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Abstract

We consider a �nite population simultaneous move game with heterogeneous interaction modes across

di¤erent pairs of players. We allow for general interaction patterns, but restrict our analysis to linear-

quadratic payo¤s so that we can formulate the Nash equilibrium problem as the solution to a linear

complementarity problem. More generally, our results potentially hold in any set up where equilibrium

conditions boil down to a set of piece-wise linear conditions.

We introduce the new class of games with hidden complementarities. Games with hidden comple-

mentarities are such that a suitable linear transformation of the interaction matrix produces an induced

game with complementarities. We provide general conditions on the interaction matrix such that the

equilibrium is unique and/or interior, in which case we characterize equilibrium actions by means of a

closed-form expression that involves a generalized version of the Katz-Bonacich network measure of node

centrality.
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1 Introduction

It is a feature of most economic groupings that the behavior of each member may a¤ect the behavior and

well-being of every other member. This cross in�uence can sometimes be exerted through some public good

nature of the group interaction. In a given competitive industry, for instance, the common market price

at which all �rms sell their output, and that enters their individual pro�t calculations, results from the

production decision of each such �rm. It can also be directly embodied in the preferences of the agents.

When cross in�uences operate, every single action taken by an individual in isolation a¤ects the well-being

of other individuals in the group. Cross in�uences thus naturally yield to interdependent decisions.

The aim of this paper is to analyze the equilibrium behavior for general interaction patterns, where cross

in�uences are allowed to vary in sign and value across di¤erent pairs of players.

More precisely, we consider a �nite population simultaneous move game with heterogeneous interaction

modes across di¤erent pairs of players. When an interaction is positive (negative), the decisions of the linked

agents are said to be strategic complements (substitutes). Beyond its di¤erences in sign, interactions can also

di¤er in intensity across di¤erent pairs of players. For a given population of players, we gather together the

characteristics of each possible bilateral interaction (sign and intensity) in a matrix, the interaction matrix.

We consider very general interaction matrices, that can re�ect both strategic complementarity or strategic

substitutability in actions of any intensity, for a same group of players and depending on the pair of players

considered. Although we allow for general interaction patterns, we restrict our analysis to linear-quadratic

payo¤s. For these games, the interaction matrix coincides with second-order derivatives of individual payo¤s.

With such payo¤ structure, best-response functions are piece-wise linear.

In fact, beyond the assumption on quadratic payo¤s, it is the piece-wise linearity of best-responses that

proves crucial for our analysis. Our results thus potentially apply to any set up where equilibrium conditions

boil down to a set of piece-wise linear conditions. Bayesian games or team problems with linear information

structures, for instance, fall into this category.1

Borrowing from the extensive literature on complementarity problems, we �nd conditions on the inter-

action matrix such that our game with heterogeneous interaction modes has a unique Nash equilibrium in

pure strategies. The uniqueness and existence of a solution is a desirable property in order to be able to

make unambiguous predictions and to make consistent comparative statics. The most general property that

guarantees uniqueness of Nash equilibrium the P�matrix property, that is, the fact that all the principal
minors of the matrix are positive. Unfortunately, checking that a matrix ful�lls this condition is impractical

in most cases. We thus opt by singling out some subclasses of matrices for which uniqueness of the equilib-

rium outcome still holds and that are easier to identify. More importantly, these classes of matrices deserve

an intuitive and straight economic interpretation.

More precisely, we introduce a new class of games that we call games with hidden complementarities. This

class of games includes in particular games with complementarities, for which the cross-payo¤s derivatives

between every pair of players are non-negative. Games with complementarities have been extensively dealt

with in the literature. Supermodular games, for instance, correspond to games with complementarities with

a lattice strategy space.2 In the class of games we consider, we deal with an unbounded strategy space,

the non-negative real line. Without boundedness, we loose some properties characteristics of supermodular

1See, e.g., Radner (1962) and an application in Calvó-Armengol and De Martí (2006).
2 In our case, this is equivalent to a bounded strategy space. See Topkis (1979), Vives (1990) and Milgrom and Roberts

(1990).
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games, such as the lattice structure of the Nash equilibrium set. But some other interesting properties,

like existence and uniqueness of the equilibrium correspondence, are obtained from simple and intuitive

conditions on the pattern of interactions.

However interesting, games with complementarities constitute only a subclass of the richer family of games

with hidden complementarities. By de�nition, games with hidden complementarities are such that a linear

transformation of the corresponding interaction matrix yields an induced game with complementarities. This

broader and new class of games includes, for instance, the public good network game analyzed by Bramoullé

and Kranton (2006), where players� actions are strategic substitutes across network-linked players. The

games with local complementarities and global substitutabilities analyzed in Ballester et al. (2006) constitute

another example of a game with hidden complementarities.

We provide a characterization of games with hidden complementarities possessing a unique Nash equilib-

rium, a result that follows from Pang (1979a). When the equilibrium is interior, there is a simple one-to-one

correspondence between the Nash equilibrium of the original game with hidden complementarities and that

of the induced game with complementarities. We are also able to provide a closed-form expression for this

equilibrium that involves a generalized version of the Katz-Bonacich network measure of node centrality.

Although seemingly very demanding, the P�matrix property turns out to be a necessary condition for
the existence of Nash equilibria in situations particularly compelling for the economist. For instance, when

utilities are increasing functions in own actions at the origin, then the P�matrix property is necessary
for equilibrium existence, and the game has either a unique equilibrium or no equilibrium at all, so that

equilibrium multiplicity is also ruled out.

We also analyze a subclass of games with hidden complementarities with particular interest, games with

shifted complementarities. Games with shifted complementarities are obtained with an upwards shift of

a game with complementarities. In this case, the pattern of hidden complementarities emerges by wiping

out the substitutabilities that are latent in the pattern of cross in�uences through a simple translation

upwards of the matrix entries. In other words, games with shifted complementarities can be additively

decomposed into local complementarities and local substitutabilities. For this class of games, the equilibrium

isomorphism between the original game and the induced game is particularly simple: equilibrium actions are

proportional to each other in the two games. The additive shift in the interaction matrix thus translates into a

multiplicative shift in the equilibrium actions. Besides, this multiplicative isomorphism almost characterizes

the whole class of games with shifted complementarities. Here, again, the Katz-Bonacich network measure

characterizes equilibrium behavior. These results generalize previous �ndings in Ballester et al. (2006).

Although the linear form of the complementarity problem (or the linear-quadratic form of the utilities)

is a considerably strong assumption, we want to stress that many results of existence and uniqueness on

linear complementarity theory have been used to derive existence and uniqueness in the nonlinear case. For

instance, in Kolstad and Mathiesen (1987) and Simsek et al. (2005) the uniqueness of a solution is essentially

determined by the property of uniqueness in the linear complementarity problem induced by the Jacobian

of the function at every point.3 Further boundedness conditions allow these authors to prove the existence

of an equilibrium. Thus, our analysis may constitute the starting point for a more general analysis of games

with arbitrary (but smooth enough) utility functions.

For the class of shifted complementarity games, we illustrate the bene�ts provided by the analytical closed-

form expression for the equilibrium actions by designing a targeted policy that is able to discriminate across

3See, also, Mas-Colell (1979). Notable exceptions to this approach are Bamon and Frayssé (1985) and Rosen (1965).

3



players depending on their their role in the interaction pattern.4 More precisely, given a game with general

interaction modes between pairs of players, we study the key group problem which amounts to choosing

optimally the group whose removal from the game disrupts the most the aggregate activity. We provide

an analysis of the complexity of the key group problem, and describe an approximation polynomial-time

algorithm to the optimal solution for which we bound from above the error term.

Finally, we also discuss the stability properties of the equilibrium solution for the class of games with

hidden complementarities.

The paper is organized as follows. Section 2 introduces the interaction patterns and its corresponding

game. Section 3 deals with games with hidden complementarities and provides the main result for uniqueness

and for the correspondence of the equilibrium to that of the hidden game. Section 4 is devoted to some

special subclass of games with hidden complementarities: games with generalized diagonal dominance and

games with shifted complementarities. In section 5, we use our results in the context of a game of public

goods played in a network. Section 6 examines some extensions, focusing on the design of a network-based

policy.

2 The model

We de�ne a �nite population simultaneous move game with heterogeneous interaction modes across di¤erent

pairs of players.

The set of players is N = f1; :::; ng. Each player i chooses an action xi in the positive half-space, xi 2 R+.
Given an action pro�le x = (xi; x�i) 2 Rn+, individual payo¤s are:

ui (x) = �i (x�i) + �ixi �
1

2
�iix

2
i �

X
j 6=i

�ijxixj , for all i 2 N: (1)

We assume, without any loss of generality for the equilibrium analysis, that �i (x�i) = 0, for all x�i 2
Rn�1+ . We formulate two additional conditions on payo¤s:

(C1) �i = @ui(0)=@xi � 0.

(C2) ��ii = @2ui(0)=@x
2
i < 0, for all i 2 N:

When condition (C1) holds, marginal utilities are non-decreasing at the origin. Condition (C2) cor-

responds to concavity in own action. When (C1) and (C2) hold, the individual optimization problem

maxfui (xi; 0) : xi 2 R+g has a well-de�ned and unique solution equal to �i=�ii. If only (C2) holds but
�i < 0, the maximizer is 0.

Throughout the paper, we impose condition (C2). Sometimes, we also resort to condition (C1) to

strengthen some of our results.

