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Abstract

We embark on an initial study of a new class of strategic (rabfiorm) games, so-called ranking
games, in which the payoff to each agent solely depends opdsision in a ranking of the agents in-
duced by their actions. This definition is motivated by theaation that in many strategic situations
such as parlour games, competitive economic scenarioss@né social choice settings, players are
merely interested in performing optimedlative to their opponents rather than in absolute measures.
A simple but important subclass of ranking gamessingle-winnergames where in any outcome one
agent wins and all other players lose. We investigate thepotettional complexity of a variety of com-
mon game-theoretic solution concepts in ranking games efiged hardness results for iterated weak
dominance and mixed Nash equilibria when there are moretthamplayers and pure Nash equilibria
when the number of players is unbounded. This dashes hopenthii-player ranking games can be
solved efficiently, despite the structural restrictionsh&fse games.

1 Introduction

A well-studied subclass of games in game theory consists of strictly competitimegfor two players.e.,
games where the interests of both players are diametrically opposed ésuncBlzess). These games admit
a unique rational solution (the minimax solution) that can be efficiently computedNeumann, 1928).
Unfortunately, things get much more complicated if there are more than tworplaye begin with, the
notion of strict competitiveness in multi-player games is not unequivocal. extension of the common
definition for two-player games, which says that the sum of payoffs inwdianes has to be constant,
is meaningless in multi-player games becaasggame can be transformed into a constant-sum game by
adding an extra player (with only one action at his disposal) who abscelatjoffs of the other players.

In this paper, we put forward a new class of multi-player games, cedleking gamesin which the
payoff to each agent depends solely on his position in a ranking of thdsaigeluced by their actions. The
formal definition allows each agent to specify his individual prefersmeer ranks so that

e higher ranks are weakly preferred,
e being first is strictly preferred over being last, and
e agents are indifferent over other players’ ranks.

This definition is motivated by the observation that in many games of strateggnagpetitive economic
scenarios, players are merely interested in performing optatetiveto their competitors. Besides, one can

IHowever, in the case of chess, the enormous size of the game in nimmmaprohibits the efficient computation of an exact
solution.



also think of social choice settings where agents strive to determine a commigletechy among themselves
based on individual preferences that satisfy the conditions listed above

When moving away from two-player constant-sum games, there are nusregoplicable solution con-
cepts. From a computational perspective, an important property obéurtyos concept is the computational
effort required to determine the solution, simply because the intractability oluian concept renders it
useless for large problem instances that do not exhibit additional steucte study the computational
complexity of a variety of common game-theoretic solution concepts in rankimggand deliver hardness
results for iterated weak dominance and mixed Nash equilibria when therecaecthan two players and
pure Nash equilibria in games with many players. This dashes hope that my#i-pdaking games can be
solved efficiently, despite the structural restrictions of these games.

Remarkably, all hardness results hold #obitrary preferences over ranks as long as they meet the
requirements listed above. In particular, even simple subclasses like simgier games (where players
only care about winning) or single-loser games (where players onlytwavoid losing) are hard to solve.

2 Related Work

Most of the research on game playing in Artificial Intelligence (Al) hasifad on two-player games (see,
e.g, Marsland & Schaeffer, 1990). As a matter of fact, “in Al, ‘games’ aseally of a rather specialized
kind—what game theorists call deterministic, turn-taking, two-player, sam-games of perfect informa-
tion” (Russell & Norvig, 2003, p. 161). A notable exception are compldtgimationextensive-forrgames,

a class of multi-player games for which efficient Nash equilibrium seardrithigns have been investigated
by the Al community €.g, Luckhardt & Irani, 1986; Sturtevant, 2004). In extensive-foramgs, players
move consecutively and@ure Nash equilibrium is guaranteed to exist (seg, Myerson, 1997). There-
fore, the computational complexity of finding equilibria strongly depends emdtual representation of the
game (see Section 4.3). Normal-form games are more general than extkmen games because every
extensive-form game can be mapped to a corresponding normal-fora @eith potentially exponential
blowup), while the opposite is not the case.

In game theory, several classes of “strictly competitive” games havereposed that maintain some of
the nice properties of two-player constant-sum games. For example, Aui@6il) definealmost strictly
competitivegames as games where a unique value can be obtained by playing strategiasckrtain set.
Moulin & Vial (1978) introduce a class of games that are strategically etpriv to constant-sum games.
The notion of strict competitiveness we consider is remotely related to the rudtspitedefined by Brandt,
Sandholm, & Shoham (2005), where agents aim at maximizing their payaiif/eeto the payoff of all other
agents.

3 Definitions

3.1 Game-Theoretic Foundations

An accepted way to model situations of conflict and social interaction is bynsnefia normal-form
game(seee.g, Myerson, 1997).

