
Ex Post Implementation in Environments with
Private Goods

by

Sushil Bikhchandani†

December 2005

Abstract

We prove by construction that ex post incentive compatible mechanisms exist in

auctions when buyers have multi-dimensional signals and interdependent values. The

mechanism shares features with the generalized Vickrey auction of single dimensional

signal models; thus, ex post equilibrium in these models is robust to departures

from a single dimensional information assumption. The construction implies that

for environments with private goods, informational externalities (i.e., interdependent

values) are compatible with ex post equilibrium in the presence of multi-dimensional

signals.

JEL Classification Numbers: D44.

Keywords: ex post incentive compatibility, multi-dimensional information, interde-

pendent values.

——————————

An earlier version of this paper was circulated under the title “The Limits of Ex

post Implementation Revisited.” I am grateful to Benny Moldovanu, Bill Zame and

especially to Joe Ostroy for helpful comments. This material is based upon work

supported by the National Science Foundation under Grant No. SES-0422317.

†Anderson School of Management, UCLA, CA 90095.



1 Introduction

In models of mechanism design with interdependent values, each player’s information

is usually modeled as a real number. While this is convenient, it might not capture

a significant element of the setting. For instance, suppose that agent A’s reservation

value for an object is the sum of a private value, which is idiosyncratic to this agent,

and a common value, which is the same for all agents in the model. Agent A’s private

information consists of an estimate of the common value and a separate estimate of

his private value. As other agents care only about A’s estimate of the common value,

a single dimensional statistic will not capture all of A’s private information that is

relevant to every agent (including A).1

Therefore, it is essential to test whether insights from the literature are robust

to relaxing the assumption that an agent’s private information is a real number.

Building on earlier work by Maskin (1992), Jehiel and Moldovanu (2001) show that if

agents have multi-dimensional information, interdependent values, and independent

signals then, unlike in models with single dimensional information, every Bayesian

Nash equilibrium is (generically) inefficient.2 Jehiel, Meyer-ter-Vehn, Moldovanu,

and Zame (2005) call into question the existence of ex post equilibrium when agents

have multi-dimensional information and interdependent values. They show that ex

post incentive compatible mechanisms do not generically exist (except, of course,

trivial mechanisms which disregard the reports of players).

Our paper shows that non-trivial ex post incentive compatible mechanisms exist in

auctions when buyers have interdependent values and multi-dimensional signals. To

reconcile this with Jehiel et al.’s result, we note that their non-existence result depends

on the assumption that for any pair of outcomes there exist at least two agents who

are not indifferent between that pair of outcomes. If, as is usually assumed, buyers in

an auction care only about their own allocation then this assumption is not satisfied.

To see this, consider the auction of one indivisible object to two buyers, 1 and 2.

There are three possible outcomes: ai, the good is assigned to buyer i, i = 1, 2, and

a0, neither gets the good. Buyer 1 is indifferent between a2 and a0 and buyer 2 is

1A d-dimensional, d ≥ 2, private signal sA can be mapped, without any loss of information,
into a single dimension using a one-to-one function f : <d → <. However, agents’ values will not
be non-decreasing or continuous in the signal f(sA). Hence, the assumption of single dimensional
signals is a limitation only in conjunction with assumptions commonly made in the literature that
a buyer’s (one-dimensional) signal is ordered so that a higher realization is more favorable, or that
the valuation is is a continuous function of the signal.

2See also Harstad, Rothkopf, and Waehrer (1996), who obtain sufficient conditions under which
an efficient allocation is attained by common auction forms. Postlewaithe & McLean (2004) show
that efficient Bayesian implementation is possible when signals are correlated.
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indifferent between a1 and a0. There exist pairs of outcomes (namely (a0, a1) and also

(a0, a2) ) between which all agents except one is indifferent. Consequently, auctions

are non-generic in the space of social choice settings considered by Jehiel et al. and

their generic non-existence result does not apply. Therefore, even if buyers have multi-

dimensional signals, the possibility that there exists a non-trivial selling mechanism

in which truth-telling is ex post incentive compatible is not precluded. What is ruled

out is the existence of a non-trivial ex post incentive compatible mechanism with

outcomes a1 and a2 only, as neither buyer is indifferent between these two outcomes.

We prove by construction an existence result for ex post incentive compatible

mechanisms for the sale of a single indivisible object to n buyers with multi-dimensional

signals and interdependent values. In the construction, the rule for deciding whether

buyer 1, say, should be assigned the object is as follows. Fix the other buyers’ signals

at some realization. Partition buyer 1’s set of possible signal realizations into equiva-

lence classes such that buyer 1’s reservation value is constant on an equivalence class.

These equivalence classes are completely ordered by buyer 1’s value. If a generaliza-

tion of the single crossing property is satisfied then there exists a pivotal equivalence

class (of buyer 1 signals) with the property that it is ex post incentive compatible

to award the object to buyer 1 if and only if buyer 1’s signal realization is in an

equivalence class which is greater than the pivotal class. If buyer 1 wins, the price

paid by him is equal to his value in the pivotal equivalence class (which is also equal

to the maximum of other buyers’ values on buyer 1’s pivotal equivalence class). This

mechanism can be extended to multi-object auctions when buyer preferences over

objects are subadditive. Moreover, when the efficient allocation rule is non-trivial,

this mechanism is also non-trivial.

The mechanism shares the feature with the generalized Vickrey auction of single

dimensional information models that the price paid by the winning buyer is equal to

this buyer’s value at the lowest possible signal (i.e., the pivotal equivalence class) at

which this buyer would just win. Thus, ex post equilibria in auction models with one

dimensional models are robust in that non-trivial ex post equilibria exist even when

buyers have multi-dimensional signals.

In a multi-dimensional signal setting the pivotal equivalence class for a buyer

consists of a continuum of this buyer’s signal realizations whereas in a one dimensional

setting there is exactly one pivotal signal realization for this buyer, for a given value

of other buyers’ signal realizations. Consequently, when the highest two buyer values

are close to each other no buyer’s signal is above his pivotal equivalence class. This

ensures that the subset of buyers’ signals in which one buyer gets the object does

not share a common boundary with the (disjoint) subset of buyers’ signals in which
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another buyer gets the object.3 The social cost of incentive compatibility in our model

is that the object is retained by the auctioneer and gains from trade are not realized

when the highest two buyer valuations are close to each other.

