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Abstract

Modern banking systems are highly interconnected. Despite their various bene�ts,

the linkages that exist between banks carry the risk of contagion. In this paper we

investigate how banks decide on direct balance sheet linkages and the implications

for contagion risk. In particular, we model a process of network formation in the

banking system. The trade-o¤ between the gains and the risks of being connected

shapes banks�incentives to form links. We show that banks manage to form networks

that are resilient to contagion. Thus, in an equilibrium network, the probability of

contagion virtually 0.
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1 Introduction

A notable feature of the modern �nancial world is its high degree of interdependence. The

incentives for linking are driven by the bene�ts these links bring. For instance, banks

can solve their liquidity unbalances without requiring the intervention of a Central Bank

simply by transferring funds from the ones that have a cash surplus to those with a cash

de�cit. The supply and demand for liquidity connect this way the �nancial institutions

into a network. Are the connections in the �nancial world, however, limited to the ones

created by market forces? There are many instances that suggest this is not the case. The

"too big to fail" phenomenon, that receives a lot of attention in the economic literature,

is one example. Linking, under the form of lending money, is not motivated here by the

intersection of supply and demand. The rational behind bailing out a certain institution

is given by the danger of contagion.

Banks and other �nancial institutions are linked in a variety of ways. The realized

connections are shaped by the choices of the banks and the institutional constraints.

Despite their obvious bene�t, the linkages come at the cost that small shocks, which

initially a¤ect only a few institutions, can propagate through the entire system. Thus,

the decisions the �nancial institutions take when adopting mutual exposures towards one

another in�uence directly the impact a small disturbance has on the system. This paper

addresses this issue. We investigate how banks form linkages with each other, when a link

is represented by the transfer of funds between two institutions. In particular, we study a

network formation process that is mainly driven by the risk of contagion.

Since these linkages carry the risk of contagion, an interesting question is whether

banks choose a degree of interdependence that sustains systemic stability. This question

is particularly important for emerging markets economies. Without sound regulatory

frameworks, that characterize the developed �nancial systems, the banking systems of

developing economies have to rely on the ways banks take decisions. Moreover, the risk of

contagion crucially depends on the pattern of interactions that is formed between banks.

Thus, it is useful to understand what network of banks emerges and what are the incentives

to which banks respond when forming this network.

The use of tools issued from the theory of network formation seem to be helpful to

answer this question. A recent and rapidly growing literature on this topic has developed

since a few years. There are already several papers that brought important contributions
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by building theoretic tools to study network formation processes among which we can cite

Bala and Goyal (2000), Jackson and Watts (2002), Jackson and Wolinsky (1996) or Dutta

et. al (2005).

Despite the numerous applications these models found in the social science context,

the literature on �nancial networks is still very much incipient. There are two approaches

in this literature. On the one hand, there is a number of papers that look for contagious

e¤ects via direct balance sheet interlinkages. For instance, Freixas et al. (2000) considers

the case of banks that face liquidity needs as consumers are uncertain about where they are

to consume. In their model the connections between banks are realized through interbank

credit lines that enable these institutions to hedge regional liquidity shocks. The authors

analyze di¤erent market structures and �nd that a system of credit lines, while it reduces

the cost of holding liquidity, makes the banking sector prone to experience gridlocks, even

when all banks are solvent. Dasgupta (2004) also discusses how linkages between banks

represented by crossholding of deposits can be a source of contagious breakdowns. Fragility

arises when depositors, that receive a private signal about banks�fundamentals, may wish

to withdraw their deposits if they believe that enough other depositors will do the same.

To eliminate the multiplicity of equilibria the author uses the concept of global games,

�rst introduced by Carlsson and van Damme (1993). A unique equilibrium is isolated and

this depends on the value of the fundamentals. Eisenberg and Noe (2001) take a more

technical approach when investigating systemic risk in a network of �nancial institutions.

First the authors show the existence of a clearing payment vector that de�nes the level of

connections between banks. Next, they develop an algorithm that allows them to evaluate

the e¤ects small shocks have on the system. Another interesting issue is addressed by

Leitner (2005). The model constructed in this paper shows that agents may be willing to

bail out other agents, in order to prevent the collapse of the whole network.

The other approach focuses on indirect linkages. Laguno¤and Schreft (2001) construct

a model where agents are linked in the sense that the return on an agent�s portfolio depends

on the portfolio allocations of other agents. Similarly, de Vries (2005) shows that there is

dependency between banks�portfolios, given the fat tail property of the underlying assets,

and this caries the potential for systemic breakdown. Cifuentes et al. (2005) present a

model where �nancial institutions are connected via portfolio holdings. The network is

complete as everyone holds the same asset. Although the authors incorporate in their
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model direct linkages through mutual credit exposures as well, contagion is mainly driven

by changes in asset prices. These papers, they all share the same �nding: �nancial systems

are inherently fragile. Fragility, not only arises exogenously, from �nancial institutions�

exposure to macro risk factors, as it is the case in de Vries (2005). It also endogenously

evolves through forced sales of assets by some banks that depress the market price inducing

further distress to other institutions, as in Cifuentes et al. (2004).

The empirical papers which study banking contagion paint a more optimistic message.

Recently, there has been a substantial interest in looking for evidence of contagious failures

of �nancial institutions resulting from the mutual claims they have on one another. Most

of these papers use balance sheet information to estimate bilateral credit relationships for

di¤erent banking systems. Subsequently, the stability of the interbank market is tested

by simulating the breakdown of a single bank. Upper and Worms (2004) analyze the

German banking system. Sheldon and Maurer (1998) consider the Swiss system. Cocco et

al. (2003) present empirical evidence for lending relationships existent on the Portuguese

interbank market. Fur�ne (2003) studies the interlinkages between the US banks, while

Wells (2002) looks at the UK interbank market. Boss et al. (2004) provide an empirical

analysis of the network structure of the Austrian interbank market and discuss its stability

when a node is eliminated. In the same manner, Degryse and Nguyen (2004) evaluate the

risk that a chain reaction of bank failures would occur in the Belgian interbank market.