Definition 1 (Normal-form game) A game in normal-formis a tuplel” = (N, (A)ien, (Pi)ien) Where N
is a set ofplayersand for each player € N, A is a nonempty set o&ctionsavailable to player i, and
pi : (XienA)) — R is a function mapping each action profile of the gare.,(combination of actions) to a
real-valuedpayofffor player i.
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Table 1: Three-player single-winner game. Player 1 chooses rowgr@ahooses columns, and player 3
chooses matrices. The four dashed boxes denote Nash equilibria.

A combination of actions € XjcnA; is also called a profile gbure strategies This concept can be gener-
alized tomixed strategy profiless S= XjcnG, by letting players randomize over their actions. We have
S denote the set of probability distributions over playeractions, omixed strategiegvailable to player

i. In the following, we further writen = |N| for the number of players in a gam for theith strategy in
profile s, s_; for the vector of all strategies imbut s, and§< for the probability of player’s kth action in
strategy profiles. Two-player games are also callbonatrix gamesand games with rational payoffs are
calledrational games

3.2 Ranking Games

The situations of social interaction this paper is concerned with are sutlutwmes are related to a
ranking of the players,e., an ordering of the players according to how well they have done in timega
relative to one another. We assume that players generally prefer hagtiexr over lower ones and that they
are indifferent to the ranks of other players. Moreover, we hypathdkat the players entertain qualitative
preferences ovdotteriesor probability distributions over ranksfi von Neumann & Morgenstern, 1947).
For example, one player may prefer to be ranked second to having #ffiftghance of being ranked first
and being ranked third, whereas another player may judge quite differ€hus, we arrive at the following
definition of therank payoffto a player.

Definition 2 (Rank payoff) Therank payoffof a player i is defined as vector + (rt,r?,...,r") € R" so
that

k>l forallke {1,2,...,n—1}, andrf>r"

(i.e., higher ranks are weakly preferred, and for at least one rank théepgace is strict). For convenience,
we assume rank payoffs to be normalized so that & and 1" = 0.

Intuitively, ri" represents playeis payoff for being ranked ikth. Building on Definition 2, defining ranking
games is straightforward.

Definition 3 (Ranking game) A ranking gamds a game where for any strategy profilecsS there is a
permutation(rz, 7®, . . ., Th) of the players so thatifs) =r;" for all i € N.

A binary ranking games one where each rank payoff vector only consists of zeros and beg®ach
player is equally satisfied up to a certain rank. An important subclass afybiaaking games are games
where winning is the only goal of all players.

Definition 4 (single-winner game) A Single-winner games a ranking game whereg + (1,0,...,0) for all
i €N.



In other words, the outcome space in single-winner games is partitioned bibzks. When considering
mixed strategies, the expected payoff in a single-winner ranking gamésehaarobability of winning the
game. Similar to single-winner games, we can desingle-loser gamefike “musical chairs”) as games
where allr; = (1,...,1,0).

An example single-winner game with three players is given in Table 1. A coeneway to represent
these games is to just denote the index of the winning player for each outblasle equilibria are marked
by dashed boxes where a box that spans two outcomes denotes an iequiltiere one player mixes uni-
formly between his actionsCuriously, there is a fifth equilibrium in this game where all players randomize
their actions according to the golden ragie= (1++/5)/2.

4 Solving Ranking Games

Over the years, game theory has produced a number of solution cotiwptentify reasonable or desirable
strategy profiles in a given game (seqy, Myerson, 1997). The key question of this paper is whether the
rather restricted structure of ranking games allows us to compute instancesimon solution concepts
more efficiently than in general games. For this reason, we focus on sohditcepts that are known
to be intractable for general games, namely (mixddsh equilibria(Chen & Deng, 2005; Daskalakis,
Goldberg, & Papadimitriou, 2006erated weak dominand€onitzer & Sandholm, 2005), amlire Nash
equilibriain graphical normal form (Gottlob, Greco, & Scarcello, 2005) or cirfariin games (Schoenebeck
& Vadhan, 2006). We do not cover solution concepts for which efftadgorithms are known to exist such
as iterated strong dominance (Conitzer & Sandholm, 2005) or correlatéibgg (Papadimitriou, 2005).

Given the current state of complexity theory (seg, Papadimitriou, 1994), we cannot prove twual
hardness of most algorithmic problems, but merely givadencefor their hardness. Showing the NP-
completeness (or PPAD-completeness) of a problem is commonly regesdedesy strong argument for
hardness because it relates the problem to a large class of problentsdome efficient algorithm is known
(despite enormous efforts to find such algorithms). When in the followinge¥ee to the hardness of a game
we mean the computational hardness of solving the game using a particutasrsobncept.

4.1 Mixed Nash Equilibria

One of the best-known solution concepts is Nash equilibrium (Nash, 1854 Nash equilibrium, no player
is able to increase his payoff milaterally changing his strategy.