The payo¤ interdependence in (1) is captured by the n (n� 1) cross derivatives:

@2ui
@xi@xj

(x) = ��ij , for all i 6= j and x 2 Rn+:

4For instance, a speci�c model of delinquent behavior where this type of policy emerges is Calvó-Armengol and Zenou
(2004). For the case of labor markets, Calvó-Armengol and Jackson (2004) explain how employment outcomes vary across
otherwise identical agents with their informational location in the social setting, which again opens the door to pattern�taylored
interventions.
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These cross derivatives can take arbitrary value and sign across di¤erent pairs of players, ��ij 2 R.
When ��ij > 0 (resp. ��ij < 0) we say that the actions of players i and j are strategic complements (resp.
substitutes) within the pair (i; j) and from i�s perspective. The intensity of this strategic linkage is captured

by j�ij j.
Let � = [�ij ] 2 Rn�n, so that �� = [@2ui=@xi@xj ] is the matrix of cross e¤ects. The matrix �� is

sometimes referred to in the literature as the Jacobian matrix of the implicit best-response function. Let

� = (�1; :::; �n) be the pro�le of �rst derivatives at the origin.

We denote by � (�;�) the game of bilateral interactions given by


N; �;�;Rn+

�
and (1).

Square matrices with non-positive o¤-diagonal entries are called Z�matrices. We denote the class of
Z�matrices of size n by Zn. By de�nition, every Z�matrixM can be written asM = sI�G where G � 0,
and I is the identity matrix. Our results focus on a particular class of games that we now de�ne.

Definition 1 � (�;�) is a game with hidden complementarities (GHC) if there exist X;	 2 Zn such that
�X = 	.

We call � (�;	) the game hidden behind � (�;�). We also say that the game � (�;	) is obtained from

the game � (�;�) through the transformation matrix X.

The hidden game � (�;	) has the particularity that 	 = [ ij ] 2 Rn�n belongs to Zn. Formally,  ij � 0,
for all i 6= j. We say that � (�;	) is a game with complementarities (GC) that is, individual actions are

strategic complements for all pair of players. Games with complementarities are a special case of games with

hidden complementarities for the transformation matrix X = I.

Consider a game � (�;�) satisfying condition (C2). We analyze its set of pure strategy Nash equilibria.

We focus more particularly on existence and uniqueness of this equilibrium set. One of the interesting

properties that arises in some classes of GHCs is the correspondence between the (unique) Nash equilibrium

of the original game and that of the associated hidden game.

As an example of a GHC, consider the classical Cournot competition in a symmetric oligopoly, with linear

inverse demand p(x) = � �
P

i xi and quadratic costs Ci(x) =
1
2cx

2
i , where xi is the output of �rm i. The

pro�ts of each �rm are (up to the normalization scalar r = (1 + c)�1):

�i (x) = r [p(x)xi � Ci(x)] .

Let J be the square matrix of all ones, and e the unit vector. Taking �rst and second derivatives of

pro�ts, it is readily checked that the linear oligopoly game is � (r�e;�), where � = I + rJ. Although the

quantities chosen by competing �rms are strategic substitutes, we can �nd an associated hidden game with

complementarities as follows. Let X = I � rJ be a transformation matrix. Clearly, X 2 Zn. Let now
	 = �X = I � r2nJ. Again, we have 	 2 Zn. The game �

�
r�e; I� r2nJ

�
is the hidden game associated

with the original Cournot game for the transformation matrix I � rJ. The intuitive relationship between

both games is the following. In the original Cournot game � (r�e;�) �rm i reacts to an increase in xj
by reducing its quantity xi and all other �rms do so. This, in turn, implies that �rm i reacts to all those

movements by increasing its quantity. This is precisely what is captured by the hidden game � (r�e;	),

where only these "second-order" reactions of players are accounted for.

Other interesting features should be pointed out about GHCs. First, a game with hidden complemen-

tarities can have many associated hidden games, one for each admissible transformation matrix. Second,

hidden games should be understood as "virtual" games played by the agents, the true game being � (�;�).

5



3 Equilibrium in Games with Hidden Complementarities

In this section, we describe conditions for existence and uniqueness of a Nash equilibrium in GHCs. We also

identify when this equilibrium is interior, and relate the Nash equilibrium of the true game with that of its

associated hidden game.

3.1 The Katz-Bonacich Centrality Index

The spectral index of a matrix is the largest modulus of its eigenvalues. Given a matrix M 2 Rn�n, we
denote by �(M) its spectral radius.

The closed-form equilibrium expression that we obtain in the next section resorts to a network centrality

index due to Bonacich (1987) and Katz (1953). The Katz-Bonacich node centrality in a network counts the

number of all weighted and directed paths of any length in the network stemming from that node. We de�ne

an extended weighted version of the Katz-Bonacich centrality where di¤erent paths connecting di¤erent

nodes receive di¤erent weights.

More precisely, consider some matrix G � 0 such that 0 � gij � 1, for all i; j 2 N . We can interpret

G as the adjacency matrix of a weighted and directed network on N , where the directed link ij receives

the weight gij . If gij = gji, for all i 6= j, we say that the network is un-directed. If gij 2 f0; 1g, for all
i; j 2 N , we say that the network is un-weighted. If gii = 0, the network has no self-loops. Notice that

un-weighted, un-directed networks without self-loops are only one particular example of the more general

(weighted, directed and with self-loops) class of networks that we work with.

Let G be the adjacency matrix of a network on N , a � 0 a small enough scalar, and u 2 Rn+ a vector
on the nonnegative orthant of Rn. The vector of u-Bonacich node centralities of parameter a � 0 in the

network G is:

bu (a;G) = [I� aG]�1 u =
+1X
p=0

apGpu: (2)

Notice that the matrix Gp = [g
[p]
ij ] keeps track of all the paths of length k in the network with adjacency

matrix G (possibly with an intensity re�ecting the weight of the links on any such path). Then, when u = e,

the corresponding Katz-Bonacich centrality index

bi;e (a;G) =
nX
j=1

+1X
p=0

apg
[p]
ij

counts all paths of any length stemming from i in G weighted by the geometrically decaying factor a. More

generally,

bi;u (a;G) =
nX
j=1

uj

+1X
p=0

apg
[p]
ij

counts the very same paths except that paths yielding to an arbitrary node j are now pondered by uj .

More generally, consider any matrix G � 0. Let �G = maxfgij : i; j = 1; :::; ng. We can then write
G =�GG

0 with 0 � g0ij � 1, for all i; j 2 N . G0 is the adjacency matrix of a weighted and directed network

on N . Abusing slightly we write bu (G) = bu (�G;G0).
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3.2 Main Result

We now establish necessary and su¢ cient conditions for the existence and uniqueness of the Nash equilibria

in pure strategies of game with hidden complementarities. Under these conditions, we relate the Nash

equilibrium of the original game to a Katz-Bonacich index computed on the induced hidden game.

Let � (�;�) be a GHC, and X;	 2 Zn such that �X = 	, Thus, we can always decompose the

transformation matrix X and the interaction matrix of the induced game 	 as follows:

	 = s1I�G1

X = s2I�G2,

where Gi � 0 for i = 1; 2.
Mangasarian (1976) �rst introduced the following condition. Let � (�;�) be a GHC.

(C3) �X = 	 for some X;	 2 Zn such that rtX+ st	 > 0 for two non-negative vectors r; s � 0.

Examples of GHC satisfying (C3) are, e.g., games with complementarities (GCs), or games for which

G1=s1 or G2=s2 are contractions, that is, � (G2=s2) < 1 or � (G1=s1) < 1.

The following result characterizes existence and uniqueness of equilibria. Its immediate corollary char-

acterizes the set of the Nash equilibria that can be obtained from the Katz-Bonacich centrality measure

through the transformation matrix X.

We say that a game � (�;�) is a GHC� when it is a GHC that admits a unique Nash equilibrium in pure

strategies, for all �.

Theorem 1 Consider a game with hidden complementarities � (�;�) such that (C2) holds. Then,

(a) � (�;�) is a GHC� and it satis�es (C3) if and only if there exists some transformation matrix X 2 Zn
such that Xu > 0 and 	u = �Xu > 0 for some u 2 Rn+.

(b) Moreover, when (C1) also holds and Xb� (G1=s1) � 0, then the unique pure strategy Nash equilibrium
of � (�;�) is precisely

x� =
1

s1
Xb� (G1=s1) .

Note that 	u;Xu > 0 can be rewritten as (siI � Gi)u > 0 or, equivalently, (I � Gi=si)u > 0, for

i = 1; 2.5 Given that si > 0 and Gi � 0, this implies that both G1=s1 and G2=s2 are contractions, that is,

their respective spectral indexes are strictly smaller than 1: si > � (Gi) � 0 for i = 1; 2. The reverse, though,
does not hold. Indeed, Theorem 1 (a) requires that both G1=s1 and G2=s2 are contractions (	u;Xu > 0)

and that they are so in a "similar" way, by sharing the condition over a common vector u > 0. The following

example shows that equilibrium uniqueness requires this extra condition.

Consider the game � (�;�), with

� = 	X�1"
�3 �2
2 1

#
=

"
1 �2
0 1

#"
1 0

�2 1

#�1
.

5Given that Gi � 0, necessarily si > 0.
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Both X;	 2 Zn. Also, 	 = I�G1 and X = I�G2, with

G1 = G
t
2 =

"
0 2

0 0

#
:

Clearly, � (G1) = � (G2) = 0, implying that G1=s1 and G2=s2 are both contractions. But it turns out that

X and 	 cannot share a common semipositivity vector. Indeed, for any u = (u1; u2) � 0, the inequality

(Xu)1 = u1 � 2u2 > 0 implies (	u)2 = u2 � 2u1 < 0. In fact, one can readily check that the set of Nash

equilibria of the game � (�;�) is empty for all � > 0.

