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Abstract

We embark on an initial study of a new class of strategic (normal-form) games, so-called ranking
games, in which the payoff to each agent solely depends on hisposition in a ranking of the agents in-
duced by their actions. This definition is motivated by the observation that in many strategic situations
such as parlour games, competitive economic scenarios, andsome social choice settings, players are
merely interested in performing optimalrelative to their opponents rather than in absolute measures.
A simple but important subclass of ranking games aresingle-winnergames where in any outcome one
agent wins and all other players lose. We investigate the computational complexity of a variety of com-
mon game-theoretic solution concepts in ranking games and deliver hardness results for iterated weak
dominance and mixed Nash equilibria when there are more thantwo players and pure Nash equilibria
when the number of players is unbounded. This dashes hope that multi-player ranking games can be
solved efficiently, despite the structural restrictions ofthese games.

1 Introduction

A well-studied subclass of games in game theory consists of strictly competitive games for two players,i.e.,
games where the interests of both players are diametrically opposed (such as in Chess). These games admit
a unique rational solution (the minimax solution) that can be efficiently computed (von Neumann, 1928).1

Unfortunately, things get much more complicated if there are more than two players. To begin with, the
notion of strict competitiveness in multi-player games is not unequivocal. Theextension of the common
definition for two-player games, which says that the sum of payoffs in all outcomes has to be constant,
is meaningless in multi-player games becauseanygame can be transformed into a constant-sum game by
adding an extra player (with only one action at his disposal) who absorbs the payoffs of the other players.

In this paper, we put forward a new class of multi-player games, calledranking games, in which the
payoff to each agent depends solely on his position in a ranking of the agents induced by their actions. The
formal definition allows each agent to specify his individual preferences over ranks so that

• higher ranks are weakly preferred,

• being first is strictly preferred over being last, and

• agents are indifferent over other players’ ranks.

This definition is motivated by the observation that in many games of strategy or competitive economic
scenarios, players are merely interested in performing optimalrelativeto their competitors. Besides, one can

1However, in the case of chess, the enormous size of the game in normal-form prohibits the efficient computation of an exact
solution.
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also think of social choice settings where agents strive to determine a completehierarchy among themselves
based on individual preferences that satisfy the conditions listed above.

When moving away from two-player constant-sum games, there are numerous applicable solution con-
cepts. From a computational perspective, an important property of any solution concept is the computational
effort required to determine the solution, simply because the intractability of a solution concept renders it
useless for large problem instances that do not exhibit additional structure. We study the computational
complexity of a variety of common game-theoretic solution concepts in ranking games and deliver hardness
results for iterated weak dominance and mixed Nash equilibria when there aremore than two players and
pure Nash equilibria in games with many players. This dashes hope that multi-player ranking games can be
solved efficiently, despite the structural restrictions of these games.

Remarkably, all hardness results hold forarbitrary preferences over ranks as long as they meet the
requirements listed above. In particular, even simple subclasses like single-winner games (where players
only care about winning) or single-loser games (where players only want to avoid losing) are hard to solve.

2 Related Work

Most of the research on game playing in Artificial Intelligence (AI) has focused on two-player games (see,
e.g., Marsland & Schaeffer, 1990). As a matter of fact, “in AI, ‘games’ areusually of a rather specialized
kind—what game theorists call deterministic, turn-taking, two-player, zero-sum games of perfect informa-
tion” (Russell & Norvig, 2003, p. 161). A notable exception are complete informationextensive-formgames,
a class of multi-player games for which efficient Nash equilibrium search algorithms have been investigated
by the AI community (e.g., Luckhardt & Irani, 1986; Sturtevant, 2004). In extensive-form games, players
move consecutively and apureNash equilibrium is guaranteed to exist (see,e.g., Myerson, 1997). There-
fore, the computational complexity of finding equilibria strongly depends on the actual representation of the
game (see Section 4.3). Normal-form games are more general than extensive-form games because every
extensive-form game can be mapped to a corresponding normal-form game (with potentially exponential
blowup), while the opposite is not the case.

In game theory, several classes of “strictly competitive” games have beenproposed that maintain some of
the nice properties of two-player constant-sum games. For example, Aumann (1961) definesalmost strictly
competitivegames as games where a unique value can be obtained by playing strategies from a certain set.
Moulin & Vial (1978) introduce a class of games that are strategically equivalent to constant-sum games.
The notion of strict competitiveness we consider is remotely related to the notionof spitedefined by Brandt,
Sandholm, & Shoham (2005), where agents aim at maximizing their payoff relative to the payoff of all other
agents.

3 Definitions

3.1 Game-Theoretic Foundations

An accepted way to model situations of conflict and social interaction is by means of a normal-form
game(see,e.g., Myerson, 1997).