These papers �nd that the banking systems demonstrate a high resilience, even to large

shocks. Simulations of the worst case scenarios show that banks representing less than

�ve percent of total balance sheet assets would be a¤ected by contagion on the Belgian

interbank market, while for the German system the failure of a single bank could lead to

the breakdown of up to 15% of the banking sector in terms of assets.

The paper that is closest related to ours is by Allen and Gale (2000). They asses the

impact of degree of network completeness on the stability of the banking system. Allen

and Gale show that complete networks are more resilient to contagious e¤ects of a single

bank failure than incomplete structures. In their model, though there is no aggregate

shortage of liquidity, the demand for cash is not evenly distributed in the system. This

induces banks to insure against such regional liquidity shocks by exchanging deposits on

the interbank market. The interbank market is perceived as a network where the banks

are nodes and the deposits exchanged represent links.
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This paper departs from the Allen and Gale paper in a very important respect. Al-

though, we use the same framework to motivate interactions on the interbank market, we

no longer consider that the network of banks is �xed. We allow the endogenous formation

of links and analyze what are the implications for the stability of the banking system. We

show that banks manage to form networks that are usually resilient to the propagation

of shocks. Moreover, the completeness of the network, although a su¢ cient condition to

guarantee the stability of the banking system1, is not also a necessary condition. Indeed,

most of the networks banks form turn out to be incomplete.

The model is based on a framework introduced by Diamond and Dybvig (1983). There

are three periods t = 0; 1; 2 and a large number of identical consumers, each endowed with

one unit of a consumption good. Ex-ante, consumers are uncertain about their liquidity

preferences. Thus, they might be early consumers, who value consumption at date 1, or

late consumers, who value consumption at date 2. The consumers �nd optimal to deposit

their endowment in banks, which invest on their behalf. In return, consumers are o¤ered

a �xed amount of consumption at each subsequent date, depending when they choose to

withdraw. Banks can invest in two assets: there is a a liquid asset which pays a return of

1 after one period and there is an illiquid asset that pays a return of r < 1 after one period

or R > 1 after two periods. In addition, liquidity shocks hit the economy randomly, in

the following way. Although there is no uncertainty about the average fraction of early

consumers, the liquidity demand is unevenly distributed among banks in the �rst period.

Thus, each bank experiences either a high or a low fraction of early consumers. To insure

against these regional liquidity shocks, banks exchange deposits on the interbank market

in period 0.

Deposits exchanged between banks constitute the links that connect the banks in a

network. Each link formed this way, exposes banks to the risk of contagion. The risk

of contagion is evaluated in terms of the loss that a bank incurs when a neighbor bank

fails. This loss can be decreased either by reducing the size of deposits exchanged or by

increasing the connectivity level in the banking system. We model how banks respond to

the loss that follows the failure of a neighboring bank by creating links.

This paper is organized as follows. Section 2 presents an illustrative example of how

a network formation process develops in a 4 - bank framework. The details of the model

1This holds for a prede�ned range of parameters.
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are presented in Section 3, while Section 4 constructs a game theoretical structure and

introduces the payo¤s banks have from forming links. Section 5 models the network

formation process and Section 6 analyses the e¢ ciency of banks�link formation decisions.

Section 7 concludes.

2 Example

Allen and Gale (2000) study how banking system responds to contagion when banks are

connected under di¤erent network structures. The authors show that incomplete networks

are more prone to contagion than complete structures. Speci�cally, they take the case of

an incomplete network where the failure of a bank may trigger the failure of the entire

banking system. They prove that, for the same set of parameters, if banks are connected in

a complete structure, then the system is resilient to contagious e¤ects. Hence, the solution

for a social planner that has as objective function a 0 level of contagion is rather trivial.

When faced with the problem of designing an optimal network, the planner would opt for

the complete structure. An interesting question that follows immediately is whether banks

themselves form networks resilient to contagion. We further elaborate on this question to

see whether banks are able to implement the e¢ cient solution.

To illustrate what incentives banks have when forming link, we take the 4 bank case

studied in Allen and Gale. Shocks in the liquidity demand di¤erentiate banks into two

types in the following way: there will be two banks that have a liquidity surplus +z and

two banks with a liquidity shortage �z. Although ex-ante banks do not have information

on their type, they know how the liquidity shocks are correlated. Thus, they can insure

against these shocks simply by transferring funds between banks of a di¤erent type. These

transfers create links between banks, exposing the system to the risk of contagion. Explic-

itly, when a bank fails it induces a loss to all the neighboring banks. If this loss is above

a threshold, the banks that incur it will go bankrupt as well. This way, the initial shock

propagates to other banks via links.

We have learned that the risk of contagion depends on the size of the loss a failed bank

induces to its neighbors. The loss has two interesting properties. First, it is increasing

in the size of the deposits transferred between banks. The size of the deposits, however,

depends on the number of connections with banks of a di¤erent type.2 Hence, the loss a
2Only transfers between banks of a di¤erent type play a role in balacing the liquidity surplus or shortage
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Figure 2.1: Di¤erent states of the banking system

bank incurs to its neighbors decreases with the number of neighbor banks of a di¤erent

type. Second, the loss is decreasing in the total number of links a bank has. Thus,

increasing the connectivity level in the banking system reduces its propensity to contagion.

This explains why a complete network is more resilient to the propagation of shocks than

incomplete structures.3

We take the following initial state of the banking system simply to illustrate how these

two properties a¤ect the banks� link formation decisions. Consider a banking system

connected as in �g. 2:1(a), and the corresponding transfers of interbank deposits marked

by arrows. We assume that the set of parameters is such that a shock in one of the banks

will propagate through contagion in the entire system. For the same parameters, however,

the complete network4 is su¢ cient to prevent contagion. We do not impose necessity, in

order to follow the link formation process gradually.

Social planner solution: A social planner that is able to organize transfers between

banks faces a trivial problem. Simply redirecting the links in order to move the banking

system to the network shown in �g. 2:1(b) reduces the size of interbank deposits by half.

