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A Laboratory Test of an Auction with Negative Externalities

Abstract

We examine experimentally an auction model with externalities in which competing firms bid
for licenses to a cost-reducing technology. Since winning bidders impose a negative externality
on the losers, bids must account for both the value of winning the auction and the negative value
of losing brought about by rivals reducing their costs. Experimental treatments differ in the
severity of the negative externality (based on the substitutability of competitors’ products), and
the number of licenses being auctioned. We find that subjects underbid relative to theoretical
benchmarks for auctions of one license, but overbid when two licenses are auctioned. Never-
theless, mean revenues in the experiment are consistent with the predicted revenues. However,
there are some differences between the distributions of experimental and predicted revenues.
We propose a possible explanation for these differences rooted in a simple bidding heuristic.

JEL Classification Numbers: D44, D45, L13
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1 Introduction

Consider several competing firms with similar cost structures. A newly invented process innovation

promises to reduce the firms’ marginal costs, though the firms differ in the extent of this reduction.

If the inventor elects to auction licenses to this technology, how do industry structure and auction

design factors influence the auctioneer’s revenue?

While several authors forward theoretical predictions about such auction markets (e.g., Jehiel,

Moldovanu, and Stachetti, 1996 and 1999; Jehiel and Moldovanu, 2000; Das Varma, 2002 and

2003; Bagchi, 2005b), we provide theoretical benchmarks and examine experimentally two specific

questions. First, as the industry becomes more competitive, perhaps through less differentiation of

products, what happens to auction revenue? More intense competition depresses overall industry

profitability but also implies that losers of the auction suffer a greater externality from winners’

lower costs, perhaps increasing bids. Second, how does auction revenue change with the decision

to offer multiple licenses for sale? Selling more licenses implies that more firms pay the auctioneer

but also diminishes the competitive advantage of any single winner since others also enjoy reduced

costs, potentially reducing bids. In all cases, participants’ bids depend not only on the extent

of cost savings they may anticipate from the new technology but also on their beliefs about the

efficiency of rivals.

We develop a model of an inventor selling licenses for a cost-reducing technology using a uniform

price auction. Each firm bids for at most one license; if k licenses are auctioned, the k firms with

the highest bids win a license and pay an amount equal to the (k + 1)th highest bid.1 Prior to the

auction, firms have identical costs though they differ in their abilities to implement the process

improvement. Firms receive private signals as to the degree of cost savings they can realize by

winning a license. In our experiment, three firms participate in an auction for either one or two

licenses. Payoffs from the auction are derived from Cournot competition in a differentiated-goods

industry with costs determined by the allocation of licenses resulting from the auction. We vary

the level of product differentiation in the Cournot industry which alters the extent to which one

firm’s cost savings impacts the profitability of its rivals.

In the symmetric equilibrium of our model, each firm bids its “intrinsic value” (Das Varma,

2003; Bagchi, 2005b), the expected difference between its profit from winning a license and its

profit from losing the license to a competing firm with the same signal. Thus, the equilibrium

bid incorporates, in an additive fashion, the expected change in profit both from winning and

from losing the auction. Relative to theoretical predictions, subjects undervalue the profit from

winning though possibly compensate for this by adding a positive constant to bids. In auctions

1Acquiring one license gives a firm user rights to the cost-reducing technology. If a single firm was able to acquire
additional licenses, these would not have any direct effect on the firm’s cost structure, but would have a preemptive
motive, foreclosing on the use of the license by a competitor. This is not our focus. For a theoretical treatment of
such cases, see Bagchi (2005a).
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of two licenses, subjects also overemphasize the profit from losing. That is, they overreact to the

possibility of profit losses from not obtaining a license. The net effect of these factors is overbidding

in auctions of two licenses and underbidding in auctions of one license. Nevertheless, mean revenues

are mostly in line with theoretical predictions except in the cases of multiple licenses being sold in the

presence of moderate externalities. Therefore, we conclude that when the products are moderately

differentiated, an auction of two licenses performs better than what the model suggests; in the

other cases, the observed revenues are close enough to the predicted revenues.

Although revenues are mostly in line with theoretical predictions, there are systematic depar-

tures between observed and predicted distributions of revenues. In the sale of one license, observed

revenues show less dispersion than predicted, while in the sale of two licenses, the observed revenue

distributions generally lie below the theoretically predicted distribution. We show that a simple

bidding heuristic can explain both anomalies. When bidding, a subject does not know the signals

of other firms, which represent their level of cost savings upon acquiring a license. In the absence of

this information, it is possible that subjects do not undertake the rather arduous task of calculating

equilibrium expectations conditional on their own signals but instead simply assume (or act as if

they assume) that the winners’ private information is equal to the unconditional expected value

of the signal. Predicted revenues for the auctioneer when each firm bids according to this simple

heuristic are consistent with our data. On the whole, subjects appear to react to externalities in the

manner that we predict and discrepancies between the experimental data and our predictions can

be explained by the fact that subjects do not correctly estimate the signals of competitors who win

a license. In real world auctions, firms are likely to form better estimates of competitors’ signals

than do our subjects, leading revenues to approximate our predictions more closely. However, for

auctions in which bidders are not likely to show great sophistication, our heuristic provides a simple

revenue benchmark. We show that both bidding frameworks — in line with the equilibrium or the

heuristic — generally lead to the same guidance as to the optimal number of licenses to auction.

Markets for a single license with private information have recently received considerable atten-

tion (Jehiel, Moldovanu, and Stachetti, 1996 and 1999; Moldovanu and Sela, 2003; Katzman and

Rhodes-Kropf, 2002; Goeree, 2003), including the analysis by Jehiel and Moldovanu (2000) of a

second price auction and Das Varma (2003) of a first price auction. Several papers have consid-

ered the sale of multiple licenses. Katz and Shapiro (1986) and Hoppe, Jehiel, and Moldovanu

(forthcoming) assume that the signal of a firm is publicly observable. Jehiel and Moldovanu (2001,

2004) demonstrate the impossibility of implementing efficient allocations when signals are multi-

dimensional. We consider private, unidimensional signals representing the realized cost savings if

a license is acquired, allowing for equilibrium characterization. Dana (1994) and Schmitz (2002)

also consider the problem of auctioning production rights but assume that a firm that does not

acquire a license earns zero profits, while we, following Bagchi (2005b), allow a losing firm’s profits

to decrease as a result of the cost savings realized by license-acquiring competitors.