Definition 1 (Normal-form game) A game in normal-formis a tupleΓ = (N,(Ai)i∈N,(pi)i∈N) where N
is a set ofplayersand for each player i∈ N, Ai is a nonempty set ofactionsavailable to player i, and
pi : ("i∈NAi) → R is a function mapping each action profile of the game (i.e., combination of actions) to a
real-valuedpayoff for player i.
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2 1

1 3

3 3

1 2

Table 1: Three-player single-winner game. Player 1 chooses rows, player 2 chooses columns, and player 3
chooses matrices. The four dashed boxes denote Nash equilibria.

A combination of actionss∈ "i∈NAi is also called a profile ofpure strategies. This concept can be gener-
alized tomixed strategy profiles s∈ S= "i∈NSi , by letting players randomize over their actions. We have
Si denote the set of probability distributions over playeri’s actions, ormixed strategiesavailable to player
i. In the following, we further writen = |N| for the number of players in a game,si for the ith strategy in
profile s, s−i for the vector of all strategies ins but si , andsk

i for the probability of playeri’s kth action in
strategy profiles. Two-player games are also calledbimatrix games, and games with rational payoffs are
calledrational games.

3.2 Ranking Games

The situations of social interaction this paper is concerned with are such that outcomes are related to a
ranking of the players,i.e., an ordering of the players according to how well they have done in the game
relative to one another. We assume that players generally prefer higherranks over lower ones and that they
are indifferent to the ranks of other players. Moreover, we hypothesize that the players entertain qualitative
preferences overlotteriesor probability distributions over ranks (cf. von Neumann & Morgenstern, 1947).
For example, one player may prefer to be ranked second to having a fifty-fifty chance of being ranked first
and being ranked third, whereas another player may judge quite differently. Thus, we arrive at the following
definition of therank payoffto a player.

Definition 2 (Rank payoff) Therank payoffof a player i is defined as vector ri = (r1
i , r

2
i , . . . , r

n
i ) ∈ R

n so
that

rk
i ≥ rk+1

i for all k ∈ {1,2, . . . ,n−1}, and r1i > rn
i

(i.e., higher ranks are weakly preferred, and for at least one rank the preference is strict). For convenience,
we assume rank payoffs to be normalized so that r1

i = 1 and rni = 0.

Intuitively, rk
i represents playeri’s payoff for being ranked inkth. Building on Definition 2, defining ranking

games is straightforward.

Definition 3 (Ranking game) A ranking gameis a game where for any strategy profile s∈ S there is a
permutation(π1,π2, . . . ,πn) of the players so that pi(s) = rπi

i for all i ∈ N.

A binary ranking gameis one where each rank payoff vector only consists of zeros and ones, i.e., each
player is equally satisfied up to a certain rank. An important subclass of binary ranking games are games
where winning is the only goal of all players.

Definition 4 (single-winner game) A Single-winner gameis a ranking game where ri = (1,0, . . . ,0) for all
i ∈ N.
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In other words, the outcome space in single-winner games is partitioned inton blocks. When considering
mixed strategies, the expected payoff in a single-winner ranking game equals the probability of winning the
game. Similar to single-winner games, we can definesingle-loser games(like “musical chairs”) as games
where allr i = (1, . . . ,1,0).

An example single-winner game with three players is given in Table 1. A convenient way to represent
these games is to just denote the index of the winning player for each outcome.Nash equilibria are marked
by dashed boxes where a box that spans two outcomes denotes an equilibrium where one player mixes uni-
formly between his actions.2 Curiously, there is a fifth equilibrium in this game where all players randomize
their actions according to the golden ratioφ = (1+

√
5)/2.

4 Solving Ranking Games

Over the years, game theory has produced a number of solution conceptsthat identify reasonable or desirable
strategy profiles in a given game (see,e.g., Myerson, 1997). The key question of this paper is whether the
rather restricted structure of ranking games allows us to compute instances of common solution concepts
more efficiently than in general games. For this reason, we focus on solution concepts that are known
to be intractable for general games, namely (mixed)Nash equilibria(Chen & Deng, 2005; Daskalakis,
Goldberg, & Papadimitriou, 2006),iterated weak dominance(Conitzer & Sandholm, 2005), andpure Nash
equilibria in graphical normal form (Gottlob, Greco, & Scarcello, 2005) or circuitform games (Schoenebeck
& Vadhan, 2006). We do not cover solution concepts for which efficient algorithms are known to exist such
as iterated strong dominance (Conitzer & Sandholm, 2005) or correlated equilibria (Papadimitriou, 2005).

Given the current state of complexity theory (see,e.g., Papadimitriou, 1994), we cannot prove theactual
hardness of most algorithmic problems, but merely giveevidencefor their hardness. Showing the NP-
completeness (or PPAD-completeness) of a problem is commonly regarded as a very strong argument for
hardness because it relates the problem to a large class of problems for which no efficient algorithm is known
(despite enormous efforts to find such algorithms). When in the following we refer to the hardness of a game
we mean the computational hardness of solving the game using a particular solution concept.