There are only private goods in our model. Thus, in environments with private

goods, informational externalities (i.e., interdependent values) alone do not preclude

the existence of ex post equilibrium in the presence of multi-dimensional signals. One

needs consumption externalities or public goods, in addition to information external-

ities, for non-existence. As ex post equilibrium has been employed mostly in auction

models with private goods, this is not a significant limitation.4

The paper is organized as follows. A model with two buyers is presented in

Section 2, together with preliminary results. An existence result for ex post incentive

compatible mechanisms is proved in Section 3. This result is generalized to n buyers

in Section 3.1. We show in Section 4 that non-trivial mechanisms exist in multi-object

auctions when buyers have subadditive preferences. Section 5 concludes.

2 The model

The main idea can be seen in a model with two buyers and one indivisible object.

Each buyer i, i = 1, 2, receives a di ≥ 2 dimensional private signal, denoted si =

(si1, si2, ..., sidi). The domain of si is Si = [0, 1]d
i
, the unit cube in <di

+ . The buyers’

signals are denoted s = (s1, s2) with domain S = S1 × S2. We also refer to s as an

information state. At information state (si, sj), buyer i’s reservation value for the

object is Vi(si, sj) [also denoted Vi(s)]. Buyers have quasilinear utility. If buyer i gets

the object in state s and pays t, then his utility is Vi(s) − t; if he does not get the

object and pays t, his utility is −t.

Denote by ai, i = 1, 2, the outcome in which buyer i is allocated the object.

The outcome in which no buyer gets the object is denoted a0. A (deterministic)

mechanism consists of an allocation rule h and two payment functions t̂i, i = 1, 2.

The allocation rule h : S → {a0, a1, a2} is a function from the buyers’ reported signals

to an allocation of the indivisible object to either no buyer or buyer 1 or buyer 2;

the payment function t̂i : S → < is a function from the buyers’ reported signals to

a money payment by buyer i. A mechanism is ex post incentive compatible if for

3It is precisely the existence of such a common boundary that is used by Jehiel et al. to show
the non-existence of ex post incentive compatible mechanisms in a setting in which auctions are
non-generic.

4See, for example, Cremer and McLean (1985), Ausubel (1999), Dasgupta and Maskin (2000),
Perry and Reny (2002), and Bergemann and Valimaki (2002).
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i = 1, 2, i 6= j,

Vi(si, sj)1{h(si,sj)=ai} − t̂i(si, sj) ≥ Vi(si, sj)1{h(s′
i,sj)=ai} − t̂i(s

′
i, sj), ∀si, ∀s′i, ∀sj

(1)

where 1A denotes the indicator function of the event A. In other words, at each

information state if buyer j truthfully reports his signal then buyer i can do no better

than truthfully report his signal.5

It is well-known that ex post incentive compatibility implies that the money pay-

ment made by buyer i depends only on (i) whether or not buyer i is assigned the

object and (ii) buyer j’s reported signal, j 6= i. We will restrict attention to mecha-

nisms in which a buyer pays nothing if he does not get the object; that is, t̂i(si, sj) = 0

if h(s) 6= ai.
6 Consequently, we write the money payment function as

t̂i(si, sj) ≡
{

ti(sj), if h(si, sj) = ai,

0, otherwise.

The function ti(sj) is buyer i’s payment conditional on getting the object. We in-

terpret ti(sj) as a personalized price at which the object is available to buyer i. For

mechanisms in which losing buyers pay nothing, the requirement for ex post incentive

compatibility, i.e., condition (1), may be rewritten as follows. For i = 1, 2, i 6= j,[
Vi(si, sj)− ti(sj)

]
1{h(si,sj)=ai} ≥

[
Vi(si, sj)− ti(sj)

]
1{h(s′

i,sj)=ai}, ∀si, ∀s′i, ∀sj.

(2)

A pair of personalized price functions ti(sj), tj(si) is admissible if

Vi(si, sj) > ti(sj) =⇒ Vj(si, sj) ≤ tj(si), ∀si, sj. (3)

That is, in each information state at most one buyer’s value exceeds his personalized

price. An allocation rule implements an admissible pair of prices t1, t2 if the rule

assigns the object to a buyer if and only if the buyer’s value exceeds his personalized

price. That is, the allocation rule

h(s1, s2) ≡


a1, if V1(s1, s2) > t1(s2)

a2, if V2(s2, s1) > t2(s1)

a0, otherwise.

(4)

implements the admissible pair t1, t2. Clearly, h is a feasible allocation rule in that

it does not allocate more than one object. Observe that a buyer cannot change his

5Ex post incentive compatibility is the same as uniform equilibrium of D’Aspremont and Gerard-
Varet (1979) and uniform incentive compatibility of Holmstrom and Myerson (1983).

6By adding to t̂i(si, sj) a lump sum payment φi(sj) one can get ex post implementable mecha-
nisms where this restriction does not hold. From (i) and (ii) it follows that relaxing this restriction
on payment rules does not increase the set of allocation rules that are ex post implementable.

4



personalized price by lying about his private signal, as each buyer’s price depends only

on the other buyer’s (reported) signal. If buyers report their signals truthfully, then

at each information state (si, sj) the mechanism (h, t) allocates the object to buyer i

for a payment of ti(sj) if and only if Vi(si, sj) > ti(sj). Suppose that the information

state is (si, sj) and buyer i reports s′i 6= si. If he gets the same allocation at (si, sj)

and (s′i, sj) then the lie is not profitable. Therefore, suppose that h(si, sj) 6= ai and

h(s′i, sj) = ai. But then Vi(si, sj) ≤ ti(sj) and with a report of s′i buyer i buys at

a price at least as large as his value for the object. Similarly, if h(si, sj) = ai and

h(s′i, sj) 6= ai then with a report of s′i he ends up not buying the object at a price

strictly less than his value. Thus, (h, t) satisfies (2) [and (1)] and is ex post incentive

compatible. We have:

Lemma 1: If an allocation rule h implements an admissible pair of personalized

prices t = (t1, t2) then the mechanism (h, t) is ex post incentive compatible.

A mechanism is non-trivial if there exist two distinct outcomes, each of which is

implemented at a positive (Lebesgue) measure of information states by the mecha-

nism.

It is possible to satisfy (3) by choosing personalized prices so high that each buyer’s

valuation is always less than his personalized price. Such prices lead to the trivial ex

post incentive compatible mechanism in which h(s) = a0, ∀s. In Section 3, we show

that under reasonable conditions on buyers’ information, there exists an admissible

pair of personalized prices which is implemented by a non-trivial ex post incentive

compatible mechanism. In particular, each of the outcomes a0, a1, and a2 occur at a

positive measure of information states. First, we illustrate a non-trivial mechanism

in an example from Jehiel et al. (2005).