Several papers examine experimentally auctions with interdependent valuations. Kirchkamp

and Moldovanu (2004) consider auctions in which the winner’s payoff depends on the private in-
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formation of another, specific bidder. Only one object is sold, however, and winners do not impose

an externality on losing bidders. Goeree, Offerman, and Sloof (2004) examine bidding when new

entrants impose a negative externality on existing market participants. In multi-unit auctions,

the authors find that the existence of externalities does not eliminate strategic demand reduction

(Alsemgeest, Noussair, and Olson, 1998; List and Lucking-Reiley, 2000) when subjects can bid

for multiple licenses. To our knowledge, Goeree, Offerman, and Sloof (2004) is the only other

manuscript to consider auctions in which negative externalities impact both winners and losers.

2 Theoretical Considerations

2.1 Model

The model follows Bagchi (2005b) which extends the previous literature on single-object auctions

with externalities to the case of multiple licenses. Notable papers on license auctions are Jehiel

and Moldovanu (2000) that analyzes a second price auction and Das Varma (2003) that analyzes

a first price auction of licenses when a winner signals her type through her bid. Consider an

industry with n competing firms. The profit of firm i, π (ci; c−i, ξ), depends on its own marginal

cost of production, ci, the vector of rivals’ costs, c−i, and a parameter, ξ, representing the the

strength of externalities or the degree to which one firm’s cost savings imposes an externality on

its rivals. It may be convenient to interpret ξ as the degree of product substitutability. When ξ

is large, firms are selling similar products leading to more intense competition, while a low value

of ξ implies that competition among rivals is low. Firm i’s profit is (i) decreasing in its own

costs (∂π(ci;c−i,ξ)
∂ci

< 0), (ii) increasing in others’ marginal cost (∂π(ci;c−i,ξ)
∂cj

> 0, j �= i), and (iii) the

effect of a change in a competitor’s cost on i’s profits is increasing in ξ, the externality parameter

(∂
2π(ci;c−i,ξ)
∂ξ∂cj

> 0, j �= i). Assumption (ii) suggests that a decrease in costs imposes a negative

externality on one’s competitors. Assumption (iii) allows us to vary the strength of this externality.

Initially, all firms have identical marginal costs, c, perhaps a result of access to an existing

publicly available technology or convergence of industry practice. An independent inventor develops

a new cost-reducing technology which benefits firms differentially. In particular, each firm i receives

a private signal θi ∈ [0, c] drawn independently from the distribution function F (θ). These signals

represent the cost savings realized by the firm if it were to employ the new technology, reducing its

marginal cost to ci = c− θi. Let θn−1(k) be the kth highest signal among firm i’s competitors, so that

θn−1(1) ≥ θn−1(2) ≥ . . . ≥ θn−1(n−1). (1)

It will be convenient to express profit as a function of the firms’ signals. Suppose that the k

firms who could achieve the greatest cost savings (have the highest values of θi) obtain licenses to

the new production technology through an auction. If firm i is among the winners, its profit is

given by:

Π
(
θi; θ

n−1
(1) , . . . , θn−1(k−1), ξ

)
≡ π

(
c− θi; c− θn−1(1) , . . . , c− θn−1(k−1), cn−k, ξ

)
(2)
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where cn−k is a vector of dimension n− k whose components equal c.

Analogously, when firm i is not among the k firms with the highest values of θ, the firm continues

to employ the old technology and earns profits of:

Π
(
0; θn−1(1) , . . . , θn−1(k) , ξ

)
≡ π

(
c; c− θn−1(1) , . . . , c− θn−1(k) , cn−1−k, ξ

)
. (3)

Lastly, we consider the profit prior to any firm acquiring a license. Each firm has a cost of c, or

equivalently, a cost saving of 0, with profit given by

Π(0; ξ) ≡ π (c; cn−1, ξ) . (4)

The inventor of the technology auctions k < n licenses, with firms submitting bids for a single

license. Though the model may be generalized to most common auction formats, we consider a

uniform-price auction in which each of the k highest bidders wins a license and pays an amount equal

to the (k + 1)th highest bid. We restrict our attention to the increasing symmetric equilibrium,

which implies that the firms with the greatest cost savings (signals) win the auction.

2.2 Equilibrium

Firms that win a license enjoy increased profits while losing firms suffer decreased profits when

competitors reduce costs. In our experiment, we study the role of each of these effects — the profit

from winning and from losing — in determining subjects’ bids. Define the winning value, the change

in profit accruing to a winner of the auction, as

Wk (θi, ξ) = E
[
Π
(
θi; θ

n−1
(1) , . . . , θn−1(k−1), ξ

)
|θn−1(k) = θi

]
−Π(0; ξ) (5)

The winning value is the expected increase in profit from obtaining a license. It is the difference

between firm i’s profit when winning the auction and its profit when every firm uses the old

technology. Analogously, the losing value is given by

Lk (θi, ξ) = E
[
Π
(
0; θn−1(1) , . . . , θn−1(k) , ξ

)
|θn−1(k) = θi

]
−Π(0; ξ) (6)

and is the difference between firm i’s profits from losing the auction when the marginal winner has

the same signal as firm i and firm i’s profits when all firms use the old technology.