4.1 Mixed Nash Equilibria

One of the best-known solution concepts is Nash equilibrium (Nash, 1951). In a Nash equilibrium, no player
is able to increase his payoff byunilaterallychanging his strategy.

Definition 5 (Nash equilibrium) A strategy profile s∈ S is called aNash equilibriumif for each player
i ∈ N and each strategy s′i ∈ Si ,

pi(s) ≥ pi((s−i ,s
′
i)).

A Nash equilibrium is called pure if it is a pure strategy profile.

Let us first consider ranking games with only two players. According to Definition 3, two-player ranking
games are games with outcomes(1,0) and (0,1) and thus represent a special subclass of constant-sum
games. Nash equilibria of constant-sum games can be found by Linear Programming (Vajda, 1956), for
which there is a polynomial time algorithm (Khachiyan, 1979).

For more than two players, we argue by showing that three-player ranking games are at least as hard to
solve as general rational bimatrix games. This is sufficient for proving hardness, becausen-player ranking
games are at least as hard as(n−1)-player ranking games (by adding an extra player who only has a single

2It seems as if every single-winner game has a non-pure equilibrium,i.e., an equilibrium in which at least one player randomizes.
However, this claim has so far tenaciously resisted proof.
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action and is ranked last in all outcomes). A key concept in our proof is that of a Nash homomorphism,
a notion introduced by Abbott, Kane, & Valiant (2005). We generalize theirdefinition to more than two
players.

Definition 6 (Nash homomorphism) A Nash homomorphismis a mapping h from a set of games into a set
of games, such that there exists a polynomial-time computable function f that,when given an equilibrium
of h(Γ), returns an equilibrium ofΓ.

A very simple Nash homomorphism, henceforth calledscale homomorphism, is one where the payoff
of each player is scaled using a positive linear transformation. It is well-known that Nash equilibria are
invariant under this kind of operation. A slightly more sophisticated mapping, where outcomes of a bimatrix
game are mapped to corresponding three-player subgames, so-called simple cubes, is defined next.

Definition 7 (Simple cube substitution (SCS))Let h be a mapping from a set of two-player games to a
set of three-player games that replaces every outcome o= (p1, p2, . . . , pn) of the original gameΓ with a
corresponding three-player subgameΓ′(o) of the form

o1(o) o2(o)

o2(o) o1(o)

o2(o) o1(o)

o1(o) o2(o) .

h is called asimple cube substitution (SCS)if for every o

• Γ′(o) is a constant-sum game (i.e., ∑i pi(o1(o)) = ∑i pi(o2(o))),

• the average of player i’s payoff in o1(o) and o2(o) equals pi , and

• there is at least one player that prefers o1(o) over o2(o) and one that prefers o2(o) over o1(o).

Lemma 1 SCS is a Nash homomorphism.

Proof: First of all, observe that

• there exists a strategy profiles that is a Nash equilibrium ofΓ′(o) for all o (namely the one where all
players randomize uniformly over all actions), and

• si a maximin strategy for playeri, guaranteeing him at least the equilibrium payoff.

Let h be a SCS, and leta1,a2 denote the pair of actions ofh(Γ) corresponding to an actiona of Γ. We claim
that for an arbitrary gameΓ, an equilibriums of h(Γ) can be mapped to an equilibriumf (s) of Γ by adding
the probabilities of the actions of a particular subgame,i.e., f (s)k

i = s2k−1
i +s2k

i . For this, we will argue that
a strategy profilesof h(Γ) in which the sum of payoffs obtained froma1 anda2 is different from the payoff
obtained froma in Γ under strategy profilef (s) cannot be a Nash equilibrium (of course, eithera1 or a2,
and hence alsoa, has to be played with positive probability for this to be possible).

To see that this suffices to show thath is a Nash homomorphism, assume thatf (s) is not a Nash equilib-
rium of Γ, i.e., pi( f (s)−i ,ai) > pi( f (s)) for some actionai of some playeri, and that the payoff from each
actionbi of player i in Γ equals the payoff fromb1

i andb2
i in h(Γ). Then, we also havepi(s−i ,s′i) > pi(s)

wheres′i is the strategy that uniformly distributes all weight on actionsa1 anda2. This means, however, that
s is no Nash equilibrium ofh(Γ).