Example 1: Two buyers compete for a single indivisible object. Each gets a pair of

signals (pi, ci), i = 1, 2. Buyer i’s valuation for the object is Vi(pi, ci, pj, cj) = pi +cicj,

j 6= i. Further, each buyer’s signal lies in the unit square: (pi, ci) ∈ [0, 1]2, i = 1, 2.

Consider personalized prices ti(pj, cj) ≡ pj + c2
j , tj(pi, ci) ≡ pi + c2

i . Suppose that

Vi(pi, ci, pj, cj) = pi + cicj > pj + c2
j = ti(pj, cj).

Then

pi − pj > c2
j − cicj ≥ cicj − c2

i ,

where we use the fact that c2
i + c2

j − 2cicj ≥ 0. Therefore,

Vj(pj, cj, pi, ci) = pj + cicj < pi + c2
i = tj(pi, ci).

5



Consequently, personalized prices p2 + c2
2 for buyer 1 and p1 + c2

1 for buyer 2 are

admissible; that is they satisfy (3).

Using (4), define an allocation rule which implements these prices. In this mecha-

nism, the buyers report their private signals to the mechanism designer. The mecha-

nism designer allocates the object to buyer i for a payment equal to his personalized

price ti(pj, cj) = pj + c2
j if and only if Vi(pi, ci, pj, cj) = pi + cicj exceeds ti(pj, cj). By

Lemma 1, this mechanism is ex post incentive compatible.

Let h−1(ai) be the set of information states which are mapped on to ai by this

allocation mechanism. Each of the sets

h−1(ai) = {(pi, ci, pj, cj) ∈ [0, 1]4 | pi − pj > c2
j − cicj}, i = 1, 2

h−1(a0) = {(pi, ci, pj, cj) ∈ [0, 1]4 | cicj − c2
i ≤ pi − pj ≤ c2

j − cicj}

is of positive measure. Hence, the mechanism is non-trivial.7

The boundary between the sets h−1(a1) and h−1(a2) is:

h−1(a1) ∩ h−1(a2) = {(p1, c1, p2, c2) ∈ [0, 1]4 | p1 = p2, c1 = c2 = 0}

where A is the closure of set A. This boundary is a one dimensional set and the

projection (onto buyer i’s signal space) of boundary points with a fixed value of

buyer j signal (pj, cj) = (p, 0) is the single point (pi, ci) = (p, 0). We shall return to

this below.

There exists a continuum of non-trivial ex post incentive compatible mechanisms

in this example. Consider personalized prices t′i(pj, cj) = pj + c2
j + εi(pj, cj) where

εi(pj, cj) is non-negative. Since ti(pj, cj) = pj +c2
j satisfy (3), so do the prices t′i(pj, cj).

An allocation rule that implements t′1, t
′
2 is ex post incentive compatible. For small

enough εi(pj, cj), this mechanism is non-trivial. 4

We summarize the main result of Jehiel et al. (2005). Consider a setting with two

agents, 1 and 2, and two outcomes, a1 and a2. Each agent i gets a di-dimensional

signal. Define µi(s), i = 1, 2, to be the difference between i’s utility for outcomes a1

and a2.
8 The domain of signals, S, is shown schematically in Figure 1a. Any allocation

rule partitions S into two subsets, depending on whether h(s) = a1 or h(s) = a2. The

boundary between these two sets is the broken line in Figure 1a. Jehiel et al. show

that for any non-trivial allocation rule (i) the projection of points on this boundary

7In fact, if (pi, ci) 6= (0, 0) and (pi, ci) 6= (1, 1) then each of the outcomes a0, a1, and a2 is
implemented for a positive Lebesgue measure of buyer j signals.

8Thus, in the above example, we restrict attention to mechanisms which allocate the object to a
buyer at every information state s and µ1(s) = V1(s), µ2(s) = −V2(s).
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with fixed value of sj onto the domain of i’s signals, Si, i = 1, 2, is a di−1 dimensional

submanifold9 and (ii) for any ex post incentive compatible allocation rule the gradients

of µ1(s) and µ2(s) must be, roughly speaking, co-directional on this submanifold. For

generic µi(s) it is impossible to satisfy (i) and (ii). Thus, when there are two agents

and two outcomes, non-trivial ex post incentive compatible mechanisms do not exist

for generic utilities.

The argument summarized in the preceding paragraph depends on the assumption

that each agent is not indifferent between the two outcomes a1 and a2. Suppose we

add a third outcome, a0. For this argument to extend it must be case that each agent

is not indifferent between any two of the three outcomes. This assumption is violated

in Example 1. Therefore, consider a setting with two agents and three outcomes a0,

a1, and a2 such that a0(s) ∼1 a2(s), ∀s (i.e., agent 1 is indifferent between a0 and

a2 in every information state) and a0(s) ∼2 a1(s), ∀s. This condition is satisfied in

Example 1.10 Now consider a non-trivial allocation rule h that yields each of the three

outcomes a0, a1, and a2. Jehiel et al.’s theorem implies that if h is ex post incentive

compatible then the boundary between the h−1(a1) and h−1(a2) has less than full

dimension. Their theorem does not impose any restriction on the dimensionality

of the boundary between a0 and ai, i = 1, 2. In particular, the possibility that h

partitions S as shown in Figure 1b is not ruled out. In fact, this figure is a schematic

representation of Example 1 where we demonstrated existence of an ex post incentive

compatible mechanism in which the boundary between h−1(a1) and h−1(a2) is a one

dimensional set in S and the projection onto Si of points on the boundary with a

fixed value of sj is a single point.

More generally, suppose there are i = 1, 2, ..., n agents and L outcomes labeled a`,

` = 1, 2, ..., L. Suppose that for some outcome a` there exists an outcome ak and an

agent j (where ak may depend on a` and j may depend on a` and ak) such that

a`(s) ∼i ak(s), ∀s, ∀i 6= j. (5)

Then, for any ex post incentive compatible allocation rule h, the Jehiel et al. theorem

places no restriction on the boundary between h−1(a`) and h−1(ak). Generic existence

of a non-trivial ex post incentive compatible mechanism with outcomes a` and ak is

not precluded when (5) is satisfied.