Definition 5 (Nash equilibrium) A strategy profile & S is called aNash equilibriumif for each player
i € N and each strategyf & S,

pi(s) > pi((s-i,9))-

A Nash equilibrium is called pure if it is a pure strategy profile.

Let us first consider ranking games with only two players. According tiindien 3, two-player ranking
games are games with outcom@ds0) and (0,1) and thus represent a special subclass of constant-sum
games. Nash equilibria of constant-sum games can be found by LinegnaRmming (Vajda, 1956), for
which there is a polynomial time algorithm (Khachiyan, 1979).

For more than two players, we argue by showing that three-player iagkimes are at least as hard to
solve as general rational bimatrix games. This is sufficient for provindress, becauseplayer ranking
games are at least as hard as- 1)-player ranking games (by adding an extra player who only has a single

2|t seems as if every single-winner game has a non-pure equilibriean equilibrium in which at least one player randomizes.
However, this claim has so far tenaciously resisted proof.



action and is ranked last in all outcomes). A key concept in our proof tsofha Nash homomorphism,
a notion introduced by Abbott, Kane, & Valiant (2005). We generalize ttiefinition to more than two
players.

Definition 6 (Nash homomorphism) A Nash homomorphisis a mapping h from a set of games into a set
of games, such that there exists a polynomial-time computable function fatie, given an equilibrium
of h(I"), returns an equilibrium of .

A very simple Nash homomorphism, henceforth caliedle homomorphisnis one where the payoff
of each player is scaled using a positive linear transformation. It is wellvkrthat Nash equilibria are
invariant under this kind of operation. A slightly more sophisticated mappihgrevoutcomes of a bimatrix
game are mapped to corresponding three-player subgames, so-calledcibgs, is defined next.

Definition 7 (Simple cube substitution (SCS))Let h be a mapping from a set of two-player games to a
set of three-player games that replaces every outcome py, pz, ..., Pn) Of the original gamd™ with a
corresponding three-player subgar€o) of the form

01(0) | 02(0) 02(0) | 01(0)
02(0) | 01(0) 01(0) | 02(0) |

h is called asimple cube substitution (SC8Yor every o
e ['(0) is a constant-sum gamed., ¥; pi(01(0)) = ¥ pi(02(0))),
e the average of player i's payoff in @) and @ (0) equals p, and

e there is at least one player that preferg0) over (0) and one that prefersxo) over g (0).
Lemma 1 SCS is a Nash homomorphism.

Proof: First of all, observe that

e there exists a strategy profi#ghat is a Nash equilibrium df’(o) for all o (namely the one where all
players randomize uniformly over all actions), and

e 5 a maximin strategy for player guaranteeing him at least the equilibrium payoff.

Leth be a SCS, and let!, a® denote the pair of actions ofI") corresponding to an actianof I'. We claim
that for an arbitrary game, an equilibriums of h(I") can be mapped to an equilibriufis) of I' by adding
the probabilities of the actions of a particular subganes, ()¢ = s~ - . For this, we will argue that
a strategy profils of h(I") in which the sum of payoffs obtained froa anda? is different from the payoff
obtained froma in I under strategy profilé (s) cannot be a Nash equilibrium (of course, eitaéor a2,
and hence alsa, has to be played with positive probability for this to be possible).

To see that this suffices to show teis a Nash homomorphism, assume theg) is not a Nash equilib-
rium of I, i.e, pi(f(s)-i,a) > pi(f(s)) for some actiory; of some player, and that the payoff from each
actionb; of playeri in I equals the payoff fronb' andb? in h(I"). Then, we also havei(s_i,s) > pi(s)
whereg is the strategy that uniformly distributes all weight on actiahanda?. This means, however, that
sis no Nash equilibrium of(I").

First, consider a strategy profiéesuch that for some playeéthe payoff from actiong! anda? in h(I")
is less than the payoff from in I'. As we have noted above, the latter equals the equilibrium payoff and the

5



Outcome Scaled outcome Ranking subgame

11
(0,0) r— (2’ 2) — 2,3,1] | [1,3,2] (1,3,2] | [2,3,1]

1 1,32 (123 | [[1,23][132
(39 — (1’ 2) T 123132 132123
1 231123 | [[1,23][231]
01 — (2’ 1) " 123231 | 231123

Table 2: Simple cube substitution mapping from binary bimatrix games to threerdangle-loser games

maximin payoff of all subgames af anda?. Playeri can thus get a higher payoff by equally distributing
the weight ore! anda?, so thatsis not a Nash equilibrium.

In turn, assume that the payoff playiegets from actiong! anda? under strategy profils is higher
than the payoff frong; underf(s). Furthermore, by the previous observation, the payoff plagets from
another pair of actionis!, b? cannot be smaller than the payoff frdim Hence, the overall payoff of player
undersin h(I") is strictly greater than that undé(s) in I'. Since every single subgameldi) is constant-
sum, there has to be some other playeti who receives strictly less payoff (") than inl", and at least
one pair of actionsl-l,aj2 for which this is the case. This means, however, that plagan play the (relative)
maximin strategy foa-l,aj2 to increase his payoff. Agails,cannot be a Nash equilibrium. O

Based on the scale homomorphism and SCS, we now show that there estistdtaomorphisms map-
ping rational bimatrix games to three-player ranking games.