First, consider a strategy profiles such that for some playeri the payoff from actionsa1
i anda2

i in h(Γ)
is less than the payoff fromai in Γ. As we have noted above, the latter equals the equilibrium payoff and the
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Outcome Scaled outcome Ranking subgame

(0,0) 7−→
(

1
2
,

1
2

)

7−→ [1,3,2] [2,3,1]

[2,3,1] [1,3,2]

[2,3,1] [1,3,2]

[1,3,2] [2,3,1]

(1,0) 7−→
(

1,
1
2

)

7−→ [1,3,2] [1,2,3]

[1,2,3] [1,3,2]

[1,2,3] [1,3,2]

[1,3,2] [1,2,3]

(0,1) 7−→
(

1
2
, 1

)

7−→ [2,3,1] [1,2,3]

[1,2,3] [2,3,1]

[1,2,3] [2,3,1]

[2,3,1] [1,2,3]

Table 2: Simple cube substitution mapping from binary bimatrix games to three-player single-loser games

maximin payoff of all subgames ata1
i anda2

i . Playeri can thus get a higher payoff by equally distributing
the weight ona1

i anda2
i , so thats is not a Nash equilibrium.

In turn, assume that the payoff playeri gets from actionsa1
i anda2

i under strategy profiles is higher
than the payoff fromai under f (s). Furthermore, by the previous observation, the payoff playeri gets from
another pair of actionsb1

i ,b
2
i cannot be smaller than the payoff frombi . Hence, the overall payoff of playeri

unders in h(Γ) is strictly greater than that underf (s) in Γ. Since every single subgame ofh(Γ) is constant-
sum, there has to be some other playerj 6= i who receives strictly less payoff inh(Γ) than inΓ, and at least
one pair of actionsa1

j ,a
2
j for which this is the case. This means, however, that playerj can play the (relative)

maximin strategy fora1
j ,a

2
j to increase his payoff. Again,scannot be a Nash equilibrium. �

Based on the scale homomorphism and SCS, we now show that there exist Nash homomorphisms map-
ping rational bimatrix games to three-player ranking games.

Lemma 2 For any given rank payoff profile, there exists a Nash homomorphism from the set of rational
bimatrix games to the set of three-player ranking games.

Proof: It has been shown by Abbott, Kane, & Valiant (2005) that there is a Nashhomomorphism from
rational bimatrix games to bimatrix games with payoffs 0 and 1 (calledbinary games in the following).
Since a composition of Nash homomorphisms is again a Nash homomorphism, we onlyneed to provide a
homomorphism from binary bimatrix games to three-player ranking games. Furthermore, there is no need to
map instances of binary games containing outcome(1,1), which is Pareto-dominant and constitutes a pure
Nash equilibrium wherever it occurs in a binary game (no player can benefit from deviating). Consequently,
such instances are easy to solve and need not be considered in our mapping.

Let (1, r2
i ,0) be the rank payoff of playeri, and let[i, j,k] denote the outcome where playeri is ranked

first, j is ranked second, andk is ranked last. First of all, consider ranking games wherer2
i < 1 for some

playeri ∈ N (this is the set of all ranking gamesexceptsingle-loser games). Without loss of generality, let
i = 1. Then, a Nash homomorphism from binary bimatrix games to the aforementioned class of games can be
obtained by first scaling the payoffs according to(p1, p2) 7−→

(

(1− r2
1)p1 + r2

1, p2
)

, and then adding a third
player who only has a single action and whose payoff depends onp1 and p2 (but is otherwise irrelevant).
Obviously, the latter is also a Nash homomorphism. Outcomes(0,0), (1,0), and(0,1) are hence mapped
according to

(0,0) 7−→ (r2
1,0) 7−→ [3,1,2]

(1,0) 7−→ (1,0) 7−→ [1,3,2]
(0,1) 7−→ (r2

1,1) 7−→ [2,1,3].
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Interestingly, three-playersingle-losergames with only a single action for some playeri ∈ N are easy to
solve because

• there either is a Pareto-dominant outcome (i.e., one wherei is ranked last, such that the other players
both receive payoff 1), or

• the game is a constant-sum game (i.e., i is not ranked last in any outcome, such that the payoffs of the
other players always sum up to 1).

Nevertheless, binary games can be mapped to single-loser games if the additional player is able to choose
betweentwo different actions. We claim that the mapping given in Table 2 represents a SCS from the
set of binary bimatrix games to three-player single-loser games. First of all,each payoffpi of player i
in the original binary bimatrix game is transformed according to the scale homomorphism (p1, p2) 7−→
(

(1+ p1)/2,(1+ p2)/2
)

. Next, we replace outcomes of the resulting game by three-player single-loser
subgames according to the mapping shown in Table 2. It can easily be verified that this mapping satisfies
the conditions of Definition 7 and thus resembles a Nash homomorphism. �

We are now ready to present the main result of this section concerning the hardness of computing Nash
equilibria of ranking games. Since every normal-form game is guaranteed topossess a Nash equilibrium
in mixed strategies (Nash, 1951), the decision problem is trivial. However,the associatedsearch problem
turned out to be not at all trivial. In fact, it has recently been shown to bePPAD-complete (Chen & Deng,
2005; Daskalakis, Goldberg, & Papadimitriou, 2006). TFNP (total functions in NP) is the class of search
problems guaranteed to have a solution. As Daskalakis, Goldberg, & Papadimitriou (2006) put it, “this
is precisely NP with an added emphasis on finding a witness.” PPAD is a certainsubclass of TFNP that
is believed not to be contained in P. For this reason, the PPAD-completenessof a particular problem can
be seen as strong evidence that there is no efficient algorithm for solvingit (cf. Daskalakis, Goldberg, &
Papadimitriou, 2006).