For concreteness, consider the bidder’s problem in the absence of externalities, as would occur

if each firm were a monopolist in its market. The winning value would simply reflect the profit gain

from lowering costs. The losing value would equal zero since other firms’ costs do not enter into

a monopolist’s profit function. A private value auction with i.i.d valuations would ensue. In the

presence of externalities, bidders must account for the reduction in profit that results from losing

the auction and the impact of other winners if more than one license is sold. We define the intrinsic

value, Vk (θi, ξ), as the difference between the winning value and the losing value for firm i when k
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licenses are auctioned.2

Vk (θi, ξ) ≡ Wk (θi, ξ)− Lk (θi, ξ) . (7)

= E
[
Π
(
θi; θ

n−1
(1) , . . . , θn−1(k−1), ξ

)
−Π

(
0; θn−1(1) , . . . , θn−1(k) , ξ

)
|θn−1(k) = θi

]
.

The intrinsic value represents the expected difference in a firm’s profit between winning a license

and losing a license when the marginal winner’s signal is θi. The following proposition characterizes

the equilibrium of the auction.

Proposition 1 In the unique increasing symmetric equilibrium of a uniform price auction of k < n

licenses, the bid of firm i is given by bk (θi; ξ) = Vk (θi, ξ) .

Proof. See the Appendix.

Since bids equal intrinsic values in equilibrium, expected revenue is characterized by the auc-

tioneer collecting k payments each equal to the (k + 1)th order statistic of intrinsic values.

Corollary 1 The ex-ante expected revenue for the auctioneer of k < n licenses in a uniform price

auction is given by

Rk (ξ) = kE
[
Vk

(
θn(k+1), ξ

)]
(8)

Very little insight on the revenue effects of these auctions can be gleaned directly from this

equation. First, increasing the externality parameter, ξ, may increase or decrease revenues, de-

pending on the profit function. Greater competition generally decreases the value from winning the

auction but also decreases a loser’s profit, leading to ambiguous effects in the aggregate. Second,

an increase in the number of licenses auctioned likewise may increase or decrease auction revenue.

The effect depends on the relative changes in winning value and losing value caused by offering

more units and on the properties of the order statistics of signals induced by the distribution F (θ).

Lastly, revenue effects need not be monotonic in either the number of licenses sold, k, or the ex-

ternality parameter, ξ. Thus, for some profit specifications, selling to a very competitive industry

may result in higher profits than selling to a less competitive one, while the reverse can hold for

other specifications. The experimental treatments we consider exhibit several of these features.

3 Experimental Design

We now describe the specific form of the model we use in the experiments. Three firms with

differentiated products compete in quantities a la Cournot. The inverse demand function for firm

i is given by

pi = 300− qi − ξ
∑

j �=i

qj , (9)

2Das Varma (2003) analyzes a first price auction of a single license in which firms signal their types through
their bids. One component of the bidding function in his model is a function of the intrinsic value. Bagchi (2005b)
generalizes the intrinsic value for auctions of multiple licenses. The expression shares similarities with the equilibrium
bid for a common value auction derived in Milgrom and Weber (1982).
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where ξ ∈ [0, 1] captures the level of product differentiation. We consider three cases:

(i). ξ = 0 (monopoly) in which competitors’ quantities do not influence own price,

(ii). ξ = 1/2 (differentiation) in which firms produce imperfect substitutes, and

(iii). ξ = 1 (homogeneity) which is the case of identical products.

Prior to the auction, each firm has a marginal cost of c = 100. Auctions are either for one

license (k = 1) or two licenses (k = 2). Each firm receives a private signal, θi, distributed i.i.d.

uniform on [0, 100], representing the cost savings resulting from winning a license.

For any outcome of the auction, the resulting change in profits for subject i is given by:

∆Π(θi; θj, θk) =

[
200 (2− ξ) + (2 + ξ) Iiθi − ξ (Ijθj + Ikθk)

2 (1 + ξ) (2− ξ)

]2
−

[
100

1 + ξ

]2
(10)

where the first term is the post-auction profit, the second term is the pre-auction profit when each

firm has a cost of 100, and Il is an indicator function taking the value of 1 if player l is a winner of

the auction and zero otherwise. Next, we derive predictions for equilibrium bids and revenues.

Proposition 2 Equilibrium bids and resulting expected revenues for k ∈ {1, 2} are given by:

b1 (θi; ξ) = V1 (θi; ξ) =
[200 (2− ξ) + θi] θi

(1 + ξ) (2− ξ)2
(11)

b2 (θi; ξ) = V2 (θi; ξ) =
[100 (8− 5ξ) + (2− ξ) θi] θi

2 (1 + ξ) (2− ξ)2
(12)

R1(ξ) =
10000 (2.3− ξ)

(1 + ξ)(2− ξ)2
(13)

R2(ξ) =
10000 (2.2− 1.35ξ)

(1 + ξ)(2− ξ)2
(14)

In keeping with our intuition about Cournot competition, it can be verified that total industry

profits decline as products become more substitutable (as ξ increases) for any profile of costs.

However, declining industry profitability need not imply that the auctioneer’s profit is decreasing.

This specification of profits has four revenue implications of interest, reflected in Table 1. First,

when selling a single license (k = 1), a perfectly homogeneous product market yields greater profit

for the auctioneer than a market of monopolists. Second, the opposite result obtains for the sale

of two licenses (k = 2). Third, in the single license case (k = 1), the intermediate case of ξ = 0.5

results in lower revenue than either polar case of ξ = 0 or ξ = 1, implying that revenues need

not be monotonic in ξ. Finally, for the chosen parameters, auctioning one license generates more

revenue than auctioning two licenses. We wish to examine how closely these revenue predictions

match experimental data.
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ξ = 0 ξ = 0.5 ξ = 1
monopoly differentiation homogeneity

(no externalities) (weak externalities) (strong externalities)

k = 1 5750 5333 6500
k = 2 5500 4519 4250

Table 1: Predicted revenue in experimental treatments

4 Experimental Method

Our subject population was comprised of 78 students at Vanderbilt University. Because the focus

of the present study is on how subjects react to externalities, traditional overbidding observed

in experiments of uniform-price auctions (e.g., Kagel, Harstad, and Levin, 1987; Kagel and Levin,

1993) would confound data interpretation. To avoid this, most subjects (92%) were M.B.A. students

who had completed introductory lectures on the theory of auctions. Specifically, subjects had

learned of the dominant strategy in second price auctions to bid one’s value in private value settings,

and had participated in several high-stakes experiments (for exemption from a final exam) as part of

a course in game theory. No treatment of externalities was included in course materials. While there

is evidence that experience in previous economics experiments tends to improve bidding behavior

(Harstad, 2000), the results we describe in our monopoly treatments — which are equivalent to

private value auctions — suggest that formal instruction is also likely to improve bidding behavior

(McCabe and Smith, 2000).