Consider the allocation of a bundle of private goods to n buyers. Each outcome

is an assignment of objects among the n buyers, where we allow the possibility that

not all objects are allocated to the buyers. Let a` be any assignment and let ak be

9Hereafter, this condition is referred to as the boundary is of full dimension.
10In Example 1, apart from mechanisms with three outcomes described above, there also exist ex

post incentive compatible mechanisms with two outcomes a0 and, say, a1.
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another assignment which differs from a` only in the allocation that buyer j receives.11

Condition (5) is satisfied for each assignment a`. A full range ex post incentive

compatible mechanism is a possibility.12

In Section 4 we show that non-trivial ex post incentive compatible mechanisms

exist in multi-object auctions. First, we prove a general existence result for such

mechanisms in single object auctions.

3 The main result

We prove an existence theorem for non-trivial ex post incentive compatible mecha-

nisms for the allocation of a single object when buyers have multi-dimensional signals.

The starting point is the model with two buyers described in Section 2. The extension

to n buyers is straightforward and sketched out in Section 3.1.

We assume that higher signals correspond to better news. That is, players’ reser-

vation values do not decrease as buyer signals increase.13 In order to simplify the

proofs, we also assume that buyers’ reservation values are continuous.

Assumption 1a: Vi(s) is non-decreasing in s, i = 1, 2.

1b: Vi(·) is continuous in all its arguments.

The next assumption is a generalization of the single crossing property.

Assumption 2: For any sj we have14

Vi(s
′
i, sj)− Vi(si, sj) ≥ Vj(sj, s

′
i)− Vj(sj, si), ∀s′i > si.

As buyer i’s signal increases from si to s′i, the increase in i’s value is greater

than the increase in buyer j’s value. That is, buyer i’s value is more sensitive than

buyer j’s value to changes in buyer i’s signal. In a model with one dimensional

signals, Assumption 2 is a version of the single crossing property, which is a sufficient

condition for existence of an efficient mechanism in such models (see Maskin 1992).

11Thus, not all the objects are allocated in at least one of the two assignments a`, ak.
12A mechanism has full range if each outcome is implemented at a positive measure of information

states.
13The following terminology regarding monotonicity of a function f : <n → < is adopted. For

x, x′ ∈ <n, x′ > x denotes that x′ is at least as large as x in every co-ordinate and x′ 6= x. If
f(x′) ≥ f(x) whenever x′ > x then f is non-decreasing.

14An equivalent assumption is that for each sj , Vi(si, sj)− Vj(sj , si) is a non-decreasing function
of si.
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The next assumption rules out the uninteresting case where the efficient rule is

trivial. As any trivial rule is ex post incentive compatible, if assumption 3 is violated

then the efficient rule is ex post incentive compatible.

Assumption 3: For each buyer, there exists a positive measure of information states

at which this buyer’s valuation is strictly greater than the other buyer’s valuation.

Using Assumptions 1 and 2, we construct a personalized price function for each

buyer. This pair of price functions is shown to be admissible. Assumption 3 is then

employed to show that the ex post incentive compatible mechanism which implements

the pair of admissible prices is non-trivial.

Fix buyer j’s signal at some level sj. The domain of si, i 6= j, is the unit cube

in <di

+ and each buyer’s valuation is non-decreasing in si. Therefore, with buyer j’s

signal fixed at sj, the maximum of either buyer’s reservation value as a function of

buyer i’s signal is attained when si = 1, where 1 denotes the point (1, 1, ..., 1) in

<di

+ . Similarly, the minimum of either buyer’s value as a function of si is attained at

si = 0 ≡ (0, 0, ..., 0). Define Si(λ, sj), the set of signals of buyer i which lead to the

same reservation value for buyer i as the signal ŝi = λ1, where λ ∈ [0, 1]. That is,

Si(λ, sj) ≡ {si ∈ Si |Vi(si, sj) = Vi(λ1, sj) }, 0 ≤ λ ≤ 1.

Thus, for a fixed sj, buyer i’s signal space partitions into equivalence classes or “in-

difference” curves, Si(λ, sj), one for each λ ∈ [0, 1]. These equivalence classes are

naturally ordered by λ as larger λ leads to larger buyer i reservation values.

While buyer i’s value (as a function of si) is constant on Si(λ, sj), buyer j’s value

will, in general, not be constant on this set. The maximum of buyer j’s value on

buyer i’s equivalence class Si(λ, sj) is

V m
ij (λ, sj) ≡ max

si∈Si(λ,sj)
Vj(sj, si).

As Si is compact and Vi(·, sj) is continuous, Si(λ, sj) is compact. This, together with

the continuity of Vj(sj, ·) implies that V m
ij (λ, sj) exists. Further, the continuity of

Vi(·, ·) and Vj(·, ·) implies that V m
ij (λ, sj) is continuous in λ and sj. Let sm

ij (λ, sj) be

sm
ij (λ, sj) ∈ arg max

si∈Si(λ,sj)
Vj(sj, si).

Thus, V m
ij (λ, sj) = Vj(sj, s

m
ij (λ, sj)) and Vi(s

m
ij (λ, sj), sj) = Vi(λ1, sj). Observe that

Vj(sj, si) ≤ V m
ij (λ, sj), ∀si ∈ Si(λ, sj). (6)

For a fixed realization of sj, Figure 2 depicts indifference curves (i.e., equivalence

classes) of buyers i and j in buyer i’s (two dimensional) signal space. By Assump-

tion 1a, indifference curves will be negatively sloped. However, (i) the indifference
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curves need not be convex; (ii) indifference curves may touch the axes (as is the

case in Example 1); and (iii) V m
ij (λ, sj), the maximum value of buyer j in buyer i’s

indifference curve Si(λ, sj), may be attained at more than one point in Si(λ, sj).

Ex post incentive compatibility imposes the following necessary condition. If

buyer 1, say, is allocated the object at information state (s1, s2), then he should

also be allocated the object at any information state (s′1, s2) such that V1(s
′
1, s2) >

V1(s1, s2). Otherwise, buyer 1 would have an incentive to report s1 instead of s′1 at

the information state (s′1, s2). That is, an incentive compatible allocation rule must

be weakly monotone.15 Or in the terminology of equivalence classes, if s1 ∈ S1(λ, s2)

and buyer 1 is allocated the object at (s1, s2), then buyer 1 must be allocated the

object at all s′1 ∈ S1(λ
′, s2) where λ′ > λ.