Lemma 2 For any given rank payoff profile, there exists a Nash homomorphism fhe set of rational
bimatrix games to the set of three-player ranking games.

Proof: It has been shown by Abbott, Kane, & Valiant (2005) that there is a Niashomorphism from
rational bimatrix games to bimatrix games with payoffs 0 and 1 (cdliedry games in the following).
Since a composition of Nash homomorphisms is again a Nash homomorphism, weeedIyo provide a
homomorphism from binary bimatrix games to three-player ranking gamethefonore, there is no need to
map instances of binary games containing outc¢ing), which is Pareto-dominant and constitutes a pure
Nash equilibrium wherever it occurs in a binary game (no player carfibéoen deviating). Consequently,
such instances are easy to solve and need not be considered in oimgnapp

Let (1,r?,0) be the rank payoff of player and let[i, j,k] denote the outcome where playes ranked
first, j is ranked second, arldis ranked last. First of all, consider ranking games whére 1 for some
playeri € N (this is the set of all ranking gamesgceptsingle-loser games). Without loss of generality, let
i =1. Then, a Nash homomorphism from binary bimatrix games to the aforemeshtitass of games can be
obtained by first scaling the payoffs according pa, p2) — ((1— r2ypy+r2, pz), and then adding a third
player who only has a single action and whose payoff depends @md p, (but is otherwise irrelevant).
Obviously, the latter is also a Nash homomorphism. Outcof@gd, (1,0), and(0,1) are hence mapped
according to

(0,0) — (rf,O) — [3,1,2]
(1,00 — (1,00 — [1,3,2]
(0,1) — (r2,1) ~— [2,1,3].



Interestingly, three-playesingle-losergames with only a single action for some playerN are easy to
solve because

e there either is a Pareto-dominant outcorne,(one whera is ranked last, such that the other players
both receive payoff 1), or

e the game is a constant-sum game.(i is notranked last in any outcome, such that the payoffs of the
other players always sum up to 1).

Nevertheless, binary games can be mapped to single-loser games if theradigtayer is able to choose
betweentwo different actions. We claim that the mapping given in Table 2 represenGXafdm the
set of binary bimatrix games to three-player single-loser games. First afaalh payoffp; of playeri

in the original binary bimatrix game is transformed according to the scale horpbisor (p;, p2) —
((1+ p1)/2,(1+ p2)/2). Next, we replace outcomes of the resulting game by three-player single-los
subgames according to the mapping shown in Table 2. It can easily be di¢hidiethis mapping satisfies
the conditions of Definition 7 and thus resembles a Nash homomorphism. O

We are now ready to present the main result of this section concerningttiedss of computing Nash
equilibria of ranking games. Since every normal-form game is guarantgeastess a Nash equilibrium
in mixed strategies (Nash, 1951), the decision problem is trivial. How#verassociatedearch problem
turned out to be not at all trivial. In fact, it has recently been shown tBBR&D-complete (Chen & Deng,
2005; Daskalakis, Goldberg, & Papadimitriou, 2006). TFENP (total funstio NP) is the class of search
problems guaranteed to have a solution. As Daskalakis, Goldberg, &lir@paou (2006) put it, “this
is precisely NP with an added emphasis on finding a witness.” PPAD is a ceubdatass of TFNP that
is believed not to be contained in P. For this reason, the PPAD-completeinagsarticular problem can
be seen as strong evidence that there is no efficient algorithm for satviofy Daskalakis, Goldberg, &
Papadimitriou, 2006).

Theorem 1 Computing &Nash equilibriunof a ranking game with more than two players is PPAD-complete.
If there are only two players, equilibria can be found in polynomial time.

Proof. According to Lemma 2, ranking games are at least as hard to solve aslgeveplayer games.
Since we already know that solving general two-player games is PPAiplete (Chen & Deng, 2005),
and ranking games cannot be harder than general games, this compqiesath O

4.2 |terated Weak Dominance

We will now move to another solution concept, namely the elimination of weakly ddedractions.

Definition 8 (Weak Dominance) An action ¢ € A; is said to beweakly dominatedby strategy sc S if

b |,d| ; S p| |, , fOI’ a” bfi € Afi, and

pi(b_i, o) < Z\ s(a)pi(b for at least oné_j € A ;.

After one or more dominated actions have been removed from the gameaotiogrs may become domi-
nated that were not dominated in the original game, and may themselves besceritogeneral, the result
of such an iterative process depends on the order in which action$iraneaged, since the elimination of
an action may render an action of another player undominated. If onlyatio® aemains for each player,
we say that the game can be solved by means of iterated weak dominance.