Theorem 1 Computing aNash equilibriumof a ranking game with more than two players is PPAD-complete.
If there are only two players, equilibria can be found in polynomial time.

Proof: According to Lemma 2, ranking games are at least as hard to solve as general two player games.
Since we already know that solving general two-player games is PPAD-complete (Chen & Deng, 2005),
and ranking games cannot be harder than general games, this completes the proof. �

4.2 Iterated Weak Dominance

We will now move to another solution concept, namely the elimination of weakly dominated actions.

Definition 8 (Weak Dominance) An action di ∈ Ai is said to beweakly dominatedby strategy si ∈ Si if

pi(b−i ,di) ≤ ∑
ai∈Ai

si(ai)pi(b−i ,ai), for all b−i ∈ A−i , and

pi(b̂−i ,di) < ∑
ai∈Ai

si(ai)pi(b̂−i ,ai), for at least onêb−i ∈ A−i .

After one or more dominated actions have been removed from the game, otheractions may become domi-
nated that were not dominated in the original game, and may themselves be removed. In general, the result
of such an iterative process depends on the order in which actions are eliminated, since the elimination of
an action may render an action of another player undominated. If only one action remains for each player,
we say that the game can be solved by means of iterated weak dominance.
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a2

2 1
...

...

2 1
1 2
...

...

2
a1 1 · · · 1

Table 3: Iterated weak dominance solvability in two-player ranking games

Definition 9 We say that a game issolvableby iterated weak dominance if there is some path of eliminations
that leaves exactly one action per player. The corresponding computational problem of deciding whether a
given game is solvable will be calledIWD-SOLVABLE.

If there are only two players, we can decideIWD-SOLVABLE in polynomial time, which is seen as follows.
First of all, we observe that in binary games dominance by a mixed strategy always implies dominance by a
pure strategy, so we only have to consider dominance by pure strategies.

Consider a path of iterated weak dominance that ends in a single action profile(a1,a2), and without loss
of generality assume that player 1 (i.e., the row player) wins in this profile. This implies that player 1 must
win in any action profile(a1,a′2) for a′2 ∈ A2. For a contradiction, consider the particular actiona1

2 such that
player 2 wins in(a1,a1

2) anda1
2 is eliminated last on the path that solves the game. Clearly,a1

2 could not be
eliminated in this case. An elimination by player 1 would also eliminatea1, while an elimination by player
2 would require another actiona2

2 such that player 2 also wins in(a1,a2
2), which contradicts the assumption

thata1
2 is eliminated last.

We thus claim thatIWD-SOLVABLE for ranking games with two players can be decided by finding a
unique actiona1 of player 1 by which he always wins, and a unique actiona2 of player 2 by which he wins
for a maximum number of actions of player 1. This situation is shown Table 3. Ifsuch actions do not exist
or are not unique, the game cannot be solved by means of iterated weak dominance. If they do exist, we
can usea1 to eliminate all actionsa′1 such that player 2 does not win in(a′1,a2), whereaftera2 can eliminate
all other actions of player 2, until finallya1 eliminates player 1’s remaining strategies and solves the game.
Obviously, this can be done in polynomial time.3

In order to tackleIWD-SOLVABLE for more than two players, we introduce two additional computational
problems related to iterated weak dominance.

Definition 10 Given an action e,IWD-ELIMINABLE asks whether there is some path of iterated weak domi-
nance elimination that eliminates e. Given a pair of actions e1 and e2, IWD-PAIR-ELIMINABLE asks whether
there is some path of iterated weak dominance that eliminates both e1 and e2.

We proceed to show hardness ofIWD-SOLVABLE for ranking games with more than two players by first
showing hardness ofIWD-PAIR-ELIMINABLE, and then reducing it toIWD-SOLVABLE.

Lemma 3 IWD-PAIR-ELIMINABLE is NP-complete for any ranking game with at least three players, even
if one player only has a single action, and the two actions to be eliminated belongto the same player.