If the loss associated to the new level of deposits is below the limit loss threshold, than

the failure of a bank will have no signi�cant e¤ects on the other banks in the system. The

social planner can achieve the objective of 0 contagion. Otherwise, the social planner can

further decrease the loss by increasing the connectivity level in the system. Adding a link

between banks 1 and 2 on the one hand, and banks 3 and 4, on the other hand increases

of each bank. Moreover, when a bank has two neighbors of a di¤erent type it can use both connections to

gain insurance, thus reducing by half the size of each transfer.
3We show why the two properties hold in Section 3.
4All the concepts are properly de�ned in Section 4.
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the number of connections each bank has and, thus, reduces the loss a bank spreads when

it fails. The parameters are assumed to insure that the complete network is resilient to

contagion. Thus, the social objective is completed again.

Banks solution: The banking system has the incentive to implement the social planner

solution. To understand what drives the link formation decision of banks, one should

note that the payo¤s from linking are heterogenous. Linking with banks of the same

type is costly, as it exposes banks to the risk of contagion without bringing any direct

bene�ts. While links with banks of a di¤erent type provide insurance against liquidity

shocks, links with banks of the same type serve only to reduce systemic risk by increasing

the connectivity of the system. Since the connectivity of the system depends only on the

number of links each bank has, banks will always trade a link with a bank of the same

type for a link with a bank of a di¤erent type.

Whether the banking system will be shaped as an incomplete network, depends on

whether an incomplete network is resilient to contagion. Nonetheless, the initial state of

the system is unstable, since banks have the incentive, as reasoned above, to severe the

links with neighbors of the same type. Provided that they can coordinate, banks will move

the system to the network represented in �g. 2:1(b). If this pattern of connections is yet

insu¢ cient to prevent contagion, the banks can and will move the system to the complete

network. Consider, for instance, the case of banks 1 and 2 in �g. 2:1(b). Although there

is no link between 1 and 2, the failure of either bank will trigger the failure of the other.

The failure of bank 1 (2) will determine banks 3 and 4 to go bankrupt and this will cause

in turn bank 2 (1) to fail.5 Assuming that the loss a bank spreads can be further reduced

by increasing the number of links per bank, than both banks 1 and 2 are better o¤ in a

network where they are directly connected. Hence, both banks 1 and 2 will agree to form

the link that will prevent them failing by contagion. Similar incentives determine bank 3

and 4 to link. The complete network is formed.

5Note that bank 2 (1) will fail independently of how many links banks 3 and 4 have. Although banks 3

and 4 might have su¢ cient links such that a single bank failure will not propagate further in the system,

when both fail simultaneously the cumulated loss will be large enough to trigger the failure of 2 (1).
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3 The Model

3.1 Consumers and Liquidity Shocks

We assume that the economy is divided into 2n regions, each populated by a continuum

of risk averse consumers. There are three time periods t = 0; 1; 2. Each agent has an

endowment equal to one unit of consumption good at date t = 0. Agents are uncertain

about their liquidity preferences: they are either early consumers, who value consumption

only at date 1, or they are late consumers, who value consumption only at date 2. In the

aggregate there is no uncertainty about the liquidity demand in period 1. Each region,

however, experiences di¤erent liquidity shocks, caused by random �uctuations in the frac-

tion of early consumers. Thus, although it is known with certainty that on average the

fraction of early consumers is q = (pH + pL)=2, this is realized only with a small probabil-

ity �. Each region, however, will face with probability (1� �)=2 either a high proportion

pH of agents that need to consume at date 1 or a low proportion pL of agents that value

consumption in period 1.

All the uncertainty is resolved at date 1, when the state of the world is realized and

commonly known. At date 2, the fraction of late consumers in each region will be (1� p)

where the value of p is known at date 1 as either pH or pL.

3.2 Banks, Demand Deposits and Asset Investments

We consider that in each region i there is a competitive representative bank. Agents

deposit their endowment in the regional bank. In exchange, they receive a deposit contract

that guarantees them an amount of consumption depending on the date they choose to

withdraw their deposits. In particular, the deposit contract speci�es that if they withdraw

at date 1, they receive C1 > 1, and if they withdraw at date 2, they receive C2 > C1.

There are two possibilities to invest. First, banks can invest in a liquid asset with a

return of 1 after one period. They can also choose an illiquid asset that pays a return of

r < 1 after one period, or R > 1 after two periods. Let x and y be the per capita amounts

invested in the liquid and illiquid asset, respectively. It seems natural that banks will use

the liquid asset to pay depositors that need to withdraw in the �rst period and will reserve

the illiquid asset to pay the late consumers. Since the average level of liquidity demand at

date 1 is qC1, we assume that the investment in the liquid asset, x, will equal this amount,
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while the investment in the illiquid asset, y, will cover (1� q)C2=R.6 This way at date 1

each bank has with probability (1� �)=2 either a liquidity shortage of zC1 = (pH � q)C1
or a liquidity surplus of zC1 = (q � pL)C1.

In addition, banks are subject to idiosyncratic shocks that are not insurable. For

reasons that will become clear in due course, these idiosyncratic shocks are attached to

the state of the world �S. In particular, with a small probability �, the failure of a bank

will occur in period 1. This implies that each bank has an individual probability of �=2n

of going bankrupt in period 1. This event is anticipated and the way will a¤ect banks�

actions will be explained later in the paper.

The shocks in the regional liquidity demand can now be expressed as shortages or

excesses in the liquidity holdings of each bank. Table 1 best describes the states of the

world for the banking system and the attached probability distribution.

Probability State/Bank 1 2 ... n n+ 1 n+ 2 ... 2n

(1� �)=2 S1 �z �z �z �z +z +z +z +z

(1� �)=2 S2 +z +z +z +z �z �z �z �z

�=2n �S1 fail 0 0 0 0 0 0 0

�=2n �S2 0 fail 0 0 0 0 0 0

�=2n ::: ::: ::: ::: ::: ::: ::: ::: :::

�=2n �S2n 0 0 0 0 0 0 0 fail

Table 1: Distribution of shocks in the banking system

3.3 Balance Sheet Linkages

The regional liquidity shocks that characterize the states of the world S1 and S2 is what

motivates the banks in the �rst place to interact. These interactions create balance sheet

linkages between banks. In particular, the links take the form of interbank deposits that

banks exchange at date 0. As we explained above, at date 1 each bank has with probability

(1� �)=2 either a liquidity shortage of zC1 = (pH � q)C1 or a liquidity surplus of zC1 =

(q� pL)C1. Since in aggregate the liquidity demand matches exactly the liquidity supply,

banks will hedge these liquidity shocks simply by transferring funds as interbank deposits

6Allen and Gale (2000) show in their paper that both the deposit contract and the investement in liquid

and illiquid asset are such that they maximize the expected utility of consumers.
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at date 0.7 This way, a contract would be closed between two banks that gives the right

to both parts to withdraw their deposit, at any of the subsequent dates. For the amounts

exchanged as deposits, each bank would receive the same return as consumers: C1, if they

withdraw after one period, and C2 if they withdraw after two periods.