7



2 1
2 1
1 2
2
a1 1 1

Table 3: Iterated weak dominance solvability in two-player ranking games

Definition 9 We say that a game s®olvableby iterated weak dominance if there is some path of eliminations
that leaves exactly one action per player. The corresponding compuaaficoblem of deciding whether a
given game is solvable will be callé/D-SOLVABLE.

If there are only two players, we can deciti¢D-SOLVABLE in polynomial time, which is seen as follows.
First of all, we observe that in binary games dominance by a mixed strat®gysaimplies dominance by a
pure strategy, so we only have to consider dominance by pure strategies.

Consider a path of iterated weak dominance that ends in a single action fagfdg), and without loss
of generality assume that playerile(, the row player) wins in this profile. This implies that player 1 must
win in any action profilgay, a}) for & € A;. For a contradiction, consider the particular actigrsuch that
player 2 wins in(al,a%) anda% is eliminated last on the path that solves the game. CI@'lyould not be
eliminated in this case. An elimination by player 1 would also elimiatevhile an elimination by player
2 would require another actic&% such that player 2 also wins {ay, a%), which contradicts the assumption
thatal is eliminated last.

We thus claim thatwD-SOLVABLE for ranking games with two players can be decided by finding a
unigue actiore; of player 1 by which he always wins, and a unique actigof player 2 by which he wins
for a maximum number of actions of player 1. This situation is shown Tables2icHi actions do not exist
or are not unique, the game cannot be solved by means of iterated wesdtkagice. If they do exist, we
can usey to eliminate all actions; such that player 2 does not win (g/,a;), whereaftel, can eliminate
all other actions of player 2, until finallgy eliminates player 1's remaining strategies and solves the game.
Obviously, this can be done in polynomial tirhe.

In order to tackléwD-SOLVABLE for more than two players, we introduce two additional computational
problems related to iterated weak dominance.

Definition 10 Given an action eWD-ELIMINABLE asks whether there is some path of iterated weak domi-
nance elimination that eliminates e. Given a pair of actiohared &, IWD-PAIR-ELIMINABLE asks whether
there is some path of iterated weak dominance that eliminates baihcee.

We proceed to show hardnessI@fD-SOLVABLE for ranking games with more than two players by first
showing hardness ¢WD-PAIR-ELIMINABLE, and then reducing it ttwD-SOLVABLE.

Lemma 3 IWD-PAIR-ELIMINABLE is NP-complete for any ranking game with at least three players, even
if one player only has a single action, and the two actions to be eliminated b&aldhg same player.

3Since two-player ranking games are a subclass of constant-sum,gaeasdominance andgice weak dominanc@varx &
Swinkels, 1997) coincide, making iterated weak dominance order indepéup to payoff-equivalent action profile$his fact is
mirrored by Table 3, since there cannot be a row of 1s and a columsninftBe same matrix.



321312 1,23 312
(0,0)— 3,12 | 3.2,1] (1,0)— 3,12 | [1.2,3
321213 1,23 ] [213]
(0.2) = 2,13 | [3.2,1] (11— 2,1,3 | [1.2,3

Table 4: Dominance-preserving mapping from binary bimatrix games to piager ranking games

Proof: Membershipn NP is immediate. We can simply guess a sequence of eliminations and then verify in
polynomial time that this sequence is valid and eliminatesnde?.

To showhardnesswe reduceéwD-ELIMINABLE for games with two players and payoffs 0 and 1, which
has recently been shown to be NP-hard (Conitzer & Sandholm, 2008YPtPAIR-ELIMINABLE for rank-
ing games. A gameE of the former class is mapped to a ranking gdrhas follows:

e [’ features the two players &f denoted 1 and 2, and an additional player 3.

e Each actioraij of playeri € {1,2} in " is mapped tdwo actionsaij’1 andaﬂ’2 in’. Player 3 only has
a single action.

e Payoffs ofl” are mapped to rankings bf according to the mapping in Table 4. Agaiin,j, k] denotes
the outcome where players ranked first,j is ranked second, arids ranked last.

We claim that for any class of ranking gamies., irrespective of the rank payofis = (1,r?,0), a
particular actioral in I' can be eliminated by means of iterated weak dominance if and only if it is possible
to eliminate bottal'! andal-2 in [ on a single path Without loss of generality, we assume tledielongs
to player 1. In the following, we exploit two properties of the outcome mappifigbie 4:

1. If an actional*! can be eliminated by some other actigft, thenal? could at the same time be
eliminated byak?, if a2 has not been eliminated before. This particularly means that urater
iteratedweak dominanceg)! can be eliminated if and only -2 can be eliminated.

2. Every pair of a non-eliminable actiah and another actioa® satisfies one of two conditions. Either,
al is as least as good a& at any indexi(e., action of the other player). Oa/ is strictly worse than
a at some index, and strictly better thathat another index.