It is also important to see that, when � (�;�) is a GHC�, condition (a) need not hold for all possible

transformation matrix and associated hidden game. So, rejecting the common semipositivity condition for

some given transformation matrix X does not allow to conclude that the game has either no equilibrium at

all, or a multiplicity of equilibria.

When Theorem 1(b) holds, the pure strategy Nash equilibrium of the original game is isomorphic to that

of the induced hidden game. The one-to-one mapping is linear, and involves the very same transformation

matrix X that maps the interaction matrices of the original and the induced game with each other. If

Theorem 1(b) holds with strict inequality, the unique Nash equilibrium is interior.

Notice, that condition (a) does not always imply condition (b) (see Section 5.1. for an example). In other

words, even when � (�;�) has a unique Nash equilibrium, there need not be a simple linear correspondence

between this equilibrium and that of the associated hidden game.

In some cases, instead, conditions (a) and (b) are interrelated. The equilibrium then exists, is unique,

interior, and of the Katz-Bonacich type. For instance, when both � > 0 and Xb� (G1=s1) > 0, the common

semipositivity condition in (a) holds for the vector b� (G1=s1).

Corollary 1 Suppose that (C2) holds, and let � > 0. Then � (�;�) has a unique pure strategy Nash

equilibrium, which is interior, and it satis�es (C3) if and only if there exists some transformation matrix

X 2 Zn for which �X = s1I � G1 2 Zn is such that s1 > � (G1) and Xb� (G1=s1) > 0. Then, this

equilibrium is:

x� =
1

s1
Xb� (G1=s1) .

When � (�;�) is a game with complementarities, that is, all payo¤ cross e¤ects in (1) are non-negative,

we have � = 	 = sI �G. The transformation matrix is X = I, and Theorem 1 reduces to G=s being a

contraction.

The intuition is the following. With non-negative cross e¤ects, upward shifts in players� actions feed

positively into each other. If these cross e¤ects are moderate, these feedback loops dampen, and players�

actions eventually reach some equilibrium point. But, if these cross e¤ects are too big, the positive feed-back

loops can trigger an unbounded escalation in individual actions, and equilibrium fails to exist.6 When G=s

is a contraction, that is, s > � (G), these payo¤ complementarities are bounded from above. This bound

accounts for both the size and the pattern of these complementarities, measured by the spectral index of

(roughly) the o¤-diagonal entries in �.7

6Unless the strategy space is arbitrarily bounded from above, of course, in which case we can borrow directly from the
literature on supermodular games.

7The class of matrices � 2 Rn�n satisfying � 2 Zn (i.e., � = sI �G, G � 0) and s > � (G) is often referred to in the
literature as the class of K�matrices (Kn), also called nonsingular M�matrices.
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Suppose, for instance, that G is a (0; 1) symmetric adjacency matrix of an un-weighted and un-directed

network without self-loops.

Consider �rst regular networks, where each player has the same number of connections, that is,
Pn

j=1 gij =

k � n � 1, for all i. The index of a regular network is equal to its connectivity, that is, �
�
Gregulark

�
= k.

The eigenvalue condition then boils down to the (standard) inequality s > k.

Consider now minimally connected networks, also referred to as trees. The most irregular tree is the star.

The most regular tree is the line. Both networks, though, have the same total number of links, n � 1. In
the star, the central node reaps complementarities from many di¤erent sources, while in the line the playing

�eld is more even. We have � (Gstar) =
p
n� 1 > 2 cos �

n+1 = �
�
Gline

�
. Not surprisingly, the equilibrium

existence and uniqueness condition, s > � (G), is more binding for the star than for the line

Corner solutions are also easily dealt with in games with complementarities. The next result summarizes

all these �ndings.

Given S � N andM 2 Rn�n, letMS be the restriction ofM to the rows and columns in S. For a vector

x 2 Rn, de�ne S+ (x) = fi 2 N : xi > 0g

Corollary 2 Consider a game with complementarities � (�;�) such that (C2) holds. Then,

1. This game has a unique equilibrium for all � if and only if s > � (G).

2. The Nash equilibrium x� satis�es

x�i =
1

s
bi;�

�
GS+(�)=s

�
; for all i 2 S+ (�)

x�i = 0 otherwise.

4 The Linear Complementarity Problem

Let us describe now the tools that are the basis for the main results shown in the paper.

The linear complementarity problem is a very well studied problem in mathematics. We have borrowed

from this literature to address several issues of interest for the economist, e.g. existence and uniqueness of

Nash equilibrium. We have worked out the economics of some of these results and extended some others to

characterize the Nash equilibria of the class of games with hidden complementarities.

Given a matrixM 2 Rn�n and a vector q 2 Rn, the linear complementarity problem LCP (q;M) consists

on �nding a vector z 2 Rn satisfying:

z � 0 (3)

q+Mz � 0

zt (q+Mz) = 0.

A very well-known and central result in the literature (Samelson et al. 1958) on the linear complementarity

problem is the following: the linear complementarity problem LCP (q;M) admits a unique solution for all

q 2 Rn if and only if all the principal minors of M are positive.8 A matrix satisfying this property is called

a P�matrix. We denote the class of P�matrices of size n by Pn.
8The principal minor corresponging to S � N is de�ned as detMS .
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For instance, positive de�nite matrices are in Pn.9 The class Pn also contains diagonally dominant
matrices with positive diagonal, etc. Obviously, if M is a P�matrix, it is invertible because detM > 0.

Cottle et al. (1992) is a standard reference in this literature to which we refer the reader for more details.

Most of our results use the fact that the Nash equilibria of a game � (�;�) are precisely the solutions of

a linear complementarity problem.

Lemma 1 Suppose that (C2) holds. Then, the set of pure strategy Nash equilibria of � (�;�) is given by the
set of solutions to LCP (��;�).

The principal minors of dimension one of a matrix coincide with its diagonal terms, and thus M 2 Pn
implies that all its diagonal terms are positive, mii > 0, for all i = 1; :::; n. Together with lemma 1, (C2) is

thus a necessary condition for equilibrium uniqueness of � (�;�) for arbitrary �.

Example: Cournot oligopoly with di¤erentiated products Consider a Cournot oligopoly with n

�rms, heterogeneous goods, linear inverse demand and quadratic costs. Firms decide on their output xi � 0.
Firm i�s pro�ts are:

�i(x) = pi(x)xi �
1

2
cx2i , where pi(x) = �+

nX
i=1

�ijxj .

Here, @pi=@xj = �ij describes the complementarity between goods i and j. When �ij > 0 (resp. < 0), we

say that goods i and j are gross complements (resp. substitutes). When the demand for goods comes from

the maximization of a concave utility function by a representative agent, the matrix � =
�
�ij
�
is symmetric

and negative de�nite, implying that �ii < 0 for all i = 1; :::; n (Vives, 1999). In other words, �� 2 Pn.
In particular, let �ij 2 f0; 1g, for all i 6= j, and �ii = 0, for all i. A discrete version of the canonical

model of Salop corresponds with � being the adjacency matrix of a wheel network. Instead, the Dixit-

Stiglitz-Spence mode corresponds to � being the adjacency matrix of the the complete networkl. Our more

general formulation encompasses these two standard models, as well as the whole range of intermediate

con�gurations. In particular, one can use Theorem 1 and its corollaries to work out the Cournot equilibrium

for (general) asymmetric complementarity patterns and discuss, e.g., the introduction of new goods, etc.

Marginal and infra-marginal pro�ts are:

@�i
@xi

(0) = �, and
@2�i
@xi@xj

(x) =

(
�c+ 2�ii, if i = j

�ij , if i 6= j

Note that �c+2�ii < 0, and thus (C2) holds. By Lemma 1, the Nash equilibria of the Cournot oligopoly
are given by the solutions to LCP (��e;D��), where D is a diagonal matrix with dii = c� 2�ii > 0. The
fact that �� 2 Pn implies that D�� 2 Pn. As a consequence, this equilibrium exists and is unique for all

�; c � 0.

Pn is a very important class of matrices, as the result by Samelson et al. (1958) shows and the previous
example illustrates. Unfortunately, detecting whether a matrix is in Pn is computationally very demanding.10 .
Games satisfying the conditions of Theorem 1, instead, are easier to detect. It amounts to �rst solving a

linear program, and then checking the consistency of a linear inequality system (Tsatsomeros, 2002). In fact,

9M 2 Rn�n is positive de�nite if xtMx > 0, for all x 6= 0.
10Checking the 2n � 1 principal minors of an arbitrary matrix M 2 Rn�n is an O(n32n) task. See, e.g., Tsatsomeros (2002)

for more details.
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condition (a) is due to Pang (1979a) which characterizes a subset of Pn when (C3) holds. Very importantly,
Theorem 1 encompasses a number of meaningful economic situations. For instance, dominance diagonal

games with concave utility functions, a class of games familiar to the economist, belong to this class of

games.

Notice that the P�matrix property guarantees that a solution exists and is unique for all � 2 Rn. This
can sometimes be a desirable property. For instance, in the linear oligopoly example, the P�matrix property
guarantees existence and uniqueness of the Cournot equilibrium for all values of @�i=@xi(0). One can then

freely work out price subsidy/tax policies without worrying about equilibrium existence or multiplicity issues.