3Since two-player ranking games are a subclass of constant-sum games, weak dominance andnice weak dominance(Marx &
Swinkels, 1997) coincide, making iterated weak dominance order independentup to payoff-equivalent action profiles. This fact is
mirrored by Table 3, since there cannot be a row of 1s and a column of 2s in the same matrix.
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(0,0) 7→ [3,2,1] [3,1,2]

[3,1,2] [3,2,1]
(1,0) 7→ [1,2,3] [3,1,2]

[3,1,2] [1,2,3]

(0,1) 7→ [3,2,1] [2,1,3]

[2,1,3] [3,2,1]
(1,1) 7→ [1,2,3] [2,1,3]

[2,1,3] [1,2,3]

Table 4: Dominance-preserving mapping from binary bimatrix games to three-player ranking games

Proof: Membershipin NP is immediate. We can simply guess a sequence of eliminations and then verify in
polynomial time that this sequence is valid and eliminatese1 ande2.

To showhardness, we reduceIWD-ELIMINABLE for games with two players and payoffs 0 and 1, which
has recently been shown to be NP-hard (Conitzer & Sandholm, 2005), toIWD-PAIR-ELIMINABLE for rank-
ing games. A gameΓ of the former class is mapped to a ranking gameΓ′ as follows:

• Γ′ features the two players ofΓ, denoted 1 and 2, and an additional player 3.

• Each actiona j
i of playeri ∈ {1,2} in Γ is mapped totwoactionsa j,1

i anda j,2
i in Γ′. Player 3 only has

a single action.

• Payoffs ofΓ are mapped to rankings ofΓ′ according to the mapping in Table 4. Again,[i, j,k] denotes
the outcome where playeri is ranked first,j is ranked second, andk is ranked last.

We claim that for any class of ranking game,i.e., irrespective of the rank payoffsr i = (1, r2
i ,0), a

particular actiona j in Γ can be eliminated by means of iterated weak dominance if and only if it is possible
to eliminate botha j,1 anda j,2 in Γ′ on a single path. Without loss of generality, we assume thate belongs
to player 1. In the following, we exploit two properties of the outcome mapping inTable 4:

1. If an actiona j,1 can be eliminated by some other actionak,1, thena j,2 could at the same time be
eliminated byak,2, if ak,2 has not been eliminated before. This particularly means that undernon-
iteratedweak dominance,a j,1 can be eliminated if and only ifa j,2 can be eliminated.

2. Every pair of a non-eliminable actiona j and another actionak satisfies one of two conditions. Either,
a j is as least as good asak at any index (i.e., action of the other player). Or,a j is strictly worse than
ak at some index, and strictly better thanak at another index.

Assume there exists a sequence of eliminations that finally eliminatese in Γ. Then, by Property 1, an
arbitrary element of the sequence wherea j eliminatesak, can be mapped to a pair of successive eliminations
in Γ′ whereb j,1 eliminatesak,1 anda j,2 eliminatesak,2. This results in a sequence of eliminations inΓ′

ending in the elimination of bothe1 ande2, e’s corresponding actions inΓ′.
Conversely, assume thate cannot be eliminated inΓ, and consider a sequence of eliminations inΓ′

leading to the elimination ofe1 and thene2. We will argue that such a sequence cannot exist. Sincee is
non-eliminable, Property 2 holds for any actiona j

1 restricted to the actions of player 2 that have not been
eliminated beforee2. If e is as least as good asa j

1 at any remaining actionak
2, then, by construction of the

payoff mapping and restricted to the remaining actions ofΓ′, one ofe1 or e2 is at least as good as any other
action of player 1. That means they cannot both be eliminated, a contradiction.

Hence, there must be a pair of actionsak
2 andaℓ

2 such thate is strictly better thana j
1 at ak

2 and strictly
worse thana j

1 ataℓ
2. Without loss of generality, we assume thataℓ

2 is the only index wheree is strictly worse.
Then, for bothe1 ande2 to be eliminable, one ofaℓ,1

2 andaℓ,2
2 must have been eliminated before. (Observe
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a1
3

a1
2 a2

2 a3
2

e1 [3,1,2] [2,1,3] [2,1,3]

e2 [3,1,2] [2,1,3] [2,1,3]

Γ
...

...
...

[2,1,3] [2,1,3] [2,1,3]
...

...
...

a1
1 · · · [1,3,2] · · · [2,1,3] [2,3,1] [3,1,2]

a2
1 · · · [1,3,2] · · · [2,1,3] [3,1,2] [2,1,3]

a3
1 · · · [2,3,1] · · · [3,1,2] [1,3,2] [3,1,2]

a2
3

a1
2 a2

2 a3
2

...
...

...
...

[1,2,3] [3,2,1] [1,2,3] [1,2,3]

...
...