Assume there exists a sequence of eliminations that finally elimiedteE. Then, by Property 1, an
arbitrary element of the sequence whateliminatesak, can be mapped to a pair of successive eliminations
in I'" wherebl'! eliminatesa®! andal? eliminatesa2. This results in a sequence of eliminationsin
ending in the elimination of botk! ande?, €'s corresponding actions if.

Conversely, assume thatcannot be eliminated ifi, and consider a sequence of eliminationd in
leading to the elimination of' and thene?. We will argue that such a sequence cannot exist. Sirise
non-eliminable, Property 2 holds for any actiabrestricted to the actions of player 2 that have not been
eliminated before?. If eis as least as good a$ at any remaining actioag, then, by construction of the
payoff mapping and restricted to the remaining actiong’pbne ofe! or € is at least as good as any other
action of player 1. That means they cannot both be eliminated, a contradiction

Hence, there must be a pair of acticaisandaj, such that is strictly better tharal ata and strictly
worse thar&’1 atag. Without loss of generality, we assume théis the only index whereis strictly worse.
Then, for bothe! andée? to be eliminable, one cﬂgl andag2 must have been eliminated before. (Observe

9



a3 a3 a a} a3 a3
e 3,1,2] | [2,1,3] | [2,1,3]
e 3,1,2] | [2,1,3] | [2,1,3]
r : : : [1,2,3] (3,2,1] | [1,2,3] | [1,2,3]
2,1,3] | 21,3 | [2,1,3
at [--[1,3,2 - 213 [[23,1 | [3,1,2] at |- [1,2,3 - | [123[[3,21 | [1,2,3]
a% [1, 3,2] [2, 1,3] [37 172] [27 17 3] a% [3727 1] [1727 3] [17273} [37 27 l]
a |- [231 ][312][[132][312 &l 1,23 [L23[[321][32]1]

Table 5: Three-player ranking gariieused in the proof of Theorem 2

that this elimination further requireg = r2.) On the other hand, it must not be possible to eliminate both
a’é’l andag'z, since otherwise by Propertyd; could be eliminated if, Whereaftelal’1 could eliminatee. We

thus get dominance according to Property 2, similar to the onedescribed above. Hence, there again has
to be an actiora]’ # e such that exactly one fo’l andarln’2 has been eliminated (and the other one could
not have been eliminated). This condition can be traced backwards thtbegequence of eliminations
that lead to the elimination @&?. The first elimination in this sequence, however, is in terms of non-iterated
dominance, and by Property 1 there can be no pair of actions such #udltyeone of them can be eliminated.
This is a contradiction. O

We are now ready to state the main result of this section.

Theorem 2 Deciding whether a ranking game with more than two players is solvabliéetated weak
dominances NP-complete. When there are only two players, this can be decided imgpoilgl time.

Proof: Membershipn NP is immediate. We can simply guess a sequence of eliminations and then verify
that this sequence is valid and leaves only one action per player.

For hardnesswe reducaWD-PAIR-ELIMINABLE for ranking games with three players, where one of
the players has only one action, IWwD-SOLVABLE for ranking games with three players. Therefore, an
instancd™ of the former class is mapped to an instaftef the latter as follows:

o All players’ actions fronT are also part of the new instantg including the two actions! ande? to
be eliminated. The payoff$.€., rankings) for the corresponding outcomes remain the same.

e We further add two additional actiorsg anda? for player 1, two actions} anda3 for player 2 and
one action for player 3, who now has actia@anda%. The payoffs for the outcomes induced by
these new actions are given in Table 5.

We claim that, for arbitrary values oi?, el ande? can be eliminated iff if and only if " can be solved
by means of iterated weak dominance.

AssumelWD-PAIR-ELIMINABLE for I' has a solution. Then, the same sequence of eliminations that
eliminates botle! ande? can also be executed I, because player 1 is ranked equally in all rows it
aiz, and player 2 is ranked equally in all columnsloat a‘1 fori =1,2,3. As soon ag' ande? have been
eliminated, leg3 be eliminated bya3, which is strictly preferred gia?, al) and ranks player 2 equally at any
other position. Next, usa} to eliminate all other rows, which are strictly worse at eitfes; a3) or (a3, a3)
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and strictly better at no position. Finally, Ie§ be eliminated by%, being strictly better a3, and solve the
game by eliminating the remaining actions of player 2aby

Conversely, assume that there exists no path of iterated weak dominanceattimitihat eliminates
both e! ande?. We will argue that, as long as eithet or € is still there, (i) the newly added actions
cannot eliminate any of the original actions and (ii) cannot themselves be edi(ether by original or
new actions). As we have seen above, this also means that the newlyadided have no influence on
eliminations between actions bf As for player 1, the newly added actions are strictly worse than any of
the original ones afal, a3), and strictly better at eithég3, a3) or (a3,a3). al is strictly better tham? anda3
at(a3,a3), and strictly worse at eithég3, a3) or (a3, a3). a2 is strictly better or worse thaa at the original
actions of player 2 and ai% anda%, respectively. Analogously, for player 2, the newly added actions are
strictly worse than any of the original ones(af, a3), and strictly better at eithdiel, al) or (a2,al). a} is
strictly better thara3 anda3 at either(al,al) or (a2,a}), and strictly worse at botte!, al) and(€?,al). a2
is strictly better or worse thaa at (al,al) and(a?,a}), respectively. Finallyad is strictly better thara3 at
(at,ad), and strictly worse ataZ, a3).