We construct an ex post incentive compatible mechanism in which, for each value

of sj, there exists a λ∗
ij(sj) ∈ [0, 1] such that buyer i wins if his signal is in an

equivalence class greater than λ∗
ij(sj), and buyer i loses otherwise. Clearly, this al-

location rule satisfies weak monotonicity. Call Si(λ
∗
ij(sj), sj) the pivotal equivalence

class for buyer i at sj. Any si in the pivotal equivalence class is a pivotal signal for

buyer i. Buyer i’s personalized price is defined to be V m
ij (λ∗

ij(sj), sj), the maximum

of buyer j’s value in buyer i’s pivotal equivalence class (and this is usually equal to

buyer i’s value on the pivotal equivalence class). These personalized prices will be

admissible if Vi(λ1, sj)− V m
ij (λ, sj) is non-decreasing in λ. This is shown in the next

lemma.

Lemma 2: If Assumptions 1 and 2 are satisfied then for any sj and 1 ≥ λ′ > λ > 0,

Vi(λ
′1, sj)− V m

ij (λ′, sj) ≥ Vi(λ1, sj)− V m
ij (λ, sj).

Proof: To simplify notation, we write sm
ij (λ

′), sm
ij (λ) for sm

ij (λ
′, sj), sm

ij (λ, sj).

Let λm ∈ [0, 1] be such that λmsm
ij (λ

′) ∈ Si(λ, sj). To see that λm exists, de-

fine f(x) ≡ Vi(xsm
ij (λ

′), sj), where x ∈ [0, 1] and note that f(1) = Vi(s
m
ij (λ

′), sj) =

Vi(λ
′1, sj) ≥ Vi(λ1, sj) ≥ V (0, sj) = f(0). By Assumption 1b, f(x) is a continuous

function of x, and therefore there exists λm such that f(λm) = Vi(λ
msm

ij (λ
′), sj) =

Vi(λ1, sj). (As shown in Figure 2, λm is on the line joining Sm
i (λ′) to the origin.)

Hence,

Vi(λ1, sj)− V m
ij (λ, sj) = Vi(λ

msm
ij (λ

′), sj)− V m
ij (λ, sj)

15See Bikhchandani et al. (2005) for conditions under which weak monotonicity is also sufficient
for incentive compatibility.
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≤ Vi(λ
msm

ij (λ
′), sj)− Vj(sj, λ

msm
ij (λ

′))

≤ Vi(s
m
ij (λ

′), sj)− Vj(sj, s
m
ij (λ

′))

= Vi(λ
′1, sj)− V m

ij (λ′, sj)

where the first inequality follows from the fact that λmsm
ij (λ

′) ∈ Si(λ, sj) and (6), and

the second inequality from Assumption 2.

For λ ∈ [0, 1], define

gij(λ; sj) ≡ Vi(λ1, sj)− V m
ij (λ, sj).

Lemma 2 implies that gij(λ; sj) is a non-decreasing function of λ. The continuity

of Vi and of V m
ij implies that gij(λ; sj) is continuous (in λ). Thus, the following is

well-defined:

λ∗
ij(sj) ≡


1, if gij(1; sj) < 0,

max{λ ∈ [0, 1] | gij(λ; sj) = 0}, if gij(1; sj) ≥ 0 ≥ gij(0; sj),

0−, if gij(0; sj) > 0,

where 0− is a negative number arbitrarily close to 0. Hence, Vi(λ1, sj) > V m
ij (λ, sj)

if and only if λ > λ∗
ij.

16 Define V m
ij (0−, sj) = V m

ij (0, sj). Then, as V m
ij (λ, sj) is

non-decreasing in λ, we have

Vi(λ1, sj) > V m
ij (λ∗

ij, sj) if and only if Vi(λ1, sj) > V m
ij (λ, sj) if and only if λ > λ∗

ij.

(7)

Let

t∗i (sj) ≡ V m
ij (λ∗

ij, sj) (8)

be buyer i’s personalized price as a function of sj.
17

Let λi(si, sj) be the index of the equivalence class that si belongs to at sj. That

is, si ∈ Si(λi(si, sj), sj). The main result shows that the following allocation rule is

non-trivial and ex post incentive compatible: buyer i wins if and only if Vi(si, sj) >

V m
ij (λi(si, sj), sj). This rule is implemented through the personalized prices defined

above.

Theorem 1: The personalized prices t∗ = (t∗1, t
∗
2) defined in (8) are admissible.

The mechanism (h∗, t∗), where h∗ implements t∗, is non-trivial and ex post incentive

compatible.

16Hereafter, the dependence of λ∗ij on sj is usually suppressed to simplify the notation.
17Note that if λ∗ij ∈ [0, 1) then Vi(λ∗ij1, sj) = V m

ij (λ∗ij , sj) and therefore t∗i (sj) = Vi(λ∗ij1, sj). If
λ∗ij = 0− then Vi(0, sj) > V m

ij (0, sj) = t∗i (sj) and if λ∗ij = 1 then Vi(1, sj) ≤ V m
ij (1, sj) = t∗i (sj).

11



Proof: Suppose that the information state is (s1, s2). We write λi instead of λi(si, sj)

to simplify the notation. That is, Vi(si, sj) = Vi(λi1, sj). Note that (6) implies

V2(s2, s1) ≤ V m
12 (λ1, s2), V1(s1, s2) ≤ V m

21 (λ2, s1). (9)

Suppose that V1(s1, s2) > t∗1(s2) = V m
12 (λ∗

12, s2). By (7), λ1 > λ∗
12 and V1(s1, s2) =

V1(λ11, s2) > V m
12 (λ1, s2). Hence, (9) implies that V m

21 (λ2, s1) > V2(s2, s1) = V2(λ21, s1).

From (7) we have λ∗
21 ≥ λ2 and, therefore, V2(s2, s1) = V2(λ21, s1) ≤ V m

21 (λ∗
21, s1)

= t∗2(s1).

An identical argument implies that if, instead, V2(s1, s1) > t∗2(s1), then V1(s1, s2) ≤
t∗1(s2). Thus, the personalized prices satisfy (3) and, by Lemma 1, the allocation rule

h∗(s1, s2) ≡


a1, if V1(s1, s2) > t∗1(s2)

a2, if V2(s2, s1) > t∗2(s1)

a0, otherwise

which implements admissible prices t∗1(s2), t∗2(s1) is feasible and ex post incentive

compatible.