In some other cases, though, requiring existence and uniqueness for all � 2 Rn can be super�uous, e.g., when
only one particular parametric speci�cation of the game � (�;�) matters. In these cases, it is natural to

ask whether requiring existence and uniqueness everywhere for � does not impose too stringent conditions

on the interaction matrix � that yield to the P�matrix property. It turns out that the P�matrix property
is a necessary condition for the existence of Nash equilibria when � > 0, which corresponds to situations

particularly compelling for the economist. We deal with this issue in Section 6.1.

5 Classes of GHCs

Aside from the games with complementarities introduced in section 2, there are other classes of GHCs that

deserve our attention.

5.1 Games with Generalized Diagonal Dominance (GGDD)

A game � (�;�) is a GGDD if there is a vector d > 0 such that di�ii >
X
j 6=i

dj j�ij j for i = 1; :::; n. Note that

this condition implies that �ii > 0, i.e., individual payo¤s are concave in own-action, which coincides with

(C2).

GGDDs form a subclass of GHCs and they possess a unique Nash equilibrium for all � (Berman and

Plemmons, 1994). This class of games contains, in particular, the class of games with a dominant diagonal

(when di = 1 for all i 2 N).
An interesting feature of GGDD is the global stability properties of the unique equilibrium.

Given that �ii > 0 for all i = 1; :::n, a best response of player i to x�i is

BRi(x�i) = ��1ii maxf�i �
X
j 6=i

�ijxj ; 0g: (4)

Following Gabay and Moulin (1980), we consider the following iteration map where, at every stage,

players combine previous actions with best replies to the actions taken in the previous round:

xk+1i =
�
1� �ki

�
xk + �kiBRi(x

k
�i); (5)

where �ki 2 (0; 1] for each player i and stage k = 0; 1; :::. The sequence is initiated at some arbitrary x0.
Let �k denote the diagonal matrix with diagonal entries �ki , for all i = 1; :::; n. Let us assume that the

sequence
�
�k
�1
k=0

converges to �. Gabay and Moulin (1980) prove that the iteration (5) converges to the

unique Nash equilibrium of the game when the matrix � has a dominant diagonal. In fact, their result holds

for the slightly more general class of interaction matrices that we describe.
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The comparison (or companion) matrix M of a given matrix M is de�ned by mii = jmiij and mij =

� jmij j for all j 6= i. By de�nition, M 2 Zn, and so the comparison matrix displays complementarities. It
is well-known that GGDDs are precisely those games for which their corresponding comparison games have

also a unique equilibrium. Thus, GGDD�s contain the class of games with diagonal dominance and, also,

GCs with a unique equilibrium (GCs�).

Proposition 1 Let � (�;�) be a GGDD. Then, for any weighting rule
�
�k
�1
k=0

with a well-de�ned limit �

and for any x0, the iteration procedure de�ned in (5) converges to the unique Nash equilibrium of this game.

In particular, take a game with complementarities that has a unique equilibrium. Then, we can conclude

that this equilibrium is globally stable for the tatônnement process (5). Notice that this tatônnement process

uses best-responses, and that best-responses only use local information about the interaction matrix. Indeed,

player i need only know �i1; :::; �in and the actions taken by the other players to compute the best-response

(4). Therefore, only local information is needed on the interaction matrix � for the players to be able

to reach the unique Nash equilibrium using (5) and this local information, and irrespective of the initial

action pro�le x0. The Nash equilibrium that they eventually reach, characterized in Corollary 2, is of the

Katz-Bonacich type, and each equilibrium action depends, in a well-speci�ed way, on the whole interaction

matrix �.11

Although global stability of the equilibrium is granted for games with complementarities, we show in

Lemma 2 that there is no guarantee that any arbitrary game with hidden complementarities, even with a

unique equilibrium (GHC�), has this global stability property.

5.2 Games with Shifted Complementarities (GSC)

� (�;�) is a game with shifted complementarities if there exists 	 2 Zn and u;v 2 Rn+, u;v > 0, such

that � = 	+ uvt. As will be shown below, games with shifted complementarities with a unique Nash

equilibrium (GSC�) form a subclass of GHC�.

Games with shifted complementarities can be decomposed additively into a hidden game � (�;	) with

complementarities plus a substitutability shift uvt that has rank one. In other words, a game with shifted

complementarities is such that a suitable downwards translation of the matrix of cross e¤ects � of the

original game � (�;�) induces a new game with complementarities.

Example: homogeneous substitutability shift This model is due to Ballester et al. (2006).

Let � = [�ij ] 2 Rn�n such that �ii > maxf�; 0g, for all i = 1; :::; n, where � = maxf�ij j i 6= jg. For
simplicity, we also assume that �ii = �, for all i 6= j, although the model carries over to the more general case

with heterogeneous diagonal values. We operate the following centralization, followed by a normalization, of

the matrix entries.

Let � = min f�ij j i 6= jg, � = � � � � 0, and  = maxf�; 0g � 0, and write �ij = ��gij + , for i 6= j,

and gii = 0. We assume that  > 0, which is equivalent to � > 0.

By construction, 0 � gij � 1, and we interpretG = [gij ] 2 [0; 1]n�n as the adjacency matrix of a network.
Finally, let � = � �  > 0. See �gure below.
11See Galeotti et al. (2006) for network games with incomplete information.

12



0σij σσ σ=σii

β

λ

−λgij

γ

It is readily checked that � = 	+ J, where 	 = �I� �G 2 Zn and J = eet is the matrix of all ones.
The game � (�;�) is thus a GSC.

We �rst notice that GSCs such that the induced game � (�,	) is a GC�, also have a unique equilibrium.

We call this class of games GSC�.

Proposition 2 Consider a GSC � (�;�) such that � = 	+ uvt, for some u;v 2 Rn+, u;v > 0 and such
that � (�;	) is a GC�. Then, � (�;�) is a GSC�.

Suppose that � = 	+ uvt for some 	 2 Zn and u;v > 0. The fact that � (�;	) is a GC� implies

that 	 is invertible, (because 	 2 Pn). We can then write �X = 	, where X = (I+	�1uvt)�1 and,

consequently, � is also invertible.12 This linear transformation of � into 	 is similar to the one used in

Theorem 1. Condition (a) of Theorem 1 guarantees equilibrium existence and uniqueness, but an additional

condition (b) is explicitly introduced to obtain equilibrium interiority. Therefore, Proposition 2 alone does

not guarantee that the equilibrium is interior.

The next result derives uniqueness and interiority for games with shifted complementarities from a

unique condition. As a matter of fact, this condition almost completely characterizes all games with shifted

complementarities that have a unique and interior equilibrium.

The idea behind the result consists on operating the "righ" rank one shift uvt, which is constructed

the following way. Recall that we need both ��uvt 2 Zn and ��uvt 2 Pn. The �rst condition states
that the shifted game has complementarities. The second condition guarantees equilibrium existence and

uniqueness. The �rst condition amounts to having �ij � uivj for all i 6= j, and �ii > u2i for at least one

i, which asks for (roughly) vectors u;v with high enough coordinates. The second condition requires that

the complementarities in ��uvt (roughly the o¤-diagonal terms) be bounded from above by the diagonal

terms. This, instead, calls for as small o¤-diagonal terms as possible, and thus low coordinate vectors u;v.

Given a vector u, we thus chose the vector v given by vj = maxf�ij=ui : i 6= jg, for all j, so that the
complementarity condition �ij � uivj for all i 6= j is binding.

The following notations handle these expressions in full generality.

12 Indeed, � = 	(I+	�1uvt) is the product of two invertible matrices. The inverse of � is given by the following expression:

��1 = 	�1 � 1

1 + vt	�1u
	�1uvt	�1.
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Fix some " > 0. For all vector u 2 Rn+, u > 0 and for all matrix M 2 Rn�n, de�ne the vector uM;" as

follows:

ui;M;" = maxf";maxf
mji

uj
: j 6= igg:

By construction, M� uutM;" 2 Zn. Also, if v � uM;", v 6= uM;", then M� uvt =2 Zn.
As a matter of fact, the "right" rank one shift uses u = � and v = ��;", so that the complementarity

condition holds minimally.

Proposition 3 Consider a game �1 = � (�;�) such that (C2) hold. Let � > 0.

(a) If �2 = �
�
�;�� ��t�;"

�
is a GC� for some " > 0, then �1 is a GSC�. Moreover, if y� is the

(Katz-Bonacich) Nash equilibrium of �2, then

x� =
1

1 + �t�;"y
�y

�

is the Nash equilibrium of �1. Both equilibria are interior.

(b) Reciprocally, suppose that �1 has a unique interior equilibrium x� > 0, and that �2 = �
�
�;�� �vt

�
is a GC for some v > 0 such that vtx� < 1. Then, �2 is a GC� and its equilibrium y� satis�es:

x� =
1

1 + vty�
y�.

Games with shifted complementarities with a unique Nash equilibrium form a subclass of games with

hidden complementarities.

For games with shifted complementarities, the equilibrium isomorphism between the original game and

the associated shifted (hidden) games of Theorem 1(b) takes a particularly simple form. The equilibrium in

the shifted game is y = b� (G=s) =s, as derives from Corollary 2. The equilibrium action in the original game

is then proportional to that of the induced game, where the proportionality factor is identical for all players

and equal 1= (1 + vty). In other words, the additive shift in the interaction matrix leads to a multiplicative

shift in the equilibrium actions. In particular, the relative equilibrium actions across players is the same for

the original and for the associated shifted game.

The reason is the following. First, the equilibrium rank-one shift wipes out a common substitutability

term from the original game. The resulting induced game with complementarities has an interaction matrix

sI �G that determines the values of the relative equilibrium actions. The impact of the rank-one global

susbtitutability term has then a level e¤ect on these actions, common to all players, and similar to that

resulting from oligopoly competition.