This completes the reduction, showing NP-hardne$@/0F SOLVABLE for ranking games with at least
three players. O

4.3 Pure Nash Equilibria in Games with Many Players

A very important subset of Nash equilibria are those where players tdbave to randomize,e., every
player deterministically chooses one particular action. These so-qaliledNash equilibria ¢f. Defini-
tion 5) can be found efficiently by simply checking every action profile. e\mv, as the number of players
increases, the number of profiles to check (as well as the normal-fpnesentation of the game) grows ex-
ponentially. An interesting question is whether pure equilibria can be compffte@ntly given aconcise
representation of a game (using space polynomial)inFor some concise representations like graphical
games with bounded neighborhood, where the payoff of any playerdepgnds on a constant number of
neighbors (Gottlob, Greco, & Scarcello, 2005), or circuit games, attex outcome function is computed
by a Boolean circuit of polynomial size (Schoenebeck & Vadhan, 2af)iding the existence of a pure
equilibrium has been shown to be NP-complete.

It turns out that graphical games are of very limited use for represeraivigng games. If two players
are not connected by the neighborhood relation, either directly or viananom player in their neighbor-
hood, then their payoffs are completely independent from each otlbera Eingle-winner game with the
reasonable restriction that every player wins in at least one outcome, tHissrtimat there must be one
designated player who decides which player wins the game. Similar propestee$or arbitrary ranking
games.

We proceed by showing NP-completeness of deciding whether there iis &lpsh equilibrium in rank-
ing games withefficiently computable outcome functiombich is one of the most general representations
of multi-player games one might think of. Please note that in contrast to Tinedre@nd 2, we now fix the
number of actions and let the number of players increase.

Theorem 3 Deciding the existence of a pure Nash equilibrium in a ranking game with plaggrs and a
polynomial-time computable outcome function is NP-complete, even if thaeptayg have two actions at
their disposal.

Proof: Since we can check in polynomial time whether a particular player strictly nsrefee rank over
anothermembershipn NP is immediate. We can guess an action prcfiged verify in polynomial time
whethersis a Nash equilibrium. For the latter, we check for each playeN and for each actioa € A;
whetherp;(s_i,a) < pi(s).
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Figure 1: Structure of the Boolean circuit used in the proof of Theorem 3

Forhardnessrecall that circuit satisfiability (CSAT).e., deciding whether for a given Boolean circ#it
with n inputs and 1 output there exists an input such that the outpumtigs is NP-complete (sees.g,
Papadimitriou, 1994). We define a gamen circuit form for a Boolean circui¥’, providing a polynomial-
time reduction of satisfiability o& to the problem of finding a pure Nash equilibriumfin

Let n be the number of inputs &. We define gamé€ with n+ 3 players as follows:

e LetN={1,...,nfU{xy,z}, andA = {0,1} for alli € N.

e The outcome function of is computed by a Boolean circuit that takes- 3 bits of inputi =
(a1,...,an,8,ay,8z), corresponding to the actions of the playerd\inand computes 2 bits of out-
puto = (01,02), given byo, = €'(ay,...,an) ando, = (0, OR(ax XOR g)). Playerzis incapable of
influencing the outcome of the game.

Figure 1 illustrates the structure of the circuit.
e The possible outputs of the circuit are identified with permutatioas (ankings) of the players iN
such that
— the permutationg corresponding te = (0, 0) ranksx first, zsecond, ang last,
— the permutationp; corresponding te = (0, 1) ranksy first, zsecond, and last, and
— the permutatiorns; corresponding te = (1, 1) rankszfirst, x second, ang last.
All other players are ranked equally in all three permutations. It shoultbbed that no matter how

permutations are actually encoded as strings of binary values, the egoddire above permutations
can always be computed using a polynomial number of gates.

We claim that, for arbitrary rank payoffsI" has a pure Nash equilibrium if and only4f is satisfiable.
This is seen as follows:

e By construction, the outcome of the gamerig if and only if players 1...,n play a satisfying
assignment of’.
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e Given an action profile resulting in outconmg;, only a player in{1,...,n} could possibly change
the outcome of the game by changing his action. However, these playa@snéesl equally in all
the possible outcomes, so none of them can get a higher payoff by dminghsis, i, is a Nash
equilibrium.

e By construction, botlx andy can change between outconmgg and; by changing their individual
action.

e Since every player strictly prefers being ranked first over beingeditdst x strictly prefers outcome
Tho over Tp1, wWhile y strictly prefersrp; over mgg. Thus, neithergg nor mp; are Nash equilibria, since
one ofx andy could change his action to get a higher payoff.

