Nash equilibria.

In a weakly anonymousgame, the payoffs of all players remain the same if two players exchange their
actions. Voting with identical weights can be seen as an example of a weakly anonymous game.

Finally, in a strongly anonymousgame, all players receive the same payoff in each outcome and the
payoff remains the same if two players exchange their actions. This means that strongly anonymous games
are a special case of common payoff (or pure coordination) games, in which every action profile with
maximum payoff trivially is a Nash equilibrium (no player can gain by deviating). Common payoff games
thus belong to the class of games guaranteed to possess a pure Nash equilibrium, as recently discussed
by Fabrikant et al. [2004].

3 Results

We investigated the computational complexity of finding pure Nash equilibria in symmetric games with an
unboundednumber of playersn. The number of actions available to each player (k) was eitherheld constant
(k = O(1)) or growing linearlyin n (k = O(n)). Table 2 summarizes our results.

Two main conclusions that can be drawn from Table 2 are that, for a constant number of actions, symmet-
ric games with identical payoff functions can be solved very easily (in AC0), and that symmetry significantly
facilitates the computation of Nash equilibria: For most succinct representations of multi-player games [Fis-
cher et al., 2006, Schoenebeck and Vadhan, 2006], deciding the existence of a pure equilibrium has been
shown to be NP-complete, even when players just have a constant numberof actions; in common-payoff
games (a superclass of strongly anonymous games) finding a pure equilibrium is PLS-complete.4 This
emphasizes the computational benefit of taking into account symmetries when looking for Nash equilibria.

Future work includes studying the computational complexity of other game-theoretic solution concepts
in symmetric games. Preliminary results indicate that solvability via iterated weak dominance [Moulin,
1979] is a computationally more expensive concept than Nash equilibrium.

constantk growingk

weakly symmetric L NP-complete

strongly symmetric AC0 NP-complete

weakly anonymous L NP-complete

strongly anonymous AC0 PLS-complete

Table 2: Computational complexity of finding pure Nash equilibria in symmetric games

4PLS is the class of polynomial local search problems [Johnson et al., 1988].
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