Each subject participated in a series of either second price auctions for one license (k = 1)

or third price auctions for two licenses (k = 2). Subjects bid in a total of 15 auctions, five at

each of three values of the substitution parameter, ξ ∈ {0, 0.5, 1}. Subjects were told that in each

auction, they would be randomly matched with two other participants whose identities would not

be revealed.

Prior to each series of five auctions (for a specific value of ξ), subjects were shown the relevant

payoff function (Equation 10 for the specific value of k and ξ) and were provided with tables that

provided numerical values of this profit under various scenarios. In every auction, each subject

received a signal from the uniform distribution on [0, 100]. For a specific signal in a particular

auction, subjects were presented with tables of payoffs accruing to both a winner and loser of the

auction for various signals of their competitors. Prior to bidding in each series of five auctions,

subjects worked through an example and had to correctly calculate the resulting profits in two

scenarios (winning and losing) to proceed. The majority of subjects successfully completed each

of these tests on the first try. The average number of attempts on each test was 1.39. Subjects

did not observe the outcome of any auction until the conclusion of the experiment, which limits

intra-game learning and path dependency of wealth effects.

Subjects received a participation fee of $20 to which winnings were added and losses deducted.

Payoffs were denoted in points with 1000 points convertible into one dollar. These payoffs were

governed by Equation 10. A winner of an auction earns the change in profit due to her decreased
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cost and pays the resulting price (second or third highest bid). A subject who loses an auction

suffers lower profits due to others’ cost reductions (except in the no-externality, monopoly case,

when ξ = 0). Three subjects went broke, losing the entire participation fee during the experiment.

These subjects were dropped from the sample for the purpose of the analysis.3 The treatments and

number of observations in each is reported in Table 2.

The experiment required an average of 29 minutes to complete and subjects earned an average

of $33. In actuality, all subjects were paid a minimum of $15 even if their net earnings were lower

than this amount, though they were not informed of this prior to the experiment.4

monopoly (ξ = 0) differentiation (ξ = 0.5) homogeneity (ξ = 1)
5 bids per subject 5 bids per subject 5 bids per subject

one license (k = 1) 180 bids 180 bids 180 bids

N = 39 60 auctions 60 auctions 60 auctions

two licenses (k = 2) 195 bids 195 bids 195 bids

N = 39 65 auctions 65 auctions 65 auctions

Table 2: Experimental treatments

While subjects were free to bid any amount, we compute the maximum value a license could

possibly hold for a participant. As is common in experiments with second price auctions, several

subjects bid unreasonably high amounts which would significantly skew the analysis. For the

purpose of analysis, subjects’ bids were censored from above at the maximum possible difference

in value between winning and losing the auction.5 Any bid above this value is weakly dominated

by bidding this value. Specifically, the most value one can derive from winning an auction occurs

when the subject has the maximum signal of 100 and, if k = 2, when the other winner has a signal

of 0. The worst loss can occur when a subject loses the auction and each winner has the maximum

signal of 100. We censor at the difference between the best gain and worse loss. Thus, for k = 1,

bids above 12,500, 11,852, and 15,000 were censored for ξ = 0, 0.5, and 1. Similarly, for k = 2,

bids were censored at 12,500, 10,371, and 10,000. This censoring affected 2.4% of bids in the ξ = 0

condition, 9.1% when ξ = 0.5, and 8.3% when ξ = 1.

3All three subjects participated in the k = 1 treatment, and generally bid the same (unusually large) amounts in
each auction regardless of their signals. Their inclusion in the data analysis increases parameter values in the k = 1
treatment.

4Keeping MBA subjects happy is a secondary, though institutionally-imposed, concern.
5Methods of dealing with severe overbidding above any reasonably obtainable value include prohibiting subjects

from bidding above the maximum value (e.g., Mares and Shor, 2004), cautioning subjects not to do so (e.g., Kagel
and Levin, 2001), or simply censoring such bids by setting them equal to the maximum possible valuation prior to
data analysis (e.g., Kagel and Levin, 2004). Since the maximum intrinsic value is a more complicated object than just
the maximum draw, censoring after the experiment seems the easiest approach as it requires no further explanation
to subjects.
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Figure 1: Observed versus predicted bids.

5 Results

5.1 Summary Statistics of Bids

We begin by examining raw data on bids. Plots suggest a strong co-movement between observed

and equilibrium bids (Figure 1). In both monopoly cases, in which no externalities exist, most bids

are at or slightly below the intrinsic value. When externalities are introduced, bids appear more

dispersed and exhibit a higher incidence of values at the censored upper bound of permissible bids.
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Observed Predicted† p-value ‡

(std. dev.) (std. dev) H1 : obs �= pred

k=1 monopoly 5333 5876 < 0.01
N = 180 (ξ = 0) (3550) (3676)

differentiation 5619 5558 0.66
(ξ = 0.5) (3170) (3237)

homogeneity 6558 6975 0.01
(ξ = 1) (3997) (4392)

k=2 monopoly 5947 6090 0.28
N = 195 (ξ = 0) (3740) (3388)

differentiation 5646 4678 < 0.01
(ξ = 0.5) (3218) (3151)

homogeneity 5172 4434 < 0.01
(ξ = 1) (3329) (2940)

†Mean and standard deviation of intrinsic values evaluated at subjects’ signals.
‡Results of matched pair t-test determining whether the distribution of differences

between bids and corresponding intrinsic values is significant.