This completes the reduction. O

5 Conclusion

We proposed a new class of games, so-called ranking games, that mitidglssin which players are merely
interested in performing at least as good as their opponents. Despitauttarstt simplicity of these games,
various solution concepts turned out to be hard to compute, namely mixed dqudlitdl iterated weak

dominance in games with more than two players and pure equilibria in games wittbannded number

of players. As a consequence, the mentioned solution concepts appeaftiimited use in large instances
of ranking games that do not possess additional structure. This uregdettie importance of alternative,
efficiently computable, solution concepts for ranking games.

Acknowledgements

The authors thank Paul Harrenstein, Markus Holzer, Samuel leaggrte Nudelman, and Rob Powers for
valuable comments.

This material is based upon work supported by the Deutsche Forsgamgmschaft under grants
BR 2312/1-1 and BR 2312/3-1, and by the National Science Foundata®T lihR grant [1S-0205633.

References

Abbott, T.; Kane, D.; and Valiant, P. 2005. On the complexity of two-playerlos® games. IRroceedings
of the 46th Symposium on Foundations of Computer Science (FQCH)122. IEEE Computer Society
Press.

Aumann, R. 1961. Almost strictly competitive game¥ournal of the Society of Industrial and Applied
Mathematic9(4):544-550.

Brandt, F.; Sandholm, T.; and Shoham, Y. 2005. Spiteful bidding in séatkductions. In Gmytrasiewicz,
P., and Parsons, S., edBrpceedings of the 7th IJCAI Workshop on Game Theoretic and Dedisieo-
retic Agents (GTDT)

Chen, X., and Deng, X. 2005. Settling the complexity of 2-player Nasliileum. Technical Report
TRO05-140, Electronic Colloquium on Computational Complexity (ECCC).

Conitzer, V., and Sandholm, T. 2005. Complexiy of (iterated) dominancrdoeedings of the 6th ACM
Conference on Electronic Commerce (ACM-E83-97. ACM Press.

13



Daskalakis, C.; Goldberg, P.; and Papadimitriou, C. 2006. The complexignaputing a Nash equilibrium.
In Proceedings of the 38th Annual ACM Symposium on the Theory of Gognf8TOC) ACM Press.

Gottlob, G.; Greco, G.; and Scarcello, F. 2005. Pure Nash equilibriad bladl easy gameslournal of
Artificial Intelligence Research4:195-220.

Khachiyan, L. 1979. A polynomial algorithm in linear programmiBgviet Mathemathics Dokla@p:191—
194.

Luckhardt, C., and Irani, K. 1986. An algorithmic solutionreperson games. IRroceedings of the 5th
National Conference on Artificial Intelligence (AAALS8-162. AAAI Press.

Marsland, A. T., and Schaeffer, J., eds. 19@0mputers, Chess, and Cognitiddpringer-Verlag.

Marx, L. M., and Swinkels, J. M. 1997. Order independence for itdrateak dominanceGames and
Economic Behaviot8:219-245.

Moulin, H., and Vial, J.-P. 1978. Strategically zero-sum games: The cfagames whose completely
mixed equilibria cannot be improved updnternational Journal of Game Theof(3—4):201-221.

Myerson, R. B. 1997Game Theory: Analysis of Confliddarvard University Press.
Nash, J. F. 1951. Non-cooperative gam&snals of Mathematic§4(2):286—295.

von Neumann, J., and Morgenstern, O. 194he Theory of Games and Economic BehaviBrinceton
University Press, 2nd edition.

von Neumann, J. 1928. Zur Theorie der Gesellschaftspidétdhematische Annalel00:295-320.
Papadimitriou, C. H. 1994Computational ComplexityAddison-Wesley.

Papadimitriou, C. H. 2005. Computing correlated equilibria in multi-player gatmeBroceedings of the
37th Annual ACM Symposium on the Theory of Computing (S;J43c56. ACM Press.

Russell, S. J., and Norvig, P. 200&ktificial Intelligence. A Modern ApproactPrentice Hall, 2nd edition.

Schoenebeck, G., and Vadhan, S. 2006. The computational complexitsgshf equilibria in concisely
represented games. Proceedings of the 7th ACM Conference on Electronic Commerce (ACM-E
ACM Press.

Sturtevant, N. 2004. Current challenges in multi-player game searBfoteedings of the 4th International
Conference on Computers and Games (G@lume 3846 of_ecture Notes in Computer Science (LNCS)
Springer-Verlag.

Vajda, S. 1956 Theory of Games and Linear Programmingiley.

14