Banks�portfolios consist now of three assets: the liquid asset, the illiquid asset and

the interbank deposits. Each of these three assets can be liquidated in any of the last

2 periods. However, the costliest in terms of early liquidation is the illiquid asset. This

implies the following ordering of returns:

1 <
C2
C1

<
R

r
(3.1)

The states S1 and S2 di¤erentiate the banks into two types. Banks are said to be of a

di¤erent type if they will experience di¤erent liquidity shocks in period 1. In particular, a

bank is of type H if it will face a high liquidity demand, that is a liquidity shortage, and

a bank is of type L if it will face a low liquidity demand, that is a liquidity surplus.

Let aij denote the amount exchanged as deposits between banks i and j at date 0. We

consider that deposit contracts are bilateral, hence we have aij = aji. Let Ni be the set of

banks i is linked to and let N cross
i be a subset of Ni representing the banks of a di¤erent

type i is linked to. Then, the total amount of deposits i exchanges with its neighbors

should balance out its liquidity shortage or excess. Since the insurance against liquidity

shocks is provided only through links with banks of a di¤erent type, aij should satisfy the

feasibility constrain:

X
j2Ncross

i

aij = z (3.2)

7An important feature of the model is that the swap of deposits occurs ex-ante, before the state of the

world is realized. Note, however, that this prevents cases when lenders have some monopoly power to arise.

For instance, in an ex-post market for deposits, lenders might take advantage of their position as liquidity

providers to extract money from banks with a shortage of liquidity. To avoid this unfavorable situation,

banks prefer to close �rm contracts that set the price of liquidity ex-ante.
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3.4 Losses Given Default

In the previous section we have argued that regional shocks in the liquidity demand and

liquidity supply create incentives for banks of a di¤erent type to form links by exchanging

deposits. In this section we turn to analyze the e¤ects of the idiosyncratic shocks that

occur in states �S1; :::; �S2n.

The non insurable idiosyncratic shocks, bare the risk of contagion. That is, the shock

that a¤ects initially only one institution can propagate in the entire system. To understand

why this is the case, recall that these shocks take the form of an exogenous failure of a

bank in period 1. If this event realizes, then it might spill over �rst, to any bank linked to

the failed bank and next, via links, to all the other banks. In order to evaluate contagion

risk we need to introduce a measure that quanti�es it. The risk of contagion is evaluated

in terms of loss given default (henceforth LGD). LGD expresses the excess of nominal

liabilities over the value of the assets of the failed bank. In our setting, LGD will be

given by the loss of value a bank incurs on its deposits when one of its neighbor banks is

liquidated.

To calculate LGD we need to determine the value of the assets of the failed bank.

If a bank i fails, its portfolio of assets is liquidated at the current value and distributed

equally among creditors. Now, recall that a bank portfolio consists of three assets. First,

banks hold an amount of x per capita invested in a liquid asset that pays a return of

1. Second, banks have invested an amount y per capita in an illiquid asset that pays a

return of r < 1 if liquidated in the �rst period. And lastly, there are interbank deposits

summing up to
P
k2Ni aik that pay a return of C1 per unit of deposit. On the liability

side, a bank will have to pay its depositors, normalized to 1 and at the same time to repay

its interbank creditors that also add up to
P
k2Ni aik. This yields a new return per unit

of good deposited in a bank i equal to �Ci =
x+ry+

P
k2Ni

aikC1

1+
P
k2Ni

aik
< C1.8 The LGD of bank j

given that bank i has failed is easy now to express as9:

LGDji = aji(C1 � �Ci) = aji
C1 � x� ry
1 +

P
k2Ni aik

(3.3)

8Eq. (3.1) ensures that the inequality holds.
9 In principle LGDji 6= LGDij since it may be that

P
k2Ni aik 6=

P
k2Nk ajk
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LGD has two interesting properties that have important implications on the way banks

form links.

� First, LGDji is increasing in amount of deposits aji exchanged between banks. This

gives banks an incentive to exchange the minimum amount of deposits.

� Second, LGDji is decreasing in (
P
k2Ni�fjg aik). This implies that the more con-

nected one bank is, the smaller the loss it induces to its neighbors in case it fails. In

other words, the more connected one bank�s neighbors are, the better the respective

bank is.

3.5 Limit Loss

In the previous section we have introduced losses given default and implied that the failure

of a bank might spill over to other banks via links. In this section we explain how this

spill over e¤ect realizes.

Recall that the failure of a banks characterizes the state of the world �S1; :::; �S2n. When

this event realizes, any neighbor bank of the failed bank incurs a loss in the value of the

deposits exchanged with the bank that is liquidated (LGD). A closer look at the balance

sheet of a bank that incurs a loss, shows that the value of the liquid asset qC1 is reduced

by the size of LGD. Thus, in order to meet its obligations towards early consumers,

which rise to qC1, a bank needs to compensate the di¤erence by liquidating part of the

illiquid asset. More precisely, the amount it liquidates from the illiquid asset should match

the LGD value. Liquidating the illiquid asset prematurely, however, involves a penalty

rate r < 1 and has negative consequences for the late consumers. In fact, if too much of

the illiquid asset is liquidated, the consumption of late consumers may be reduced to a

level below C1. In this case, the late consumers might gain more by imitating the early

consumers and withdrawing their investment from the bank at date 1. This will induce a

run on the bank and, subsequently, it will trigger the failure of the bank.