To complete the proof, we show that (h∗, t∗) is non-trivial. Let information state

s1 = (s1
1, s

1
2) be such that V1(s

1
1, s

1
2) > V2(s

1
1, s

1
2). Assumption 3 guarantees that there

exists a positive measure of such information states. By Assumption 2, V1(1, s1
2) >

V2(s
1
2,1) and by Assumption 1a, V2(s

1
2,1) = V m

12 (1, s1
2). Thus, V1(1, s1

2) > V m
12 (1, s1

2)

and λ∗
12(s

1
2) < 1. Hence buyer 1 gets the object at (s1, s

1
2) for all s1 ∈ S1(λ, s1

2),

λ ∈ (λ∗
12(s

1
2), 1]. As there are a positive measure of information states at which

buyer 1’s value is strictly greater than buyer 2’s value, there is a positive of information

states at which buyer 1 is allocated the object. A similar argument establishes that

buyer 2 is allocated the object at a positive measure of information states. Hence,

the mechanism is non-trivial.

If the mechanism assigns the object to a buyer then this buyer must have the

highest reservation value. To see this, suppose that buyer i is allocated the object at

information state s = (si, sj). Let λi(si, sj) and λ∗
ij(sj) be defined at this state in the

usual manner. Then, from the proof of Theorem 1 it is clear that λi(si, sj) > λ∗
ij(sj)

and therefore Vi(si, sj) > V m
ij (λi(si, sj), sj) ≥ Vj(sj, si).

Neither buyer is allocated the object when their valuations are close to each

other. This occurs at information states s = (si, sj) such that λi(s) < λ∗
ij(sj) and

λj(s) < λ∗
ji(si). Such information states have positive measure unless either (i) buy-

ers’ indifference curves in Si space for each fixed sj, i = 1, 2, i 6= j are identical or (ii)

if Assumption 3 is not satisfied. From Jehiel and Moldovanu (2001) we know that any

12



incentive compatible mechanism, including this one, is (generically) inefficient. The

source of the inefficiency in the current mechanism is the cost of enforcing incentives

when buyer valuations are close.

Recall that any signal si in the pivotal equivalence class Si(λ
∗
ij, sj) is a pivotal

signal for buyer i at sj. With buyer j’s signal fixed at sj, buyer i wins (loses) at signals

greater (less) than a pivotal signal. Thus a pivotal signal is an infimum of winning

signals. The price paid by a winning buyer i equals the valuation of this buyer at a

pivotal signal (provided that λ∗
ij ∈ [0, 1)). This is similar to the efficient mechanisms in

Ausubel (1999) and Dasgupta and Maskin (2000), where buyers have one dimensional

signals.18 However, unlike in these models, in the mechanism of Theorem 1 the

valuations of buyers i and j need not be equal at a pivotal signal of buyer i; at a

pivotal signal for buyer i, buyer i’s valuation equals the most that buyer j’s valuation

can be in the pivotal equivalence class of buyer i. The difference arises because in

one dimensional models, equivalence classes (or indifference curves) of buyer i signals

are singletons and hence for a given realization of sj there can be only one pivotal

signal for buyer i. A second difference is the role of the single crossing property or

Assumption 2. With one dimensional signals, the single crossing property is sufficient

for existence of an efficient ex post incentive compatible mechanism whereas with

multi-dimensional signals Assumption 2 is sufficient for the existence of an ex post

incentive compatible mechanism mechanism (which is inefficient).

3.1 Extension to many buyers

We outline the minor changes in notation, assumptions, and analysis required to

extend Theorem 1 to many buyers.

Each buyer’s valuation depends on the (possibly multi-dimensional) signals of all

n buyers. The information states are denoted s = (s1, s2, ..., sn) = (si, s−i). Change

sj to s−i in Assumption 2, and require the assumption to hold for every Vi and Vj.

Assumption 3 is required to hold for two distinct buyers, i.e., there exist two sets of

information states, Ai and Aj, each set of positive measure, such that buyer i’s [ j’s ]

value is strictly greater than all other buyers’ values on the set Ai [Aj ].

We write Vi(si, s−i), V m
ij (λ, s−i), gij(λ; s−i) instead of Vi(si, sj), V m

ij (λ, sj), gij(λ; sj),

18There is one difference in Dasgupta and Maskin (2000). The mechanism designer (auctioneer)
does not know the mapping from buyer signals to valuations. Hence, buyers submit contingent bids
rather than report their private signals.
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etc. The definition of λ∗
ij(s−i) is:

λ∗
ij(s−i) ≡


1, if gij(1; s−i) < 0,

max{λ ∈ [0, 1] | gij(λ; s−i) = 0}, if gij(1; s−i) ≥ 0 ≥ gij(0; s−i),

0, if gij(0; s−i) > 0.

where gij(λ; s−i) ≡ Vi(λ1, s−i)− V m
ij (λ, s−i). Buyer i’s personalized price is

t∗i (s−i) ≡ max
j 6=i

V m
ij (λ∗

ij(s−i), s−i) (10)

Once again, buyer i’s personalized price equals the maximum valuation of all other

buyers on the pivotal equivalence class (which equals i’s valuation at a pivotal signal

whenever maxj 6=i λ
∗
ij(s−i) ∈ [0, 1)).

4 Many buyers and many objects

There are n buyers indexed by i or j, and K objects indexed by k or `. Each buyer i

receives a di dimensional signal si ∈ [0, 1]d
i
. Buyer i’s valuation for object k alone is

V k
i (si, s−i); his valuation for a subset L ⊆ {1, 2, ..., K} is denoted V L

i (si, s−i). Each

buyer’s preferences over subsets of objects are subadditive (defined in (13) below).

We write Sk
i (λ, s−i), V m,k

ij (λ, s−i), gk
ij(λ; s−i), λk

ij(s−i) instead of Si(λ, sj), V m
ij (λ, sj),

gij(λ; sj), λ∗
ij(s−i), etc. Note that only V k

i (si, s−i) = V k
i (λ1, s−i) for si ∈ Sk

i (λ, s−i);

in general, V `
i (si, s−i) 6= V `

i (λ1, s−i) when si ∈ Sk
i (λ, s−i), ` 6= k.

The following generalizations of Assumptions 1 and 2 of Section 3 will be sufficient

for existence of admissible prices:

Assumption 1a∗: For all i, k, V k
i (s) is non-decreasing in s.

1b∗: For all i, k, V k
i (·) is continuous in all its arguments.