Table 3: Mean and Standard Deviation of the Bids

We do not find any evidence of overbidding in the monopoly cases. In the aggregate, subjects

underbid relative to equilibrium predictions in an auction of one license and conform to equilibrium

predictions in an auction of two licenses (Table 3). This departure from previous experiments lends

support for our use of “sophisticated” bidders with familiarity of uniform-price auctions and allows

us to conclude with some confidence that any departures from equilibrium in the presence of

externalities (especially overbidding) are due to the externalities themselves. In the presence of

externalities, we find evidence of overbidding only for auctions of two licenses.

Result 1 Bids exceed theoretical predictions when two licenses are auctioned in the presence of

externalities. In all other cases, subjects either underbid or bid in line with theoretical predictions.

In the sale of one license, we expect bids to first decrease and then increase as the negative

externalities become more prominent. Comparing bidding in the monopoly case (ξ = 0, no exter-

nalities) with the differentiated products case (ξ = 0.5), average bids actually increase, though not

significantly (p = .21 one-tailed). As ξ increases from 0.5 to 1, bids increase (p < .01) in accord

with theoretical predictions. When two licences are sold, consistent with theoretical predictions,

subjects bid less when the level of competition increases. However, on average, this decline is not

as dramatic as theoretically predicted. For our data, the change in mean bid is not significant

(p = .20, one-tailed) when ξ increases from 0 to 0.5 and only mildly significant (p = .08) when ξ

increases from 0.5 to 1.

Result 2 Overall, bids appear to increase with the level of competition in the case of one license

and to decrease (though by less than predicted) in the case of two licenses.
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In the presence of externalities, our subjects do not exceed theoretically predicted bids in an

auction of one license but do overbid in auctions of two licenses. Before examining the implication

of these behaviors on revenue, the next two subsections consider factors that may have contributed

to the bidding patterns. We examine whether subjects properly account for both the value of

winning and the value of losing a license in their bids. As a preview of the results, bids are on the

whole in line with theoretical predictions. However, a simple heuristic model that does not require

subjects to calculate conditional expectations about rivals’ signals also conforms to observed bids.

5.2 Auctions of One License

We analyze whether subjects bid in accordance with theoretical predictions. Because we observe

multiple bids for each subject, these 15 observations may exhibit similar subject-specific idiosyn-

cracies and may not be considered independent. We also must account for the fact that bids are

censored from above, and the points at which they are censored differ across treatments. We

estimate a series of fixed-effects censored normal regressions of the following form:

bidij = αi + βXij + εij,

where i indexes the subject and j indexes each of the 15 bids placed by that subject. The variable

αi captures person-specific fixed effects and Xij is the matrix of independent variables of interest.

As an initial test of theoretical predictions, we regress subjects’ bids on intrinsic values, which

are the equilibrium bids (Table 4, Model 1). The coefficient on intrinsic value is highly significant

though less than 1 (p < .01). However, contrary to theoretical predictions, the fixed effects are

significant in a majority of cases and generally positive.

To understand why subjects deviate from equilibrium predictions, Models 2 and 3 incorporate

additional potential variables. First, we include dummy variables for the two types of auctions with

externalities: ξ = 0.5 (differentiation) and ξ = 1.0 (homogeneity). The results (Model 2) suggest

that bids are higher relative to equilibrium predictions when externalities are present. Additionally,

deviations from equilibrium are similar in both auctions with externalities as the coefficients on the

two dummy variables are not highly significantly different from each other (p = .06).

Since the equilibrium bid additively incorporates a subject’s profit from winning and from losing

the auction, we explore how each of these components contributes to a subject’s bid. The winning

value (Equation 5) is equal to the added profit from winning the auction and decreasing one’s costs.

In the case of a single license offered for sale, this profit improvement is always positive. The losing

value (Equation 6) is the change in profit when another bidder who is presumed to have the same

signal wins the auction. This losing value is equal to zero when ξ = 0 since rival firms have no

impact on profit, and is negative in the other cases. To understand the relative weight subjects

place on winning and losing, we regress bids on winning value and losing value separately (Model

3). Since the equilibrium bid is the difference between the winning and losing values, we predict

that the coefficients on winning value and losing value are equal to 1 and −1. Subjects appear to

11



Censored regression models
1 2 3 4

Intrinsic Value 0.843∗∗∗ 0.846∗∗∗

(0.024) (0.024)

Winning Value 0.818∗∗∗ 0.910∗∗∗

(0.020) (0.018)

Losing Value −1.091∗∗∗

(0.119)

Lose 50 −1.187∗∗∗

(0.136)

ξ = 0.5 (differentiation) 584∗∗∗

(149)

ξ = 1.0 (homogeneity) 297∗∗∗

(150)

Average fixed effect 679 371 669 104

% of fixed effects
significant at < 0.05 55.6% 38.9% 55.6% 27.8%

Note: dependent variable is a subject’s bid. Standard errors are shown in parentheses.
∗∗∗ All coefficients are significant at 0.01. N = 585.

Table 4: Estimation of bids in the sale of one license

place a weight less than 1 on the winning value but they place a weight not significantly different

from −1 on the losing value (p = .44).

Again in Model 3 we note that the fixed effects are significant for a majority of the subjects,

implying that bids are not derived solely from the values from winning and losing the auction. We

consider another specification that might provide an explanation. While determining the profit

from winning an auction for a single license is straightforward — it is the profit given one’s signal

— determining the expected profit from losing requires assumptions about what signal the winner

is likely to have. In equilibrium, the appropriate “assumption” is that the winner has an identical

signal. That is, conditional on the information revealed by the fact that I lose the auction, in

equilibrium, I bid as if the winner’s signal is equal to mine. Yet, we cannot necessarily expect this

level of sophistication from bidders. Instead, it is quite possible that subjects formulate bids by

assuming that the winner has some signal that is independent of their own. A mean (or, in this

context, equivalently, the median) may serve as a reasonable focal point, so that a subject may

think “If I lose, I don’t know what signal the winner has, but it is likely to be 50 since that’s the

average signal.” We construct a variable, lose 50, representing the reduction in profit if the subject

loses the auction and the winner has the mean signal (50). This variable takes on only one of three

12



values corresponding to the three possible values of ξ and is equal to 0 in the monopoly condition

(ξ = 0).