We can determine the maximum amount of the illiquid asset that can be liquidated

without causing a run. This can be expressed as a function that depends on the fraction

of late consumers.

b(q) = r

�
y � (1� q)C1

R

�
(3.4)
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The maximum amount of illiquid asset that can be liquidated without causing a run

on the bank can be interpreted as a limit loss. Thus, any bank that incurs a LGD higher

than b(q) will inevitably fail. A value of LGD below the threshold b(q) will not trigger

the failure of a bank. It will, however, be costly for the late consumers, given that their

consumption is now reduced to ~C2 < C2.10

4 The Game

4.1 Concepts and Notations

Let N = f1; 2; :::; 2ng denote the set of banks. A network g on the set N is a collection

of gij pairs, with the interpretation that i and j are linked. Thus, if i and j are linked in

the network g, then gij 2 g.

The set of neighbors of bank i in the network g is Ni(g) = fj 2 N j gij 2 gg. Let

�i(g) = jNi(g)j, where j�j represents the cardinality of a �nite set. The number of neighbors

bank i has in the network g is called the degree of bank i. In addition, let N inner
i (g) =

fj 2 N jgij 2 g and i, j are of the same typeg and �inneri (g) =
��N inner

i (g)
��. The number

of neighbor banks of the same type is de�ned as the inner degree of bank i. An equivalent

notation exists for banks of a di¤erent type N cross
i (g) = Ni(g)rN inner

i (g) and the number

of neighbor banks of a di¤erent type is: �crossi (g) =
��Ni(g)rN inner

i (g)
��.

We use the notation g+ gij to denote the new graph obtained from g by linking i and

j, if gij =2 g. Similarly, we consider that g � gij represents the graph obtained from g by

deleting an existent link between i and j, when gij 2 g

A network g is connected if there exists a path between any two nodes i and j from N .

A path of length k between i and j is a sequence of distinct agents (i; j1; :::; jk�1; j) such

that gij1 , gj1j2 ,..., gjk�1j 2 g. A network g is complete if for any node i 2 N , �i(g) = n�1.

A network g is regular of degree k if for any node i 2 N , �i(g) = k.

4.2 Strategies, Objectives and Welfare

The interaction between banks on the interbank market can be modeled as a network

formation game, where banks are the nodes and the deposits they exchange are the links.

The network is formed as a result of banks�actions, who decide how to form links. Since

10The consumption of late consumers at least equals the consumption of the early consumers: ~C2 � C1.
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the deposits are exchanged on bilateral basis (i.e. bank i agrees to pass its deposits to bank

j if and only if bank j will pass its deposits to bank i in turn), the network is undirected

and the formation of a link requires the consent of both parties involved. However, the

severance of a link can be done unilaterally.

The strategy of bank i can be described as a linking vector si = (si1; si2; :::; si2n) such

that sij 2 f0; 1g for each j 2 N rfig and sii = 0, where sij = 1 means that i intends to

form a link with bank j. A link between i and j is formed if and only if sij = sji = 1.11

Recall that shocks in the liquidity demand di¤erentiate banks into two types. It becomes

apparent banks follow di¤erent strategies when linking with banks of a di¤erent type than

when linking with banks of the same type. In this paper we model explicitly the network

formation between banks of the same type for a given pattern of interactions between

banks of a di¤erent type. In particular we assume that banks of a di¤erent type form

a complete bipartite graph. Thus, for any bank i 2 f1; 2; :::; ng the linking vector can

be written as si = (si1; si2; :::; sin; 1; 1; :::; 1), while for any bank j 2 fn + 1; :::; 2ng the

linking vector is represented by sj = (1; 1; :::; 1; sjn+1; :::; sj2n). Given this, we model the

interactions between banks of the same type and, furthermore, we study if the bipartite

complete graph can always be supported in the equilibrium.

The factor that mainly drives banks when forming links is to insure against the regional

liquidity shocks that a¤ect the system when the states S1 and S2 realize. Banks can hedge

their potential liquidity excess or shortage by linking (i.e. exchanging deposits) with banks

of a di¤erent type. Thus, any linking pattern between banks of a di¤erent type is su¢ cient

for insurance purposes, as long as it allows banks to exchange deposits which satisfy the

feasibility constrain (3.2). However, links between banks expose them to contagion risk.

The risk of contagion, measured in terms of LGD, can be reduced on the one hand by

decreasing the size of deposits exchanged or, on the other hand, by increasing the degree

of each bank. If we look only at symmetric solutions, the amount of deposits exchanged

is minimal when each bank is linked to all the other banks of a di¤erent type. This is the

rational behind the assumption that banks of a di¤erent type form a complete bipartite

graph. In this paper we model how banks endogenously reduce contagion risk by increasing

the degree of each node in the network.

11This condition capture that the formation of a link between two banks requires the consent of both

participants.
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Proposition 1 Let 
 be the set of all possible states of the worlds and denote with ! an

element of 
r f �S1; :::; �S2ng. Let NH(!) denote the set of banks of type H and NL(!) the

set of banks of type L in the state of the world !. Then the minimization problem for LGD

associated to each link has a symmetric solution when any i 2 NH(!) and i0 2 NL(!) are

connected and aii0 = z
n .

Proof. The proof is provided in the Appendix.

The following remark extends the result from Proposition 1 to links between any two

banks.

Remark 1 For simplicity, we consider that the amount of deposits exchanged between

banks i and j of the same type is also aij = z
n .

Banks�objective: In a network where banks can fully insure against liquidity shocks,

they need only to prevent losses through contagion. Thus, banks�objective function is

reduced to minimize the probability of failure through contagion. Secondarily, once the

risk of failure through contagion is eliminated, banks minimize the expected loss in states

�S1; :::; �S2n.

Social planner�s objective: The main concern of a social planner is the systemic risk.

In our framework, the systemic risk is given by the number of banks that fail, following a

shock in a single institution. Thus, a social planner objective function is to minimize the

number of banks that fail through contagion.

4.3 Payo¤s�Properties

The notion of limit loss introduced in Section 3.3 comes in handy for describing the payo¤s

banks have from linking to other banks. We brie�y give the intuition of how the payo¤s

are constructed. When a failed bank induces a value of LGD higher than the limit loss,

then all the the neighboring banks will inevitably fail in turn. By assumption, each bank

has at least n neighbors. Thus, the failure of a bank will cause the failure of at least n

banks more. Not surprisingly, this chain of failure will reverberate towards the remaining

banks, triggering, at the end, the failure of the entire system. If, however, the LGD caused

by a failed bank is below the threshold, only the neighboring banks will experience the

consequences, since the consumption of their late consumers will be reduced to ~C2 < C2.