...
...

a1
1 · · · [1,2,3] · · · [1,2,3] [3,2,1] [1,2,3]

a2
1 · · · [3,2,1] · · · [1,2,3] [1,2,3] [3,2,1]

a3
1 · · · [1,2,3] · · · [1,2,3] [3,2,1] [3,2,1]

Table 5: Three-player ranking gameΓ′ used in the proof of Theorem 2

that this elimination further requiresr1
1 = r2

1.) On the other hand, it must not be possible to eliminate both
aℓ,1

2 andaℓ,2
2 , since otherwise by Property 1,aℓ

2 could be eliminated inΓ, whereaftera j
1 could eliminatee. We

thus get dominance according to Property 2, similar to the one foredescribed above. Hence, there again has
to be an actionam

1 6= e such that exactly one ofam,1
1 andam,2

1 has been eliminated (and the other one could
not have been eliminated). This condition can be traced backwards through the sequence of eliminations
that lead to the elimination ofe2. The first elimination in this sequence, however, is in terms of non-iterated
dominance, and by Property 1 there can be no pair of actions such that exactly one of them can be eliminated.
This is a contradiction. �

We are now ready to state the main result of this section.

Theorem 2 Deciding whether a ranking game with more than two players is solvable byiterated weak
dominanceis NP-complete. When there are only two players, this can be decided in polynomial time.

Proof: Membershipin NP is immediate. We can simply guess a sequence of eliminations and then verify
that this sequence is valid and leaves only one action per player.

For hardness, we reduceIWD-PAIR-ELIMINABLE for ranking games with three players, where one of
the players has only one action, toIWD-SOLVABLE for ranking games with three players. Therefore, an
instanceΓ of the former class is mapped to an instanceΓ′ of the latter as follows:

• All players’ actions fromΓ are also part of the new instanceΓ′, including the two actionse1 ande2 to
be eliminated. The payoffs (i.e., rankings) for the corresponding outcomes remain the same.

• We further add two additional actionsa1
1 anda2

1 for player 1, two actionsa1
2 anda2

2 for player 2 and
one action for player 3, who now has actionsa1

3 anda2
3. The payoffs for the outcomes induced by

these new actions are given in Table 5.

We claim that, for arbitrary values ofr2
i , e1 ande2 can be eliminated inΓ if and only if Γ′ can be solved

by means of iterated weak dominance.
AssumeIWD-PAIR-ELIMINABLE for Γ has a solution. Then, the same sequence of eliminations that

eliminates bothe1 ande2 can also be executed inΓ′, because player 1 is ranked equally in all rows ofΓ at
ai

2, and player 2 is ranked equally in all columns ofΓ at ai
1 for i = 1,2,3. As soon ase1 ande2 have been

eliminated, leta2
2 be eliminated bya1

2, which is strictly preferred at(a2
1,a

1
3) and ranks player 2 equally at any

other position. Next, usea1
1 to eliminate all other rows, which are strictly worse at either(a1

2,a
2
3) or (a3

2,a
2
3)
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and strictly better at no position. Finally, leta2
3 be eliminated bya1

3, being strictly better ata3
2, and solve the

game by eliminating the remaining actions of player 2 bya1
2.

Conversely, assume that there exists no path of iterated weak dominance elimination that eliminates
both e1 and e2. We will argue that, as long as eithere1 or e2 is still there, (i) the newly added actions
cannot eliminate any of the original actions and (ii) cannot themselves be eliminated (either by original or
new actions). As we have seen above, this also means that the newly addedactions have no influence on
eliminations between actions ofΓ. As for player 1, the newly added actions are strictly worse than any of
the original ones at(a1

2,a
2
3), and strictly better at either(a2

2,a
2
3) or (a3

2,a
2
3). a1

1 is strictly better thana2
1 anda3

1
at (a3

2,a
2
3), and strictly worse at either(a2

2,a
2
3) or (a2

2,a
1
3). a2

1 is strictly better or worse thana3
1 at the original

actions of player 2 and ata1
3 anda2

3, respectively. Analogously, for player 2, the newly added actions are
strictly worse than any of the original ones at(a3

1,a
1
3), and strictly better at either(a1

1,a
1
3) or (a2

1,a
1
3). a1

2 is
strictly better thana2

2 anda3
2 at either(a1

1,a
1
3) or (a2

1,a
1
3), and strictly worse at both(e1,a1

3) and(e2,a1
3). a2

2
is strictly better or worse thana3

2 at (a1
1,a

1
3) and(a2

1,a
1
3), respectively. Finally,a1

3 is strictly better thana2
3 at

(a1
1,a

3
2), and strictly worse at(a2

1,a
3
2).

This completes the reduction, showing NP-hardness ofIWD-SOLVABLE for ranking games with at least
three players. �

4.3 Pure Nash Equilibria in Games with Many Players

A very important subset of Nash equilibria are those where players do not have to randomize,i.e., every
player deterministically chooses one particular action. These so-calledpure Nash equilibria (cf. Defini-
tion 5) can be found efficiently by simply checking every action profile. However, as the number of players
increases, the number of profiles to check (as well as the normal-form representation of the game) grows ex-
ponentially. An interesting question is whether pure equilibria can be computedefficiently given aconcise
representation of a game (using space polynomial inn). For some concise representations like graphical
games with bounded neighborhood, where the payoff of any player onlydepends on a constant number of
neighbors (Gottlob, Greco, & Scarcello, 2005), or circuit games, where the outcome function is computed
by a Boolean circuit of polynomial size (Schoenebeck & Vadhan, 2006), deciding the existence of a pure
equilibrium has been shown to be NP-complete.