This is well-illustrated in the example below.

Example Consider the following interaction matrix:

� =

264 4 �1 1

�1 4 1

1 1 3=2

375 :
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Note that this matrix does not have a dominant diagonal. We operate an eet rank-one shift that yields the

following interaction matrix corresponding to a game with complementarities:

�� eet =

264 3 �2 0

�2 3 0

0 0 1=2

375 2 Zn
The equilibrium y� for the induced game � (�;�� eet) is y� = (2; 2; 1) =2. The equilibrium x� for the

original game � (�;�) is proportional to y�, where the proportionality factor is 1= (1 + y�te) = 2=7, that is,

x� = 2y�=7 = (2; 2; 1) =7.

We now illustrate Proposition 3(b), and particularly the condition vtx� < 1.

Example Consider the following matrix:

� =

264 1 1 �1
�1 1 1

1 �1 1

375 :
It is readily checked that � 2 P3, and thus � (�;�) has a unique equilibrium for all �. In particular, when

� > 0, this unique equilibrium is interior and given by x� = (�1 + �3; �1 + �2; �2 + �3) =2. Note also that

�t�;" = (1=�3; 1=�1; 1=�2), for all " < minf1=�i : i = 1; 2; 3g, and thus �t�;"x� > 3=2 > 1. Given that �t�;" is
the best candidate vector v > 0 such that ���vt 2 Zn\P3,13 we conclude that ���vt =2 P3, for all v > 0.
Therefore, the unique Nash equilibrium of � (�;�) is not proportional to a Bonacich centrality measure. As

a matter of fact, notice that a sequence of rank-one shifts leaves at best with the following matrix:

	 =

264 1 0 �1
�1 1 0

0 �1 1

375 = I�G,
which belongs to Z3 but not to P3 because det	 = 0.

Proposition 1 establishes a global stability property of the unique Nash equilibrium of games with com-

plementarities. With shifted complementarities global stability is not guaranteed anymore, as the following

example shows.

Let � = �I + eet and � = �e, with �; � > 0. This is a game with shifted complementarities with a

unique equilibrium x�i = �= (n+ �) > 0, for all i = 1; :::; n.14 The iteration process can be written as:

xk+1i =
1

� + 1
maxf��

X
j 6=i

xkj ; 0g: (6)

Lemma 2 For any �, �, n � 2 and x0 6= x�, the sequence (6) diverges away from the unique Nash equilibrium
if � < n� 2.
13The class of matrices Zn \ Pn is referred to in the linear complementarity literature as Kn.
14This corresponds to the classical Cournot competition in a symmetric oligopoly, with linear inverse demand p(x) = ��

P
i xi

and quadratic costs ci(x) = 1
2
cx2i , which results in � = 1 + c.
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6 Beyond linear quadratic payo¤s

So far, we have only dealt with linear-quadratic utilities, which lead to linear (up to non-negativity) best-

responses. Albeit somehow restrictive, we argue here that this assumption on payo¤s sheds some light into

the more general problem. On the one hand, linearity can be interpreted as a �rst-order approximation to

more general best-replies. On the other hand, there are situations where a non-linear-quadratic problem can

be re-stated as a linear-quadratic one, by a simple transformation, as illustrated below.

Consider a model with general utility funcions ui (x) for all i = 1; : : : ; n santisfying:

@ui
@xi

(x) = hi(�iixi +
X
j 6=i

�ijxj), (7)

where hi : R!R is di¤erentiable and H = [�ij ] 2 Rn�n. Assume further that hi (ri) = 0 for some ri 2 R
and that �iih

0
i (r) < 0, for all r 2 R, and for all i.

Let br = (bri; : : : ; brn) where bri = ri� sgn(�ii), for all i. Let us also de�ne bH = [b�ij ], where b�ij = �ij �
sgn(�ii) for all i and j. Note that �b�ii < 0 for all i, and that the sign of �@2ui=@xi@xj (r) = �h0i (r) �ij is
equal to sgn(b�ij), for all i 6= j.

Lemma 3 The set of Nash equilibria of the game with payo¤s satisfying (7) is the same than that of �(br; bH).
We now analyze an example.

6.1 A network public good game

This model is originally due to Bramoullé and Kranton (2006). Here, we analyze it as a game with hidden

complementarities, and provide some results that complement their analysis.

There is a set of players N and a network with adjacency matrix G that connects them. The network can

have general (weighted and directed) links, 0 � gij � 1, for all i; j 2 N , but we do not allow for self-loops,
gii = 0, for all i 2 N . Each player i exerts an e¤ort level xi � 0 with constant marginal cost c > 0.
Players receive bene�ts from own and neighbors�e¤orts in the network according to a (twice-di¤erentiable)

strictly concave bene�t function v : R+!R, with v (0) = 0, v0 > 0 and v00 < 0. Player i�s payo¤s are thus:

ui (x;G) = v(xi +
nX
j=1

gijxj)� cxi:

Following Bramoullé and Kranton (2006), we assume that there exists some ex > 0 such that v0 (ex) = c.

A straight application of Lemma 3 leads to the following observation.

Corollary 3 The set of Nash equilibria of the network public good game is the same than that of � (exe; I+G).
From now on, we identify the network public good game with � (exe; I+G). We build on this linear-

quadratic re-formulation and on our results on games with hidden complementarities to analyze the equilib-

rium e¤ort levels.

The original game � (exe; I+G) is a game with substitutabilities: a higher contribution to the public good
by one�s neighbors reduces the incentives for contribution. Still, this is a game with hidden complementarities.

Indeed, let X = I�G 2 Zn. Then, �X=
�
I�G2

�
2 Zn. The hidden game associated to the network public
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good game for the transformation matrix X = I �G is �
�exe; I�G2

�
. This hidden game is a game with

complementarities for players who are two-link-away from each other in the network.

We illustrate Theorem 1 with this game.

First, invoking Theorem 1 (a), we conclude that the network public good game has a unique equilibrium

for any ex if � (G) < 1.15
Second, when Theorem 1 (b) holds, this unique equilibrium is interior and given by ex (I�G)be �G2

�
.

We show with two examples that condition (b) is sometimes redundant given condition (a), but not always.

Example Let gij = �hij , with hij 2 f0; 1g, for all i 6= j, that is, H is the (0; 1)�adjacency matrix of an un-

weighted network. Then, � (G) = �� (H). Suppose further that H is a regular network, that is,
nX
j=1

hij = h,

for all i = 1; :::; n. Then, � (H) = h, and the existence and uniqueness condition � (G) < 1 becomes �h < 1.

Straight algebra gives be
�
G2
�
= e=(1��2h2), so that condition (b) becomes 1=(1+�h) > 0, which is always

true. Therefore, the public good game on a regular network has a unique equilibrium if and only if ah < 1,

in which case the equilibrium is interior and given by x�i = ex= (1 + �h), for all i = 1; :::; n. Condition (b) for
interiority is thus redundant given condition (a) for existence and uniqueness.

Example Let G = �H where H is now the star centered on player 1, with n � 2.

H =

266664
0 1 � � � 1

1 0 � � � 0
...
...

. . .
...

1 0 � � � 0

377775 and H2=

266664
n� 1 0 � � � 0

0 1 � � � 1
...

...
. . .

...

0 1 � � � 1

377775 :

In this case, the existence and uniqueness condition � (G) < 1 becomes �
p
n� 1 < 1. Straight algebra

gives be
�
G2
�
= e=

�
1� �2 (n� 1)

�
, so that condition (b) becomes � (n� 1) < 1. Therefore, in this case,

condition (b) is more demanding than condition (a): even when �
p
n� 1 < 1, we may have � (n� 1) > 1.

We can conclude the following. The public good game on a star has a unique equilibrium if and only if

� < 1=
p
n� 1:

� if 1= (n� 1) � � < 1=
p
n� 1, this equilibrium is partially corner and given by x�1 = 0 while x

�
i = ex,

for all i = 2; :::; n;16

� if � < 1= (n� 1), this equilibrium is interior and given by x�1 = ex (1� � (n� 1)) = �1� �2 (n� 1)�
while x�i = ex (1� �) = �1� �2 (n� 1)�, for all i = 2; :::; n.

We can also write the network public good game as a game with shifted complementarities, as follows.

Without loss of generality, we can write G = �H where H is a matrix with entries in [0; 1] and � =

max fgij : i; j 2 Ng � 1. The matrix H corresponds to a weighted graph without loops (hii = 0 for all

i 2 n).
15 Indeed, � (G) < 1 is equivalent to G being a contraction, that is, there exists a u > 0 such that (I�G)u = w > 0. Note

also that �
I�G2

�
u = (I+G) (I�G)u =(I+G)w > 0.

Thus, u constitutes a common semipositivity vector for both I�G and I�G2.
16See, also, Proposition 7 in Bramoullé and Kranton for this equilibrium.
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Given that � = exe, a particular matrix that we can choose to obtain a suitable shift is uvt = [exe] [(�=ex) e]t =
�eet. Then:

�� �eet = (1� �) I� �HC ,

where Hc is the complementary graph of H:

hcij =

(
1� hij if i 6= j

0 if i = j.

This matrix shift leads to a (shifted) hidden game �
�exe; (1� �) I� �HC

�
played on the network Hc.