Any other bank will be able to pay C1 to the early consumers and C2 to the late consumers.
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In expressing the payo¤s, we use the second property of LGD. Namely, the LGD a

failed bank induces to its neighbors depends on how well connected the respective bank

is. Proposition 1 and Remark 1 show that the size of deposits exchanged between any two

banks is z=n. Hence, we can infer that the LGD induced by a failed bank depends on how

many neighbors the respective bank has.

The limit loss b(q) is identical for each bank and is independent of the number of links

a banks has. Thus we can �nd a number t 2 N, in order to bracket the limit loss b(q) as

follows:
z

n

C1 � x� ry
1 + (n+ t) zn

� b(q) < z

n

C1 � x� ry
1 + (n+ t� 1) zn

(4.1)

The left hand side of the inequality is exactly the LGD a bank that has (n+ t) neighbors

induces and the right hand side is the LGD a bank with (n+ t� 1) neighbors generates.

Inequality 4.1 relates the contagious e¤ects of a bank failure to the number of links

banks have. Thus, the failure of a bank that has (n + t � 1) links or less will trigger the

failure of the entire system, through the mechanism described above. The failure of a bank

with at least (n+ t) links, however, has only consequences for its neighbors by decreasing

the utility of the late consumers.

We discuss in detail the implications of a bank failure for the case t 2 (0; n) \ N.

Consider the failure of a bank j in a network g. We distinguish the following cases:

1. �innerj (g) < t. In this case, for any i 2 Nj(g) we have LGDij > b(q). Consequently,

any bank k 2 N will also fail.12

2. �innerj (g) � t. In this case, for any i 2 Nj(g) we have LGDij � b(q). Thus, any

bank i 2 Nj(g) will pay the early consumers C1. The late consumers, however,

will have their consumption reduced to ~C2 < C2. Any other non-neighboring bank

k 2 N rNj(g) will not be a¤ected in any way and will be able to pay its consumers

C1 at date 1 and C2 at date 2.

4.4 Payo¤s

The arguments presented above are useful in de�ning the payo¤ a bank i gains from

network g. When the limit loss b(q) satis�es inequality 4.1, then the higher the number

12With this discussion, we are able to conclude that the existence of a single bank with insu¢ cient link

may trigger the failure of the entire system.
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of banks with an inner degree larger than t, the higher the bene�ts to each bank. Linking

is nevertheless costly, thus the fewer neighbors with an inner degree larger than t a bank

has, the lower the costs for the respective bank.

Formally, we can express the payo¤ of a bank i 2 N as a function u, increasing in

the number of nodes with an inner degree higher than t and decreasing in the number of

neighbors with an inner degree higher than t.

ui(g) = f(jT j ; jNi(g) \ T j) (4.2)

where T = fj 2 N
����innerj (g) � tg and j�j represents the cardinal of a set.

In addition, if the limit loss b(q) satis�es the inequality 4.1, then for any node i and

any inner degree �inneri , the payo¤ ui has the following properties:

1. ui(g + gij) = ui(g) and ui(g � gij) = ui(g), 8j 2 N s.t. �innerj (g) < t� 1

The explanation for this indi¤erence relies on the fact that the failure of a node with

an inner degree below t will trigger the failure of the entire system. The failure of

j leads to the failure of i, regardless of i creating a link or severing an existent link

with j.

2. ui(g + gij) > ui(g), 8j 2 N s.t. �innerj (g) = t� 1

If �innerj (g) = t � 1 and i creates a link with j, then the inner degree of j becomes

�innerj (g) = t. Thus, i trades a situation when the failure of j induces its own failure,

for a situation when the failure of j results in merely a lower utility for i�s late

consumers.

3. ui(g + gij) < ui(g), 8j 2 N s.t. �innerj (g) � t

When j has already an inner degree su¢ ciently high, its failure will have only e¤ects

for the neighbor banks. Linking with j does not bring i any bene�ts, but it comes

at the cost represented by the loss i might incur if j fails.

4. ui(g � gij) > ui(g), 8j 2 N s.t. �innerj (g) � t+ 1

Severing an existent link with j, will leave j with an inner degree still su¢ ciently

high. It will, however, spare i from experiencing a loss in case j fails.
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5 Network Formation

The main goal of this paper is to understand what networks are more likely to arise in a

banking system where �nancial players�incentives to form links are shaped by the e¤ects

of two types of shocks. On the one hand, the need for insurance against regional liquidity

shocks determines the formation of links between banks that have negatively correlated

shocks. For this case, however, we assume that the pattern of interactions that permits

the proper transfer of funds takes the form of a bipartite complete graph. On the other

hand, the same links that allow banks to hedge the liquidity shocks expose them to the

risk of contagion. Nevertheless, we have showed that the risk of contagion may be reduced

by increasing the number of links each bank has. We will focus thus on developing a model

of endogenous link formation between banks driven by the risk of failure by contagion.

In order to identify what networks are stable, we introduce the following concept of

equilibrium due to Jackson and Wolinsky (1996).

Criterion 1 Let gij = min(sij ; sji) and consider that gij 2 g when gij = 1. A network g

is pairwise stable if

1. for all gij 2 g, ui(g) � ui(g � gij) and uj(g) � uj(g � gij) and

2. for all gij =2 g, if ui(g) < ui(g + gij) then uj(g) > uj(g + gij).

where ui(g) is the payo¤ of bank i in the network g.13

The �rst condition of the stability criterion establishes that in equilibrium there is

no bank that wishes to severe a link it is involved in. At the same time, the second

condition requires that in a stable network there should not exist two unconnected banks

that would both bene�t by forming a link between themselves. In other words, a network

is an equilibrium if there are no banks that wish to deviate neither unilaterally (by severing

existent links), nor bilaterally (by adding a link between two banks).

All the following results hold under two assumptions:

1. the limit loss b(q) satis�es the inequality 4.1;

2. for any bank i 2 N , in the network g the crossing degree is �crossi (g) = n.

13We use the standard notations: g� ij denotes the graph obtained by deleting link ij from the existing

graph g, while g + ij is the graph obtained by adding the link ij to the graph g.
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The �rst result gives a necessary condition for a stable network to exist.