It turns out that graphical games are of very limited use for representingranking games. If two players
are not connected by the neighborhood relation, either directly or via a common player in their neighbor-
hood, then their payoffs are completely independent from each other. For a single-winner game with the
reasonable restriction that every player wins in at least one outcome, this implies that there must be one
designated player who decides which player wins the game. Similar propertieshold for arbitrary ranking
games.

We proceed by showing NP-completeness of deciding whether there is a pure Nash equilibrium in rank-
ing games withefficiently computable outcome functionswhich is one of the most general representations
of multi-player games one might think of. Please note that in contrast to Theorems 1 and 2, we now fix the
number of actions and let the number of players increase.

Theorem 3 Deciding the existence of a pure Nash equilibrium in a ranking game with manyplayers and a
polynomial-time computable outcome function is NP-complete, even if the players only have two actions at
their disposal.

Proof: Since we can check in polynomial time whether a particular player strictly prefers one rank over
another,membershipin NP is immediate. We can guess an action profiles and verify in polynomial time
whethers is a Nash equilibrium. For the latter, we check for each playeri ∈ N and for each actiona∈ Ai

whetherpi(s−i ,a) ≤ pi(s).
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o2

· · ·

≥ 1

= 1

C

a1 a2 · · · an ax ay az

o1

Figure 1: Structure of the Boolean circuit used in the proof of Theorem 3

Forhardness, recall that circuit satisfiability (CSAT),i.e., deciding whether for a given Boolean circuitC

with n inputs and 1 output there exists an input such that the output istrue, is NP-complete (see,e.g.,
Papadimitriou, 1994). We define a gameΓ in circuit form for a Boolean circuitC , providing a polynomial-
time reduction of satisfiability ofC to the problem of finding a pure Nash equilibrium inΓ.

Let n be the number of inputs ofC . We define gameΓ with n+3 players as follows:

• Let N = {1, . . . ,n}∪{x,y,z}, andAi = {0,1} for all i ∈ N.

• The outcome function ofΓ is computed by a Boolean circuit that takesn+ 3 bits of input i =
(a1, . . . ,an,ax,ay,az), corresponding to the actions of the players inN, and computes 2 bits of out-
put o = (o1,o2), given byo1 = C (a1, . . . ,an) ando2 = (o1 OR(ax XOR ay)). Playerz is incapable of
influencing the outcome of the game.

Figure 1 illustrates the structure of the circuit.

• The possible outputs of the circuit are identified with permutations (i.e., rankings) of the players inN
such that

– the permutationπ00 corresponding too = (0,0) ranksx first, z second, andy last,

– the permutationπ01 corresponding too = (0,1) ranksy first, zsecond, andx last, and

– the permutationπ11 corresponding too = (1,1) ranksz first, x second, andy last.

All other players are ranked equally in all three permutations. It should benoted that no matter how
permutations are actually encoded as strings of binary values, the encoding of the above permutations
can always be computed using a polynomial number of gates.

We claim that, for arbitrary rank payoffsr, Γ has a pure Nash equilibrium if and only ifC is satisfiable.
This is seen as follows:

• By construction, the outcome of the game isπ11 if and only if players 1, . . . ,n play a satisfying
assignment ofC .
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• Given an action profile resulting in outcomeπ11, only a player in{1, . . . ,n} could possibly change
the outcome of the game by changing his action. However, these players areranked equally in all
the possible outcomes, so none of them can get a higher payoff by doing so. Thus,π11 is a Nash
equilibrium.

• By construction, bothx andy can change between outcomesπ00 andπ01 by changing their individual
action.

• Since every player strictly prefers being ranked first over being ranked last,x strictly prefers outcome
π00 overπ01, while y strictly prefersπ01 overπ00. Thus, neitherπ00 norπ01 are Nash equilibria, since
one ofx andy could change his action to get a higher payoff.

This completes the reduction. �

5 Conclusion

We proposed a new class of games, so-called ranking games, that model settings in which players are merely
interested in performing at least as good as their opponents. Despite the structural simplicity of these games,
various solution concepts turned out to be hard to compute, namely mixed equilibria and iterated weak
dominance in games with more than two players and pure equilibria in games with an unbounded number
of players. As a consequence, the mentioned solution concepts appear tobe of limited use in large instances
of ranking games that do not possess additional structure. This underlines the importance of alternative,
efficiently computable, solution concepts for ranking games.
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