Assumption 2∗: For all i, j, and k, for any s′i > si, for any s−i we have

V k
i (s′i, s−i)− V k

i (si, s−i) ≥ V k
j (s′i, s−i)− V k

j (si, s−i).

Personalized prices (which we shall show to be admissible for subadditive prefer-

ences over subsets of objects) for each object are defined by:

tki (s−i) ≡ max
j 6=i

V m,k
ij (λk

ij(s−i), s−i), ∀s−i, ∀k, i. (11)

Note that tki (s−i) ≥ 0. With Assumptions 1∗ and 2∗, the results of Section 3 generalize

so that for any s:

If V k
i (s) > tki (s−i) then V k

j (s) ≤ tkj (s−j) for all j 6= i. (12)
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Consider the following mechanism, which gives each buyer a surplus maximizing

bundle at personalized prices tki which satisfy (12) (for instance, the prices defined

in (11)). Buyers report their signals. Personalized prices tki are computed for each

buyer and each object. Every buyer gets a minimal element in his demand set at the

reported signals at these personalized prices. Thus, if buyers report s = (s1, s2, ..., sn)

then buyer i gets Li ⊆ {1, 2, ..., K} such that

V Li
i (s)−

∑
k∈Li

tki (s−i) ≥ V L
i (s)−

∑
k∈L

tki (s−i), ∀L ⊆ {1, 2, ..., K},

and if V Li
i (s) −∑

k∈Li
tki (s−i) = V L

i (s) −∑
k∈L tki (s−i) for some L then L 6⊂ Li. Call

this mechanism the demand mechanism (as each buyer gets an element of his demand

set).

No matter what preferences buyers have over subsets of objects, because at each

information state each buyer gets an element of his demand set, the demand mecha-

nism “satisfies” the ex post incentive compatibility constraints. However, in general

the demand mechanism may not be feasible as demand for an object may exceed

its supply (of one unit). We show that for subadditive preferences (defined below),

the demand mechanism is feasible: each object is allocated to at most one buyer.

Moreover, we exhibit examples of subadditive preferences in which this mechanism is

non-trivial.

Subadditive preferences: The value of the union of two disjoint subsets is no

greater than the sum of the values of the two subsets. That is, for all s

V L∪L′

i (s) ≤ V L
i (s) + V L′

i (s), ∀L, L′ ⊂ {1, 2, ..., K}, L ∩ L′ = ∅. (13)

We mention two special cases of subadditive preferences. Clearly, additive preferences,

where the valuation of a subset is the sum of the valuations of objects in the subset,

satisfy (13) with equality. A second example is that of unit demand preferences,

i.e., the preferences of the assignment model. Each buyer has utility for at most one

object. If a buyer is given a subset of objects L, he will select an object with the

highest valuation and throw away the rest. Thus, his reservation value for any subset

L ⊆ {1, 2, ..., K} is:

V L
i (s) ≡ max

k∈L
{V k

i (s)}.

Note that the object which attains the max may vary with s. It is easily verified that

unit demand preferences also satisfy (13).
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Lemma 3: If Assumptions 1∗ and 2∗ are satisfied and each buyers’ preferences are

subadditive then the demand mechanism is feasible and ex post incentive compatible.

Proof: Let Li and Lj be the subsets allocated by the demand mechanism to buyers

i and j, j 6= i, at some information state s. We show that Li ∩ Lj = ∅. If Li = ∅
there is nothing to prove. Therefore, suppose that Li 6= ∅. If Li = {k} for some k,

then minimality of Li implies that V k
i (s)− tki (s−i) > 0. Next, suppose that |Li| ≥ 2.

Then for any k ∈ Li,

V Li
i (s)−

∑
`∈Li

t`i(s−i) > V
Li\k
i (s)−

∑
`∈Li\k

t`i(s−i)

=⇒ V Li
i (s)− V

Li\k
i (s) > tki (s−i)

where the first inequality follows from the fact that Li is minimal. By subadditivity,

V k
i (s) ≥ V Li

i (s)− V
Li\k
i (s) > tki (s−i).

Therefore, if |Li| ≥ 1 then for any k ∈ Li we have V k
i (s) > tki (s−i); (12) implies that

V k
j (s) ≤ tkj (s−j). This, together with subadditivity, implies that for any subset of

objects L′ such that there exists k ∈ L′ ∩ Li,

V L′

j (s)−
∑
`∈L′

t`j(s−j) ≤ V
L′\k
j (s) + V k

j (s)−
∑

`∈L′\k
t`j(s−j)− tkj (s−j)

≤ V
L′\k
j (s)−

∑
`∈L′\k

t`j(s−j).

Hence, L′ cannot be a minimal element of j’s demand set. Therefore, Lj ∩ Li = ∅.
The demand mechanism is feasible for subadditive preferences.

Under truth-telling, each buyer gets an element of his demand set at the realized

information state. Therefore, the mechanism is ex post incentive compatible.

It may be verified that the demand mechanism is non-trivial for additive prefer-

ences, provided that the analog of Assumption 3 of Section 3 holds. The following

example, which builds on Example 1, exhibits two examples of strictly subadditive

preferences for which the demand mechanism is non-trivial.

Example 2: There are three buyers, 1, 2, and 3, and two objects, a and b. Buyer i

gets signal (pai, pbi, ci), i = 1, 2, 3. Buyer i’s valuation for the object k as a function

of buyer signals is19

V k
i ≡ pki + wkci max{cj, cj′}, k = a, b,

19We assume that i, j, j′ = 1, 2, 3 are three distinct buyers, that is j 6= j′ 6= i 6= j.
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where wa, wb ≥ 0 are constants. We specify buyer i’s reservation value for the bundle

ab later.

Define

tki ≡ max{pkj + wkc
2
j , pkj′ + wkc

2
j′}, k = a, b. (14)

Let ti = (tai , t
b
i) be the personalized prices at which the two objects are available

to buyer i, i = 1, 2. Suppose that at some information state, buyer i’s value for

object k exceeds his personalized price. This implies that V k
i = pki + wkcicj >

tki ≥ pkj + wkc
2
j , j 6= i. Then, mimicking the steps in Example 1, it is easily

shown that V k
j < pki + wkc

2
i ≤ tkj . Thus, the personalized prices defined in (14)

satisfy (12). By Lemma 3, the demand mechanism at these personalized prices is ex

post incentive compatible for any specification of V ab
i which satisfies the subadditive

inequality (13).20

In the rest of this example we assume that wa = 1 and wb = 1.5. Thus, buyer i’s

reservation values for exactly one object are V a
i = pai + ci max{cj, cj′} and V b

i =

pbi + 1.5ci max{cj, cj′}. We give two sets of preferences over the bundle ab for which

this mechanism is non-trivial.