Proposition 2 Let g be a pairwise stable network. Then any bank i 2 N must have an

inner degree �inneri (g) � t.

Proof. The proof follows immediately from properties 3 and 4 described in the previous

section, properties that characterize the payo¤s a bank i gains from the network g. Suppose

that there exists a bank i such that �inneri (g) > t. Than, any neighbor j 2 Ni(g) has an

incentive to severe the link that connects it with i. This way, g is no longer an equilibrium.

This result provides only a partial characterization of stable networks. In fact, under

payo¤s that respect properties 1 � 4, there exists a broad range of networks that are

pairwise stables. It is easy to check that any network for which each node i has an inner

degree �inneri (g) � t�2 constitutes an equilibrium. This multiplicity of equilibria is mainly

driven by the indi¤erence in forming or severing links expressed in property 1. In what it

follows we alter property 1 in order to restrict the set of equilibria. Namely, we consider

that banks have a slight preference to forming links with other banks. The remaining

properties are unchanged.

Formally, when the limit loss b(q) satis�es the inequality 4.1, then for any node i and

any inner degree �ini , the payo¤ ui has the following properties:

1�. ui(g + gij) = ui(g) + " and ui(g � gij) = ui(g)� ", 8j 2 N s.t. �innerj < t� 1;

1. ui(g + gij) > ui(g), 8j 2 N s.t. �innerj = t� 1;

2. ui(g + gij) < ui(g), 8j 2 N s.t. �innerj � t;

3. ui(g � gij) > ui(g), 8j 2 N s.t. �innerj � t+ 1.

The new set of payo¤s�properties allows us to characterize comprehensively the set of

equilibria and give prediction for the stability of the banking system.

Proposition 3 Let g be a pairwise stable network and T = fi 2 N
���inneri (g) = tg. Then

jT j � 2(n� t).

Proof. The proof is provided in the Appendix.
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Proposition 3 has strong implications for the stability of the banking system, especially

when t is small. If t is small, proposition 3 shows that in equilibrium most of the banks have

su¢ cient links to prevent a shock in one of the institutions spreading through contagion.

For t large, however, the predictions are weaker. We need thus a re�nement for large

values of t. The following proposition provides such a re�nement.

Proposition 4 Let g be a pairwise stable network and T = fi 2 N
���inneri (g) = tg. If

t � n=2, then jT j � n.

Proof. The proof is provided in the Appendix.

Proposition 4 establishes that in an equilibrium network, at least half the banks will

have a su¢ ciently large number of links to insure losses that are small enough. The

following two results relate these �ndings to implications for the stability of the system.

Corollary 1 Let g be a pairwise stable network and T = fi 2 N
���inneri (g) = tg. If

t < n=2, then the probability that the failure of a bank will spread through contagion is at

most t�=n.

Proof. The proof follows simply from Proposition 3.

Corollary 2 Let g be a pairwise stable network and T = fi 2 N
���inneri (g) = tg. If

t � n=2, then the probability that the failure of a bank will spread through contagion is at

most �=2.

Proof. The proof follows simply from Proposition 4.

The �rst result implicitly insures that for high levels of the limit loss the probability

of contagion is signi�cantly low. The intuition for this result relies on the fact that the

higher the limit loss is, the lower the number of links banks need in order prevent contagion.

Proposition 3 indicates that a lower connectivity of the banking system is easier to obtain.

A low level of the limit loss, however, requires a high connectivity in the banking system.

Hence, the increased probability of contagion.
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6 E¢ ciency

When the limit loss b(q) satis�es the inequality 4.1, the failure of a bank with at least

(n + t) links, although it has consequences for its neighbors by decreasing the utility of

the late consumers, will not propagate by contagion. Thus, there is a complete range of

e¢ cient networks a social planner can design in order to prevent contagion in the banking

system. The set of e¢ cient networks is characterized in the following proposition.

Proposition 5 Let g be a network such that �crossi (g) = n and �inneri (g) � t , 8 i 2 N .

Then g is e¢ cient.

Proof. Since �inneri � t, 8 i 2 N then it follows immediately that �i � n + t, 8 i 2 N .

Thus, for any pair ij it must be that LGDij � z
n
C1�x�ry
1+(n+t) z

n
. As the limit loss b(q) satis�es

inequality 4.1, then LGDij � b(q) for any pair of banks ij. Hence, in the network g the

failure of a bank will not trigger the failure of other banks in the system.

The con�ict between e¢ cient outcomes and individual incentives is a classical theme in

economics. In this model, however, the incentives are partially aligned. Indeed, the set of

equilibrium networks, described by proposition 3 and 4, includes the e¢ cient equilibrium.

It is easy to check that a network g such that �inneri (g) = t, 8 i 2 N is pairwise stable

and, by proposition 5, is also e¢ cient.14

The set of equilibrium networks, nevertheless, incorporates many non-e¢ cient equilib-

ria, especially for large values of t. We show that we can restrict the set of equilibria to

the e¢ cient one if we extend the pairwise stability concept previously used, to allow for

deviations in which a pair of players each can delete one or more links and/or add a link in

a coordinated manner. For this purpose, we introduce the notion of bilateral equilibrium.

Criterion 2 Let gij = min(sij ; sji) and consider that gij 2 g when gij = 1. A network g�

is a bilateral equilibrium if:

1. There is a Nash equilibrium strategy pro�le s� which yields g�.

2. For any pair of players i; j 2 N , and every strategy pair (si; sj),

ui(g(si; sj ; s
�
�i�j)) > ui(g(s

�
i ; s

�
j ; s

�
�i�j))) uj(g(si; sj ; s

�
�i�j)) < uj(g(s

�
i ; s

�
j ; s

�
�i�j))

14The existance of such an equilibrium e¢ cient network is conditional on the existance of a t-regular

network. Lovasz (1979) discusses in detail conditiond for the existance of a t-regular network with n nodes.
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A network g can be, thus, supported in a �bilateral equilibrium�if no player or pair

of players can deviate and bene�t from the deviation (at least one of them strictly).