Model 4 shows the results with the simple heuristic lose 50 instead of the losing value. The

coefficient on lose 50 is not significantly different from −1 (p = .17). Additionally, the average

of the fixed effects for this specification is quite low relative to other models and insignificant for

nearly three out of four subjects. These data suggest that subjects bid as if they (almost) properly

account for winning value and assume that, if they lose, the winner possesses the mean signal.

Result 3 In auctions of one license, subjects incorporate the winning value and the losing value

somewhat in accord with theoretical predictions. However, the data are also consistent with a model

in which subjects assume that a competitor who wins a license has the mean signal.

The main departure from theoretical predictions comes from insufficient weight being placed on

the winning value. While, in all estimations, this parameter is numerically close to one, it is also,

in all cases, statistically significantly less than one, leading generally to underbidding in the sale of

one license.

5.3 Auctions of Two Licenses

The sale of two licenses presents subjects with the need to estimate not only winners’ private

information if they lose, but also to predict what the other winner’s signal might be if they win.

We investigate next whether bidder behavior changes in this environment compared to the sale of

one license. Our estimation parallels that for the sale of one license (Table 5).

Again we find (in Model 1) that the coefficient on intrinsic value is significant but statistically

less than the theoretical prediction of 1 (p < .01). However, when compared to the auctions of one

license (where the coefficient on intrinsic value is 0.843), there seems to be a stronger co-movement

between the bid and the corresponding intrinsic values in the auction for two licenses. Incorporating

dummy variables for the auctions with externalities, Model 2 suggests overbidding in the presence

of externalities, and this overbidding is greater than in the sale of one license. When considering

the components of the intrinsic value separately (Model 3), the coefficient on winning value is again

significantly closer to the theoretical prediction of 1 than in the sale of one license. However, the

coefficient on losing value also grows in magnitude (in absolute value).

We again consider bidding behavior when subjects substitute the average signal for unknown

signals of their competitors (Model 4). This is more complex than in the sale of one license since

this not only is incorporated in losing value (assuming both winners each have a signal of 50),

but also requires making an assumption about the other winner if the subject wins. The variable

win 50 is a subject’s value from winning if the other winner has the average signal. Thus, win

50 substitutes for winning value when subjects utilize a simple heuristic for determining the profit

from winning the auction. Analogous to the sale of one license, we find that this model yields

parameters on lose 50 not significantly different from −1 (p = .32), though positive fixed effects

persist, and fixed effects are significant for nearly half of our subjects.

13



Censored regression models
1 2 3 4

Intrinsic Value 0.897∗∗∗ 0.934∗∗∗

(0.024) (0.024)

Winning Value 0.886∗∗∗

(0.023)

Losing Value −1.336∗∗∗

(0.080)

Win 50 0.908∗∗∗

(0.024)

Lose 50 −1.101∗∗∗

(0.100)

ξ = 0.5 (differentiation) 1205∗∗∗

(179)

ξ = 1.0 (homogeneity) 923∗∗∗

(180)

Average fixed effect 1219 328 744 623

% of fixed effects
significant at < 0.05 64.1% 46.2% 53.8% 48.7%

Note: dependent variable is a subject’s bid. Standard errors are shown in parentheses.
∗∗∗ All coefficients are significant at 0.01. N = 585.

Table 5: Estimation of bids in the sale of two licenses

Result 4 In auctions of two licenses, subjects appear to incorporate the winning value in a manner

close to theoretical predictions while they overemphasize the role of losing value. The data are also

consistent with a model in which subjects assume that competitors who win a license have the mean

signal.

5.4 Revenues

Previously, we found evidence of overbidding for auctions of two licenses and underbidding in

auctions of one license. This need not imply a similar result for revenue since revenue also depends

on the distribution of bids. We now turn to exploring the mean and distribution of observed

revenues.

Revenues from the experiment are reported in Table 6. Observed revenues do not differ from

predictions in the sale of one license. In the sale of two licenses (k = 2), we observe significantly

higher revenues than predicted in the presence of externalities. This result is potentially sensitive

to process of matching groups of subjects. Observed revenues represent the outcome of a single

14



Predicted Observed Recombinant
Revenue Revenue Revenue

k=1

monopoly 5750 5350 5197
(ξ = 0) N = 180 (0.28) (0.08)
differentiation 5333 5483 5513
(ξ = 0.5) N = 180 (0.64) (0.50)
homogeneity 6500 6333 6402
(ξ = 1) N = 180 (0.77) (0.78)

k=2

monopoly 5500 5298 5499
(ξ = 0) N = 195 (0.51) (0.98)
differentiation 4519 5657 5685
(ξ = 0.5) N = 195 (0.00) (0.02)
homogeneity 4250 4965 4690
(ξ = 1) N = 195 (0.01) (0.32)

In parentheses are p-values for estimated revenues compared to predicted revenues, two sided.

Table 6: Estimated and Predicted Revenues

matching of subjects’ bids into groups of three for each auction. An auctioneer interested in

expected revenue may wish to know what revenue would occur over many such matchings. For

robustness, we also estimate revenues using the recombinant estimator first proposed by Mullin

and Reiley (2006), similar to a bootstrap procedure which accounts for the correlations across

resamplings due to the same subject appearing in multiple samples. Results with the recombinant

estimator cast doubt on the significance of the two license ξ = 1 case though confirm that, when ξ =

0.5, revenues exceed theoretical predictions. Both observed revenues and the recombinant revenue

estimates indicate that revenues are broadly consistent with corresponding predicted revenues;

there is, however, weak evidence that experimental revenues exceed predicted revenues for auctions

of two licenses in the presence of externalities.6 This implies that an inventor interested in using

theoretical benchmarks to predict revenue or to decide how to structure the auction may wish to

adjust predicted revenue upwards for an auction of two licenses.