A straight application of Proposition 3 leads to the following conclusion: when � (Hc) < �1 + 1=�, the
network public good game has a unique and interior equilibrium given by

x� =
exex+ �etyy�,

where

y� =
ex

1� �be
�
�HC= (1� �)

�
is the unique Nash equilibrium of the game with complementarities �

�exe; (1� �) I� �HC
�
. Players that

are not neighbors in the original game decide on actions that are, in the hidden game, strategic complements.

This is a consequence of taking the complementary graph Hc as the underlying network of the hidden game.

The network public good game is thus a hidden game that also belongs to the subclass of shifted hidden

games when its Nash equilibrium is unique. Indeed, two di¤erent possible operations on the original game

� (exe; I+G) yield either to an associated hidden game � �exe; I� �2H2
�
(for the transformation matrix

X = I��H), or to an associated shifted game �
�exe; (1� �) I� �HC

�
(for the rank one shift uvt = �eet).

In the next example we show that the relative performance of these two linear transformations to establish

equilibrium uniqueness depends on the characteristics of the original interaction matrix.

Example Consider a regular un-weighted network H with common degree k =
P

j hij = k, for all i 2 N .
Then Hc is a regular network with degree n � k � 1. The associated hidden game �

�exe; I� �2H2
�
has a

unique Nash equilibrium when k < 1=�. Instead, the associated shifted game �
�exe; (1� �) I� �HC

�
has

a unique Nash equilibrium when n � k < 1=�. Therefore, the hidden (resp. shifted) game is the "best"

candidate when the original network is not too dense (resp. too sparse). In particular, consider the extreme

case where H is a complete network and � is close to 1 but below it, so that G is arbitrarily close to the

complete network. Then, �
�
G2
�
= �2 (n� 1)2 � 1 and the associated hidden game �

�exe; I�G2
�
has no

Nash equilibrium. Nevertheless, (1� �) I� �HC = (1� �) I, and the associated (hidden) shifted game has
a unique equilibrium (because �

�
�HC

�
= 0 < (1� �)), from which we deduce that the network public good

game has a unique (and symmetric) equilibrium. This equilibrium can then be written as a function of the

equilibrium of the shifted hidden game on HC (y�i = ex= (1� �), for all i = 1; :::; n):
x�i =

1

1 + vty�
y�i =

ex
1 + (n� 1)� , for all i = 1; :::; n:

Uniqueness of the original game is suddenly disrupted when � takes the value of 1. In this case, there are

2n � 1 equilibria corresponding to the non-empty subsets of N .

As an application of Proposition 1, we can also establish properties regarding the stability of the solution

in the public good game. We know that this game with hidden complementarities has a unique equilibrium
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when � (G) < 1, where G is the adjacency network of substitutability links. The interaction matrix of this

game is � = I + G, and its corresponding comparison matrix is � = I � G. The fact that � (G) < 1

implies that � ful�lls the conditions of Proposition 1, and global stability of the unique equilibrium is then

guaranteed.

7 Extensions

7.1 On the P�matrix condition
In this paper, we repeatedly invoke the P property on matrices in order to get equilibrium uniqueness in the

game � (�;�). In fact, the P�matrix property is equivalent to uniqueness of equilibria for arbitrary � 2 Rn.
One possible avenue to relax the P�matrix property would be to �nd out conditions for uniqueness on both
� and �. In what follows, we establish a partial impossibility result that blocks the chance of dispensing from

P�matrices. Essentially, the P�matrix property turns out to be necessary in many cases for the existence
of Nash equilibria in games with hidden complementarities.

Proposition 4 Let � (�;�) be a game with hidden complementarities satisfying (C2) and (C3). Then,
either � (�;�) has a unique Nash equilibrium for all � 2 Rn, or the set of Nash equilibria of � (�;�) is
empty for all � > 0.

Thus, under the assumption that � > 0, the P�matrix property is a minimum requirement for the

existence of a Nash equilibrium in games with hidden complementarities, which then also turn out to be

unique. A corollary to the previous result is that multiplicity of equilibria is not possible in games � (�;�)

with hidden complementarities whenever � > 0. Either there is one single equilibrium, or none.

7.2 On equilibrium uniqueness

So far, we have de�ned games with hidden complementarities, and we have established conditions such that

these games possess a unique pure strategy Nash equilibrium. Sometimes, the uniqueness of pure strategy

equilibria translates into uniqueness of any other sort of equilibrium, even if we allow for both mixed or

correlated strategies.

Proposition 5 Suppose that (C1) and (C2) hold. If � is symmetric and positive de�nite, then the unique

pure strategy Nash equilibrium of � (�;�) is also its unique correlated equilibrium.

Any matrix � which is both symmetric and a P�matrix is positive de�nite. Therefore, the uniqueness
conditions in Proposition 2 for games with complementarities, in Proposition 1 for games with hidden

complementarities, and in Propositions 2, 3 extend to any equilibrium beyond pure strategy equilibria (and

even allowing for correlated strategies) whenever � is symmetric.

In another vein, Lemma 1 establishes equivalence between the set of pure strategy Nash equilibria of

� (�;�) and the solutions to the linear complementarity problem LCP (��;�) under certain conditions.
Suppose further that � > 0 and de�ne D = diag (1=�1; :::; 1=�n). Inspection of (3) then clearly shows that

the solutions to LCP (��;�) coincide exactly with the solutions to LCP (�e;D�). Noticing that the set
of matrices Zn \Pn is closed for the left-multiplication by diagonal matrices with a positive diagonal (Pang,
1979a), we can rewrite Proposition 3(a) as follows.
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Corollary 4 Consider a game � (�;�) such that (C2) hold, and � > 0. If D� � eet";D� 2 Zn \ Pn for
some " > 0 (so that D� � eet";D� = s"I � G" with s" > � (G")) then � (�;�) is a game with shifted

complementarities that possesses a unique Nash equilibrium in pure strategies, which is interior and given

by:

x� =
1

s" + et";D�be (G"=s")
be (G"=s") :

7.3 The dual game and e¢ ciency

Let us assume that, in expression 1, we have �i (x�i) = �i for all i 2 N . Given a game � (�;�), its dual

game is de�ned as � (�;�t).

We say that x� is an e¢ cient action pro�le of � (�;�) whenever it maximizes the total welfare:

x� 2 argmaxf
nX
i=1

ui (x) : x 2 Rn+g:

Let D� be the diagonal matrix of the diagonal entries of �.

Proposition 6 Suppose (C2) holds. Then, x� is an e¢ cient action pro�le of the game � (�;�) if and only
if x� is a Nash equilibrium of �

�
�;�+�t �D�

�
.

The game �
�
�;�+�t �D�

�
de�nes a situation where the externalities present in � (�;�) are internal-

ized by all players.

7.4 On network-based policies

The previous results establish conditions such that games with hidden complementarities have a unique and

interior equilibrium, which is then proportional to the Katz-Bonacich centrality for some network adjacency

matrix.

In this section, we identify the optimal target set in the population when the planner wishes to reduce

(or to increase) optimally some function F (�) of the equilibrium action pro�le, the key group problem. This

function, of course, depends on the interaction matrix � for the underlying game.

More precisely, the key group problem consists on eliminating a targeted group of size s players from the

current population. If we remove a set S of players, the interaction matrix becomes ��S . The problem is

thus to minimize F (��S) by picking the adequate set S.17 . Formally, the s�key group problem is:

min
jSj�s

F (��S) (8)

This is a �nite optimization problem, that admits at least one solution. Let S� be a solution to (8). We

call the set S� a key group of the game �. Removing S� from the game has the highest overall impact on

the value of F .

We analyze the key group problem for globally shifted games, a subclass of games with shifted comple-

mentarities. Also, invoking Corollary 4, we restrict our analysis to � = e.

Definition 2 � (e;�) is a game with globally shifted complementarities if there exists 	 2 Zn and  > 0

such that � = 	+eet.
17The case in which the planner maximizes F (��S) is analogous.
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From Proposition 2(a), we deduce that a game with globally shifted complementarities has an interior

and unique solution when � � eet 2 Zn \ Pn for some  > 0, which is equivalent to � =�I � �G + eet

for some � > 0, � � 0, and G 2 [0; 1]n�n such that � > �� (G).

Note that if � > �� (G) then, � > �� (G�S) for all S � N (Debreu and Herstein, 1953).

Consider the problem of optimizing the aggregate activity at equilibrium18 . Let �� = �=�. From

Proposition 2(a) we obtain:

F (�) =
1

� + etbe(�
�G)

etbe(�
�G):

The key group problem (8) then becomes:

min
S�N;jSj=s

etbe(�
�G�S); (9)

where jSj = s. This is simply because etbe(�
�G�S) is decreasing in S for the inclusion ordering (Ballester

et al. 2006).

For simplicity, we omit the subscript e. We also use the notation Y = ety.

Definition 3 The group inter-centrality of S � N in H is

dS(H) �
X
j2N

bj(H)� bj(H�S) = B(H)�B(H�S):

Note that bj(H�S) = 0 for all j 2 S. Then, (9) reduces to choosing the set with highest group inter-

centrality:

max
S�N;jSj=s

dS(�
�G), (10)

that is, the solution of (9) is S� � N such that dS�(�
�G) � dS(�

�G), for all S � N with jSj = s.

The version of the problem with s = 1 (the key player problem) is analyzed in Ballester et al. (2006),

who provide a simple geometric criterion to single out the optimal target. Indeed, the key player i� is the

one that maximizes the following inter-centrality network measure:

i� 2 argmaxfbi(�
�G)2

bii(�
�G)

: i 2 Ng; (11)

where bii(�
�G) is the ith diagonal entry of the matrix [I� ��G]�1.