Subadditive preferences: Buyer i’s valuation for the bundle ab is

V ab
i ≡ pai + pbi + 2ci max{cj, cj′}.

These preferences are subadditive. In the demand mechanism, buyer i is allocated

Li = ∅ if none of the subsets a, b, or ab yields a strictly positive surplus at the per-

sonalized prices at the realized (i.e., reported) information state. Otherwise he is

allocated the smallest Li ∈ {a, b, ab} that maximizes his surplus.

To see that the mechanism is non-trivial, fix buyer 2’s signals at (pa2, pb2, c2) =

(0.4, 0.1, 0.4) and buyer 3’s signals at (pa3, pb3, c3) = (0.1, 0.4, 0.4). Thus, ta1 =

max{0.4 + (0.4)2, 0.1 + (0.4)2} = 0.56, and tb1 = max{0.1 + 1.5 × (0.4)2, 0.4 + 1.5 ×
(0.4)2} = 0.64. Further, fix c1 = 0.5. Hence, V a

2 = 0.6, V b
2 = 0.4, and V ab

2 = 0.9, and

V a
3 = 0.3, V b

3 = 0.7, and V ab
2 = 0.9. In Table 1, we obtain the allocations achieved by

the demand mechanism at three different values of buyer 1’s private signals (pa1, pb1).

With (pa2, pb2, c2) fixed at (0.4,0.1,0.4), and (pa3, pb3, c3) at (0.1,0.4,0.4), we see

that (i) buyer 1 gets object a, 2 gets nothing, and 3 gets b when (pa1, pb1, c1) =

(0.9, 0.1, 0.5), (ii) buyer 1 gets object b, 2 gets a, and 3 gets nothing when (pa1, pb1, c1) =

(0.9, 0.1, 0.5), and (iii) buyer 1 gets both the objects when (pa1, pb1, c1) = (0.9, 0.9, 0.5).

Moreover, at each of these three information states, buyers’ demand sets are single-

tons. Hence, the allocation attained by the demand mechanism is constant in a

20These prices of (14) have not been defined as in (11). All that the proof of Lemma 3 requires is
that the personalized prices used in the demand mechanism satisfy (12).
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positive measure neighborhood around each information state. Thus, the demand

mechanism is non-trivial. By symmetry, the mechanism has full range.

Table 1

(pa1, pb1, c1) (0.9, 0.1, 0.5) (0.1, 0.9, 0.5) (0.9, 0.9, 0.5)

V a
1 1.1 0.3 1.1

V b
1 0.4 1.2 1.2

V ab
1 1.4 1.4 2.2

ta1 0.56 0.56 0.56

tb1 0.64 0.64 0.64

Buyer 1’s allocation a b ab

V a
2 0.6 0.6 0.6

V b
2 0.4 0.4 0.4

V ab
2 0.9 0.9 0.9

ta2 1.15 0.35 1.15

tb2 0.64 1.275 1.275

Buyer 2’s allocation ∅ a ∅
V a

3 0.3 0.3 0.3

V b
3 0.7 0.7 0.7

V ab
3 0.9 0.9 0.9

ta3 1.15 0.56 1.15

tb3 0.475 1.275 1.275

Buyer 3’s allocation b ∅ ∅

Unit demand preferences: Buyer i’s valuation for the bundle ab is

V ab
i ≡ max{V a

i , V b
i }, i = 1, 2, 3.

The demand mechanism allocates to buyer i the object that maximizes his surplus,

V k
i − tki , k = a, b, provided this surplus is positive; if V k

i − tki ≤ 0 for k = a, b then

buyer i gets nothing. To check that the mechanism is non-trivial, fix buyer 2’s signals

at (pa2, pb2, c2) = (0.4, 0.1, 0.4), and buyer 3’s signals at (pa3, pb3, c3) = (0.1, 0.4, 0.4).

Table 2 shows that when (pa1, pb1, c1) = (0.9, 0.1, 0.5) buyer 1 gets object a and 3 gets

b, and when (pa1, pb1, c1) = (0.1, 0.9, 0.5), buyer 1 gets b and buyer 2 gets a. Moreover,

as the demand set of each buyer is a singleton at each of the two information states, the

two allocations are implemented at a positive measure of information states. Hence,

the mechanism is non-trivial, and, by symmetry, full range.
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Table 2

(pa1, pb1, c1) (0.9, 0.1, 0.5) (0.1, 0.9, 0.5)

V a
1 1.1 0.3

V b
1 0.4 1.2

ta1 0.56 0.56

tb1 0.64 0.64

Buyer 1’s allocation a b

V a
2 0.6 0.6

V b
2 0.4 0.4

ta2 1.15 0.35

tb2 0.64 1.275

Buyer 2’s allocation ∅ a

V a
3 0.3 0.3

V b
3 0.7 0.7

ta3 1.15 0.56

tb3 0.475 1.275

Buyer 3’s allocation b ∅

4

5 Concluding remarks

Jehiel et al. (2005) question the existence of ex post equilibrium in models with multi-

dimensional signals. Our paper shows that ex post equilibrium exists in auctions of

private goods. Existence is proved under the assumption that buyers’ information

satisfies a generalization of the single crossing property. The mechanism shares the

feature with the generalized Vickrey auction of single dimensional information models

that the price paid by the winning buyer is equal to this buyer’s value at the lowest

possible signal (equivalence class) at which this buyer would just win. Thus, ex

post equilibria in auction models with one dimensional models are robust in that

non-trivial ex post equilibria exist even when buyers have multi-dimensional signals.

To reconcile our positive result with the negative result of Jehiel et al., observe

that selfish preferences are a natural assumption in auction models. But in the

space of all preferences (selfish or not), selfish preferences are non-generic. At a tiny

perturbation away from selfish preferences, (5) is not satisfied by any pair of out-

comes. Jehiel et al.’s theorem would then imply generic non-existence of ex post

incentive compatible mechanisms. However, as non-trivial mechanisms that are “ap-

proximately” ex post incentive compatible still exist at these tiny perturbations away
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from selfish preferences, ex post incentive equilibrium is a robust equilibrium concept

for auctions of private goods. Under a small departure from the usual assumption of

selfish preferences in private goods models, many results in economics would be only

approximately true.
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