Result 5 Obtained revenues are broadly consistent with theoretical predictions. There is weak

evidence that the model slightly understates revenue for auctions of two licenses when externalities

are present.

Revenues exceeding theoretical benchmarks need not change auction design guidance unless the

departures from equilibrium are systematic and severe enough to change the revenue ranking of

different auctions. Given the parameters of our model, the predicted optimal number of licenses

to auction is 1 for any value of the externality parameter, ξ. However, this result does not hold

6As an additional robustness check, we also considered directly the empirical distribution of bids in each treatment.
We determine the distribution of the kth highest order statistic from N = 3 draws from the distribution where k = 2
or 3. The expected value and standard deviation of this distribution implies results similar to those above.
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in our experiment. The recombinant revenue and the empirically observed expected revenue are

often higher for an auction of two licenses relative to an auction of one license. This is because the

obtained revenues are much higher than predicted revenues for auctions of two licenses relative to

auctions of one license. If such an effect holds generally, then it may be optimal for the seller to sell

one license only for a subset of the parameter values for which the model predicts that the optimal

number of licenses is one.

Result 6 In the presence of externalities, theoretical predictions understate the relative advantage

of selling two licenses.

5.5 Comparison to a Model of Heuristic Bidding

In the previous section, we conclude that mean auction revenues in our experiment correspond

quite closely to predictions. In this section, we show that the distribution of revenues departs

systematically from what we should observe in theory and demonstrate that both this observation

and the slight overbidding in the sale of two licenses are consistent with the simple heuristic bidding

model.

In Figure 2, we compare the distribution of auction revenues if subjects bid according to the-

oretical predictions with the simulated distribution of revenues from the experiment.7 In both

monopoly cases, the distributions mostly coincide. We observe several differences in the distribu-

tions in the presence of externalities: (i) for auctions of one license, the distribution of observed

revenues display an s-shape, lying below predictions for lower revenues and above predictions for

higher revenues; (ii) for auctions of two licenses, the distribution function of observed revenues lies

below theoretical revenues, except for a small region in the lower end of the distribution. Below,

we propose a possible explanation for such differences.

In the model with rational bidders, firm i’s bid is the intrinsic value which is the difference

between its profit from winning and its profit from losing, when the marginal winner has the same

signal as firm i. As suggested by the regression results in the previous sections, it is plausible that

instead of bidding the intrinsic value as the model predicts, each bidder adopts a simpler heuristic

and assumes that a winner of the auction has the mean signal. Then, each bidder bids

b̃k (θi; ξ) = Π
(
θi; θ

n−1
(1) = 50, . . . , θn−1(k−1) = 50, ξ

)
−Π

(
0; θn−1(1) = 50, . . . , θn−1(k) = 50, ξ

)
(15)

which is the difference between her profit from winning and her profit from losing when each winning

competitor has the expected value of the signal. In the experiment, the signal of each bidder is

independently uniformly distributed between 0 and 100; hence, the expected value of the signal of

each bidder is 50. We call b̃k of equation (15) the heuristic value.

Figure 2 also contains plots of predicted revenues if subjects bid according to their heuristic

values. Heuristic bids are equal to equilibrium bids in the monopoly cases, since competitors’ signals

7The simulated distributions are obtained from 10,000 samples for every treatment, each composed of the bids of
three subjects.
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Figure 2: Simulated Distribution of Revenues from equilibrium bids (Intrinsic Values), heuristic
bids and observed bids.
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Heuristic Predicted Observed Recombinant
Revenue Revenue Revenue

k=1

monopoly 5750 5350 5197
(ξ = 0) N = 180 (0.28) (0.08)
differentiation 5340 5483 5513
(ξ = 0.5) N = 180 (0.65) (0.51)
homogeneity 6531 6333 6402
(ξ = 1) N = 180 (0.56) (0.70)

k=2

monopoly 5500 5298 5499
(ξ = 0) N = 195 (0.51) (0.98)
differentiation 5309 5657 5685
(ξ = 0.5) N = 195 (0.28) (0.42)
homogeneity 5500 4965 4690
(ξ = 1) N = 195 (0.06) (0.07)

In parentheses are two-sided p-values for estimated revenues compared to heuristic predicted revenues.

Table 7: Estimated and Predicted Heuristic Revenues

do not enter one’s bidding function. In the presence of externalities, heuristic bidding reflects both

the s-shape of observed bids in the sale of one license8 and higher bids (a lower curve) in the case

of two licenses.9

In Table 7, we present predicted revenues if each bidder bids her heuristic value. Notably,

experimental revenues (and their recombinant estimates) are never significantly different from those

predicted by heuristic bidding at 5%. In the sale of one license with externalities, heuristic bidding

marginally increases predicted revenue (by less than 1%). In the sale of two licenses, this heuristic

implies significantly greater bids (17% and 29% for ξ = 0.5, 1). These observations are qualitatively

consistent with our finding that the theoretical predictions are in line with revenues for the sale of

one license but may underestimate revenue in the sale of two licenses.

6 Discussion

A challenge for auctions models is that people, be they experimental subjects or decision-makers

in the “real world,” rarely exhibit the level of sophistication required for equilibrium calculations.

We find evidence that our subjects adopt simple heuristics, acting as if winners’ signals are equal

to the mean of the distribution of signals. Fortunately, we find that this need not imply significant

8For an auction of one license, the profit from winning a license is the same for the intrinsic value and the heuristic
value. To calculate the profit from losing, the equilibrium assumption that the winner has the same signal as the
bidder is replaced with the heuristic assumption that the winner always has a signal of 50, leading to higher bids for
lower signals and lower bids for higher signals than in equilibrium.