When s � 2, the optimal choice of the group of players requires, at least potentially, the study of all

possible combinations of subsets of N of size s. We prove that the key group problem has an inherent

complexity that calls for approximation algorithms.

Lemma 4 The problem of �nding a key group is NP -hard.

The proof relates the key group problem to that of �nding a maximum vertex cover of a network. A

vertex cover of a network G is a subset of vertices S � N such that every link in the network is incident

with some vertex in S. A maximum vertex cover is a vertex cover of maximum size. The problem of �nding

a maximum vertex cover in a network is known to be NP -hard (Karp, 1972).

Basically, the problem of �nding the group with highest contribution to the game is essentially combina-

torial. Th following example illustrates this idea.
18This problem may arise in decisions related to crime reduction, where the objective is to choose the set of criminals whose

removal decreases crime activity in society. Calvó-Armengol and Zenou (2004) provide an economic model of crime decisions
where this type of optimal choices could be applied.
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Example19 There are n = 11 players, and utilities are given by (1), with ��ij 2 f0; �g for some � � 0.

Complementarities, when present, are homogeneous across agents. The underlying complementarity network

appears in the �rst panel of the �gure below. A link between any two players i and j corresponds to the

case when ��ij = �. For small enough �, the condition of Proposition 2 holds and the game � (�;�) has

a unique equilibrium. Moreover, the condition also holds for any subgame � (�;�S), because the spectral

index is decreasing with respect to network inclusion. Thus, we can construct a path of unique equilibria

that results from a succession of removals of individual players.

We consider here the key group problem for s = 4 players. Let us proceed by removing the most inter-

central player at each stage. Intuitively, inter-centrality of a player accounts for paths in the network that

�ow through that player, that is, the betweenness of that player in network. After the iterative removal of

the four players, we are left with three interacting pairs and one isolated agent.

At each step, the player with the highest centrality is removed from the game.

Nevertheless, this greedy procedure does not remove the key group. In fact, �gure 7.4 shows that a

di¤erent choice of the group leads to a higher reduction in overall activity.

Removing the four black nodes yields

to seven isolated players.

Although the key group problem is combinatorially demanding, and that greedy algorithms may fail to

�nd the exact solution, it is natural to wonder whether they still provide an acceptable approximation to the

19We thank Joan de Martí and Sergio Vicente for this example.
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true solution. We now show that the simple greedy procedure, where a group is constructed by iteratively

choosing an optimal player (key player) from the remaining population, provides a fairly good approximation

for the key group problem. These approximation results rely on submodular functions, that we �rst de�ne.

Definition 4 The set function z : 2N ! R is submodular if for all S; T � N , z(S) + z(T ) � z(S [ T ) +
z(S \ T ):

Without loss of generality we can normalize z such that z(?) = 0. We only consider nondecreasing

functions, z(S) � z(T ) for all S � T � N . Let us denote individual contributions by �i(S) = z(S[fig)�z(S).
A function is submodular when individual contributions are increasing with respect to the set inclusion, that

is, �i(S) � �i(T ), for all i 2 NnT and S � T � N .

The problem of maximizing a submodular function, or equivalently, minimizing a supermodular function,

is NP -hard, in general. Nemhauser et al. (1978) propose a polynomial-time greedy heuristic for approxi-

mating this kind of problems. At each step, the algorithm augments the solution set with the agent with

highest contribution.

Algorithm 1 Let S0 = ?. At step t set St = St�1[it, where it 2 argmaxi2NnSt�1 �i(St�1). Stop whenever
�it(St�1) � 0 or jStj = s.

For the key group problem, this algorithm is adapted by taking z(S) = dS (�
�G) and �i(St�1) =

dSt�1[fig(�
�G)� dSt�1(�

�G) � 0. The inequality holds because i adds new paths to the paths contributed
by the set St�1. The algorithm should stop if and only if jStj = s.

Proposition 7 The key group problem (10) can be approximated in polynomial-time by the use of algorithm
1, where, at each step, the agent i� who will become a member of the approximated key group is obtained from

(11). Let dS� be the optimal value of (10) and dSG be the value obtained by applying the greedy algorithm.

Then, the approximation error is bounded like:

dS� � dSG
dS�

�
�
s� 1
s

�s
<
1

e
� 36:79%:

8 Discussion

Our main result, Theorem 1, establishes necessary and su¢ cient conditions for Nash equilibrium existence

for general hidden games, and provides with a closed-form expression for equilibrium actions. In a linear-

quadratic set-up, a closed-form expression for equilibrium payo¤s is then readily obtained. Indeed, let

x� = (x�1; :::; x
�
n) be an interior Nash equilibrium for the game with payo¤s (1). The corresponding equilibrium

payo¤s are:

ui (x
�) = �i

�
x��i

�
+
1

2
�iix

�2
i , for all i 2 N; (12)

linear with the square of own equilibrium action.

For a rich class of games, the Katz-Bonacich closed-form expression for equilibrium actions, and the

simple quadratic formula for equilibrium payo¤s in (12), allow for clear-cut comparative statics results where

monotonicity of actions and payo¤s is tied down to the pattern of complementarities across players.

More precisely, consider two games with complementaries with a unique equilibrium. Formally, let

�1 = � (�;�) and �2 = � (�;��B) in GC�, with B � 0 and Nash equilibria x�1 and x
�
2, respectively.
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Complementarities are stronger in �1 than in �2 across every pair of players. Corollary 2, together with the

fact that the Katz-Bonacich network centrality trivially increases with the network density, imply that x�1 �
x�2. In words, individual equilibrium actions increase when pair-wise complementarities are strengthened.

Assuming, e.g., that �i is constant, expression (12) then implies that individual equilibrium payo¤s are also

monotone in the interaction matrix for games in GC�.

Of course, the monotonicity of individual equilibrium actions with the interaction matrix for GC� implies

that the aggregate equilibrium action is also monotone with� for such games. BeyondGC�, the monotonicity

of aggregate equilibrium action also holds for GSC� with a homogenous substitutability shift J, as already

established in Ballester et al. (2006).

Again for games in GC�, one can easily check that equilibrium actions are monotone in �, the vector of

marginal payo¤s at (0; :::; 0). Formally, let �1 = � (�;�) and �2 = �
�
�0;�

�
in GC�, with � � �0 and Nash

equilibria x�1 and x
�
2, respectively. Then, x

�
1 � x�2. Monotonicity of equilibrium payo¤s follows from (12).

Both our emphasis on equilibrium existence, and the comparative statics for games with complemen-

tarities, are reminiscent of the literature on supermodular games (see Topkis (1979) and Vives (2005) for

up-to-date results). The main di¤erences between our model and this literature are the following.

First, the strategy space of a supermodular game is a lattice, and thus is bounded. Here, instead,

we deal with an unbounded strategy space. Unlike with supermodular games, equilibrium existence is

then an open question that calls for speci�c conditions on the size and pattern of the prevailing hidden

complementarities. We also show that equilibrium existence and equilibrium uniqueness are two sides of

same token. Beyond gaining insights into the exact working of positive feed-back loops in a population

with general interaction modes, we believe that our results call for a word of caution, namely, imposing an

arbitrary bound on a strategy space need not be an innocuous modelling choice. Indeed, while this arbitrary

bound solves equilibrium existence concerns, when the resulting lattice of equilibria does not boil down to a

single outcome, this equilibrium lattice turns out to depend critically on the arbitrary choice of this upper

bound.

Second, while we are able to characterize fully the (Katz-Bonacich) unique Nash equilibrium in games

where complementarities need not be apparent, but are only hidden, our analysis is restricted to games

with piece-wise linear best-responses and an unidimensional strategy space. The literature on supermodular

games, instead, has a much wider scope. Future research should relax the linearity and unidimensionality

assumptions and explore the connections between general (non-linear) games with hidden complementarities

and the nonlinear complementarity problem.

Our paper also belongs to the nascent literature on games on networks. We have already discussed

some connections with the network public good game in Bramoullé and Kranton (2006), and games with

homogeneous shifted complementarities in Ballester et al. (2006). Broadly stated, these papers explore the

role of network substitutabilities and complementarities in a complete information set up.

A recent work by Galeotti et al. (2006) relaxes the assumption of complete information and analyses

network substitutabilities and complementarities under incomplete information (when players do not know

the whole pattern of interaction modes). While we assume complete information throughout, Proposition

1 establishes the global stability of the unique Nash equilibrium for the class of games with generalized

dominant diagonal that include, in particular, games with complementarities or with a dominant (positive)

diagonal. Given that the tatônnement process for which stability is granted uses only local information about

the interaction matrix (any player need only know the interaction modes in which he or she is involved, and

24



the actions of his or her partners), one can invoke this global stability result to relax the requirement of

complete information, at least for this subclass of games.20
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Proof of Theorem 1. As a matter of fact, this problem has a unique solution for all possible parameters
� if and only if � is a P�matrix that is, all its principal minors are positive (see Lemma 1, below).

(a) This result is due to Pang (1979) and we reproduce his proof. A matrix � is said to be semipositive if

there is a vector r > 0 such that �r > 0. If � is a P -matrix then it is semipositive. In the special

case where � is a Z�matrix, it is the case that both classes are equivalent (Debreu and Herstein,
1953). Pang proves the equivalence for the more general situation where � satis�es the two following

conditions:

1. Hidden complementarities: there are Z�matrices X and 	 such that �X = 	.

2. Condition (C3): there are vectors r; s � 0 such that rtX+ st	 > 0.

Using this result, we now formulate the proof of the theorem.

(If part) Suppose that Xu = w > 0 and	u > 0. This implies that X is a P�matrix, so that it is nonsingu-
lar. Then �w = �X

�
X�1w

�
= Yu > 0, implying that � is semipositive. Because X is a P�matrix,

its transpose Xt is also P : there exists r > 0 such that Xtr > 0 and condition (C3) is clearly satis�ed.

Because � has hidden complementarities, we conclude that � is a P�matrix.

(Only if part) Since � is a P�matrix, it is is semipositive, which implies that there exists a vector u such
that Xu;Yu > 0. As Pang shows, condition (C3) guarantees that, u > 0.

(b) The condition Xb� (G1=s1) > 0 is equivalent to ��1� = X	�1� � 0. Then it is straightforward to

see that ��1� is the solution to LCP (��;�). Because b� (G1=s1) =s1 = 	�1�, we conclude that

Xb� (G1=s1) =s1 is the Nash equilibrium of � (�;�).

Proof of Corollary 1. The if part is immediate. For the only if part, given that G1=s1 is a contraction

and � > 0, we have that 	 is a P�matrix and b� (G1=s1) = (I�G1=s1)
�1
� > 0 is well-de�ned. Thus,

	b� (G1=s1) = s1� > 0. On the other hand, Xb� (G1=s1) > 0 and uniqueness follows from Theorem 1(a).

Proof of Corollary 2. The result is a direct consequence of Theorem 1, when X = I. Moreover, here

we deal easily with corner solutions. Without loss of generality, let S+ (�) = f1; : : : ; sg. Consider the s� s

matrix �S+(�), which is P�matrix because it a principal submatrix of �. Thus, let x0 2 Rs+ be the unique
Nash equilibrium of �

�
�S+(�);�S+(�)

�
. Let x� = (x0;0) 2 Rn+. It is obvious that all players in S+ (�)

playing the action pro�le x0 best-respond to the actions of all the other players under the whole pro�le x��.

For any player i her best reply xi to the pro�le x��i satis�es:

�iixi +
X
j 6=i

�ijx
�
j � �i.

Because �ii > 0 for all i and �ij � 0 for all j 6= i, we conclude that when �i � 0, we have that xi = 0 is a
best response to x��i. Uniqueness of the equilibrium implies that this is, in fact, the only possibility.

Proof of lemma 1. Given the condition (C2), an action pro�le x� 2 Rn+ is a pure strategy Nash

equilibrium of � (�;�) if and only if the following holds:

@ui
@xi

(x�) = 0, for all i 2 N such that x�i > 0

@ui
@xi

(x�) � 0, for all i 2 N such that x�i = 0
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In matrix notation, these Nash equilibrium necessary and su¢ cient conditions become:

x� � 0

�� +�x� � 0

xt� (�� +�x�) = 0

This is a linear complementarity problem LCP (��;�). It is a well-known fact that this problem has a

unique solution for all possible parameters � if and only if � is a P�matrix, that is, all its principal minors
are positive.

Proof of Proposition 1. We can discard the weights by setting � = I, and concentrate on the best

responses BR (�). The proof then appears in Ahn (1981), Theorem 4.1 and corollary 4.2. Let D be diagonal

matrix with entries �ii, for all i. Ahn (1981) shows that the sequence

xk+1 = maxfxk � !E
�
�� +�xk +K

�
xk+1 � xk

��
; 0g,

converges, where ! > 0, E is a positive diagonal matrix and K is strictly lower or upper triangular matrix.

By setting K = 0 and !E = D�1, we have��xk+1 � xk�� < ��I�D�1�
�� ��xk � xk�1��

and a spectral radius condition for convergence is:

�
���I�D�1�

��� < 1.
Under this condition the sequence converges to the unique Nash equilibrium of the game. The comparison

matrix of D�1� is I �
��I�D�1�

��. This is a P�matrix (or equivalently, � is generalized diagonally

dominant) if and only if the same spectral radius condition holds.

Proof of Proposition 2. The fact that � (�;	) is a GC� is equivalent to 	�1u > 0. This implies that,

by choosing,

X =
�
I+	�1uvt

��1
= I� 1

1 + vt	�1u
	�1uvt,

we have that X is a Z�matrix. Noting that �X = Y and that condition (C3) is met because 	 is a

P�matrix, we will conclude, by Theorem 1, that there is a unique Nash equilibrium in � (�;�): it is readily

checked that

X
�
	�1u

�
=

1

1 + vt	�1u
	�1u > 0

	
�
	�1u

�
= u > 0.

Proof of Proposition 3
First, it is clear that if �

�
�;�� �vt

�
is a GC� for some v > 0, then necessarily �2 is a GC�. This is so

because of the monotonicity of the spectral index of nonnegative matrices with respect the usual ordering in

Rn�n (Debreu and Herstein, 1953). Suppose now that the condition in (a) is satis�ed. Then, by Proposition
2, the game has a unique equilibrium x�. Consider the system �x = �, where � = s"I�G" + ��

t
";�, that

is:

[s"I�G"]x+ ��
t
";�x = �:
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Noting that the Nash equilibrium of �2 is y� = [s"I�G"]
�1
� = b� (G"=s") =s", this equation is equivalent

to:

x = (1� �t";�x)y�; (13)

which implies that

�t";�x =
�t";�y

�

1 + �t";�y
� :

Plugging back into (13), we �nally obtain:

x =
1

1 + �t";�y
y,

which is clearly positive and we conclude that the unique solution is interior: x� = x. We now prove (b). The

unique x� solution to �x = � is such that x� = (1� vtx�)
�
���vt

��1
�. Given that x� > 0 and vtx� < 1,

we have
�
���vt

��1
� > 0. But for any Z�matrix M we have that semipositivity implies the P�property.

Therefore, �2 is a GC� and the result follows.

Proof of Lemma 2. Let H be a (nonsingular) matrix where hii = 0 for all i, and hij = 1 for i 6= j.

Note that the best reply can be written as:

xki =
1

� + 1
max

n�
�e�Hxk�1

�
i
; 0
o
,

and � (H) = n�1. Suppose that we achieve convergence. If it is achieved in K <1 steps, the fact that H is

nonsingular, implies that x0 = : : : = xK�1 = x�, a contradiction. On the other hand, consider convergence

in the long-run (thus having x0 6= x�). Then, there is a stage K from which all best responses are positive,�
xk
�
k�K > 0

xk =
1

� + 1

�
�e�Hxk�1

�
, for k � K.

When � < n� 2 this subsequence diverges because �
�
(� + 1)

�1
H
�
< 1, a contradiction to the convergence

of the sequence
�
xk
�
.

Proof of Lemma 3. We �rst transform the game into another game with linear best response functions.
Since utilities are strictly concave (�iih

0
i < 0), x is a Nash equilibrium of the game if and only if it satis�es:

hi(�iixi +
X
j 6=i

�ijxj) � 0

hi(�iixi +
X
j 6=i

�ijxj)xi = 0,

for all i. When �ii > 0 (�ii < 0), we must have, by assumption that h
0
i < 0 and the conditions are equivalent

to:

�iixi +
X
j 6=i

�ijxj � (�) ri

(�iixi +
X
j 6=i

�ijxj � ri)xi = 0.

Then, the result follows from lemma 1.
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Proof of Corollary 3 The result follows from lemma 3 by taking �ii = 1 for all i, �ij = gij for all i and

j 6= i, hi (�) = v0 (�)� c. Note then that br = exe and bH = I+G.

Proof of Proposition 4. This is a direct result of Pang (1979) that shows that the P�matrix property
of a matrix � is equivalent to its semipositivity under the assumption that � has hidden complementarities

and (C3) holds. The result then follows because semipositivity is easily checked to be equivalent to the

existence of a Nash equilibrium for some � > 0.

Proof of Proposition 5. By the symmetry of �, � (�;�) is a potential game (Ui, 2004). This, together
with the positive de�niteness of �, implies uniqueness of the correlated equilibrium (Neyman, 1997). But, a

positive de�nite matrix belongs to � 2 Pn.Then � (�;�) has a unique pure strategy Nash equilibrium, and
the result follows.

Proof of Proposition 6. Consider the following maximization problem:

max
x�0

W (x) =
nX
i=1

ui (x) .

Because @2W=@x2i = ��ii < 0, this problem is equivalent, to

�iixi +
X
j 6=i

(�ij + �ji)xj � �i

(�iixi +
X
j 6=i

(�ij + �ji)xj � �i)xi = 0;

for each i = 1; : : : n. This is simply LCP (��;�+�t �D�). By lemma 1, we get the desired result.

Proof of lemma 4. Given the maximum vertex cover problem, we can solve it by means of a polynomial-
time parsimonious reduction to our key group problem. Given a maximum vertex cover S� in G of size s�,

it is obvious that S� is a key group of size s�, because the removal of players in S� results in a network of

completely isolated vertices (empty network). Starting with s = 1 we can solve the key group problem by

increasing s iteratively. When the removal of the key group S results in an empty network, we can stop

iterating and conclude that S is a vertex cover of G.

Proof of Proposition 7. The proof amounts to establishing that the function dS(��G) is submodular in
S. The result then follows from Nemhauser et al. (1978). Take S � T � N . Let b[k]ji (G) be the (j; i)�entry
of the matrix Gk. Then, for all i 2 NnT :

�i(S) = dS[fig(�
�G)� dS(��G) =

�
B(��G)�B(��G�(S[fig))

�
� (B(��G)�B(��G�S))

= B(��G�S)�B(��G�(S[fig)) = di(�
�G�S) � di(�

�G�T ) = �(T ).
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