9For an auction of two licenses, the profit from winning a license is always higher under the heuristic assumption
(the other winner has a signal of 50) than in equilibrium (the other winner has a signal higher than mine). The profit
from losing is again ambiguous but given the parameters of the model, the intrinsic value is always lower than the
heuristic value.
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Figure 3: Expected revenues for the sale of one and two licenses under equilibrium and heuristic
bidding for the differentiation case.

departures from equilibrium revenues.

In the sale of one license, both equilibrium and heuristic bids imply nearly identical revenues,

and these are observed in our experiments. For auctions of two licenses, there is weak evidence

that the model slightly underpredicts revenue. The observed overbidding is, however, in line with

the heuristic bidding model. How does an auctioneer choose whether to sell one or many licenses

if he is unaware of whether participants bid rationally? To examine this question, we replace the

assumption in the experiment that the distribution of cost savings is uniform with a special case of

the beta distribution; let θi be distributed on [0, 100] according to F (θ) = ( θ
100)

α. When α = 1, we

recover the uniform distribution. Higher values of alpha imply a greater likelihood of larger cost

savings. Again let market demand be given by pi = 300−qi−ξ
∑
j �=i qj with each firm having a pre-

auction marginal cost of c = 100. Figure 3 compares the revenue predictions when ξ = 1/2 under

both heuristic and equilibrium bidding. Revenues in the sale of one license are nearly identical

under both bidding rules. In the sale of two licenses, heuristic bidders lead to greater revenue.

Of particular import is the point at which selling two licenses dominates the sale of one license.

Under the heuristic bidding rule, the sale of two licenses is better whenever α > 1.02 and under
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Figure 4: Optimal number of licenses to auction under equilibrium and heuristic bidding. In Region
I, both models favor the sale of two licenses. In Region II, only the heuristic bidding model favors
the sale of two licenses. In Region III, both models favor the sale of one license.

equilibrium bidding, the sale of two licenses is better when α > 1.45, confirming our earlier intuition

that the sale of two licenses is optimal under a broader sense of parameters when subjects bid

according to the simple heuristic. Figure 4 summarizes the predictions of the two bidding models

for a range of distributions (α) and externality parameters (ξ). In short, the optimal number of

licenses to auction is the same under both models (Region I and Region III) except in a narrow

band (Region II) in which the sale of two licenses is preferred under heuristic bidding but one

license is optimal under equilibrium bidding.

Our results imply that theory is a useful predictor of revenues in the sale of one license, but a

model in which subjects assume that each competing winner has the mean signal can act as a good

predictor of auction revenues in multi-license auctions. Because in an auction of two licenses, the

heuristic model predicts higher revenues than in equilibrium, it may be optimal to sell one license

for a smaller set of parameter values than what we predict theoretically.
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Appendix

Proof of Proposition 1

Suppose the firms other than firm i bid according to bk (·; ξ) and suppose firm i with signal θi

bids bi. In an increasing symmetric equilibrium, bk (θ; ξ) is increasing in θ, and hence, firm i wins

a license if and only if

bi > bk

(
θn−1(k) ; ξ

)
. (16)

Notice that the inequality in (16) is equivalent to the following condition:

θn−1(k) < b−1k (bi; ξ) .

Hence, the payoff of firm i by bidding bi, is given by

∫ b−1
k
(bi;ξ)

0

∫ c

θn−1
(k)

∫ c

θn−1
(k−1)

· · ·

∫ c

θn−1
(2)

[
Π
(
θi; θ

n−1
(1) , . . . , θn−1(k−1), ξ

)
− bk

(
θn−1(k)

)]

×fn−11.k

(
θn−1(1) , . . . , θn−1(k)

)
dθn−1(1) dθn−1(2) . . . dθn−1(k)

+

∫ c

b−1
k
(bi;ξ)

∫ c

θn−1
(k)

∫ c

θn−1
(k−1)

· · ·

∫ c

θn−1
(2)

Π
(
0; θn−1(1) , . . . , θn−1(k) , ξ

)
fn−11.k

(
θn−1(k)

)
dθn−1(1) dθn−1(2) . . . dθn−1(k) .

where fn−11.k

(
θn−1(1) , . . . , θn−1(k)

)
is the joint density function of θn−1(1) , . . . , θn−1(k) . From the first-order

condition, we obtain the following:

∫ c

b−1
k
(bi;ξ)

∫ c

θn−1
(k−1)

· · ·

∫ c

θn−1
(2)

[
Π
(
θi; θ

n−1
(1) , . . . , θn−1(k−1), ξ

)
− bk

(
b−1k (bi; ξ)

)
−Π

(
0; θn−1(1) , . . . , b−1k (bi; ξ)

)]

×fn−11.k

(
θn−1(1) , . . . , θn−1(k−1), b

−1
k (bi; ξ)

)
dθn−1(1) dθn−1(2) . . . dθn−1(k−1)

= E
[
Π
(
θi; θ

n−1
(1) , . . . , θn−1(k−1), ξ

)
− bk

(
b−1k (bi; ξ)

)
−Π

(
0; θn−1(1) , . . . , b−1k (bi; ξ)

)
|θn−1(k) = b−1k (bi; ξ)

]

= 0. (17)

In a symmetric equilibrium, firm i has the same bidding strategy as its competitors, and hence,

bi = bk (θi; ξ) . (18)

Notice that the condition above is equivalent to the following condition:

b−1k (bi; ξ) = θi. (19)
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Substituting (18) and (19) in (17), we obtain that

bk (θi; ξ) = E
[
Π
(
θi; θ

n−1
(1) , . . . , θn−1(k−1), ξ

)
−Π

(
0; θn−1(1) , . . . , θn−1(k) , ξ

)
|θn−1(k) = θi

]
= Vk (θi, ξ) . (20)
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