This equilibrium concept allows a pair of players to deviate by creating a link between

themselves, if the link did not exist before, and, at the same time, by severing other links

they are involved in. The terminology of �bilateral equilibrium�was introduced in Goyal

and Vega-Redondo (2004). Note that any bilateral equilibrium network is also pairwise

stable.

Proposition 6 Let g be a bilateral equilibrium network. Then the probability that the

failure of a bank will spread through contagion is at most �=2n.

Proof. The proof is provided in the Appendix.

The bilateral equilibrium concept rules out all the ine¢ cient equilibria, except for

one. For instance, a network such that �crossj = n, where a single node i that has an

insu¢ cient number of link, �inneri < t and �innerj2N�fig = t can be sustained in equilibrium.

In this network, although the probability of contagion is very low, �=2n, the failure of

bank i triggers the failure of the entire system. Thus, with probability �=2n there will be

(2n� 1) banks that will fail due to contagious e¤ects.

In this paper we have discussed a particular set of equilibrium networks. Namely, we

have assumed that �crossi = n, 8 i 2 N and we have modeled the link formation process

that takes place between banks of the same type. In other words, we have studied the set

of equilibrium networks for which each bank is linked to all the banks of the other type.

It is important to note, however, that the set of pairwise stable networks is, by no means,

restricted the set of networks for which �crossi = n, 8 i 2 N . Due to the limitations of

the pairwise stability concept, networks where there exist nodes such that the crossing

degree is smaller than n can be sustained in equilibrium. The full characterization of the

set of pairwise stable networks is possible, however not of much interest since there is no

e¢ cient equilibrium that can emerge when there exist nodes such that the crossing degree

is smaller than n, for the given set of parameters.

The bilateral equilibrium concept solves this problem and proposition 6 holds without

any prior assumption about the crossing degree of banks.
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7 Conclusions

The problem of contagion within the banking system is a fairly debated issue. The main

contribution this paper brings to the existent literature is endogenizing the degree of

interdependence that exists between banks. In particular, we develop a model of network

formation for the banking system. We investigate how banks form links with each other,

when the banking system is exposed to contagion risk. The question we address is wether

banks form networks that are resilient to the propagation of small idiosyncratic shocks.

The message this paper transmits is rather optimistic. Banks respond to contagion

risk by forming links. The stable network architectures that emerge are very likely to

support systemic stability. For instance, when the probability of a shock is �, then the

probability that it will spread by contagion is at most �=2n. For large values of the limit

loss, the probability of contagion is virtually 0.
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A Appendix

In what it follows we will prove some results advanced in the main text.

Proposition 1 Let 
 be the set of all possible states of the worlds and denote with !

an element of 
�f �Sg. Let NH(!) denote the set of banks of type H and NL(!) the set

of banks of type L in the state of the world !. Then the solution for minimizing LGD

associated to each link is for any i 2 NH(!) and i0 2 NL(!) to be connected and, hence,

aii0 =
z
n .

Proof. The optimization problem is:

8 i 2 N; i0 2 N cross
i ; min

aii0
LGDii0; (A.1)

s.t.
X

i02Ncross
i

aii0 = z (A.2)

First we show that LGDii0 is decreasing in aii0 . For this it is useful to express LGD as

LGDii0 = aii0
C1 � x� ry

1 + aii0 +
P

k2Ni(g)
k 6=i0

aik
(A.3)

The derivative of LGDii0 with respect to aii0 is given by

@LGDii0

@aii0
=

(C1 � x� ry)(1 +
P

k2Ni(g)
k 6=i0

aik)

(1 + aii0 +
P

k2Ni(g)
k 6=i0

aik)2
> 0 (A.4)

A positive sign for the derivative implies that LGDii0 is increasing in aii0 .

The only restriction in minimizing LGDij is the feasibility constraint (3.2). According

to it, any bank i needs to insure that the amount of deposits exchanged with banks of a

di¤erent type sums up to z.

We impose that the solution is symmetric. That is aii0 = z
 . Since there are n banks

of a di¤erent type and LGDii0 is increasing in the amount of deposits aij , the solution to

the minimization problem dictates that each bank creates links to all the other banks of

a di¤erent type. Subsequently, the amount exchanged on each link is aij = z
n .

Proposition 3 Let g be a pairwise stable network and T = fi 2 N
���inneri (g) = tg.

Then jT j � 2(n� t).

Proof. Let 
 be the set of all possible states of the worlds and denote with ! an element

of 
 � f �Sg. Let NH(!) (NL(!)) be the set of banks of type H (L) when the state !

realizes. And let TH(!) (TL(!)) be the set of banks of type H (L) that have an inner
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degree �inneri (g) = t when the state ! realizes. Clearly we have jT j =
��TH(!)��+ ��TL(!)��.

In order to prove that jT j � 2(n� t), we show that
��TH(!)�� � n� t and ��TL(!)�� � n� t.

Since the cases are symmetric, we prove only that
��TH(!)�� � n � t. For this we assume

the contrary in order to arrive to a contradiction.

Suppose that
��TH(!)�� < n� t. This implies that the set TH(!) has at most n� t� 1

elements. Further, this implies that
��NH(!)� TH(!)

�� � n� (n� t� 1). In other words,
the set of banks with an inner degree �inneri (g) < t has at least t+1 elements. By property

1�and 2 above we know that in a stable network all the banks such that �inneri � t � 1

must be directly linked with each other. Since the set of banks with this property is at

least t+ 1, it must be that each bank in NH(!)� TH(!) has an inner degree �inneri � t.

We arrived thus to a contradiction.

Proposition 4 Let g be a pairwise stable network and T = fi 2 N
���inneri (g) = tg. If

t � n=2, then jT j � n.

Proof. The proof follows similar steps as the proof for the previous result. Adopting the

same notations, we prove only that
��TH(!)�� � n=2.

Let
��TH(!)�� = � . If � � t, the proof is complete.

Consider the case when � < t. By property 1�and 2 above we know that in a stable

network all the banks in the set NH(!)� TH(!) must be directly linked with each other.

This implies that the total number of links15 between banks of the same type with an

inner degree �inneri < t must be (n � �)(n � � � 1). In addition, since � < t, it must be

that each bank in TH(!) has some links with banks in NH(!) � TH(!). Assuming that

all banks in TH(!) are directly linked with each other, there must be at least �(t� � +1)

links with banks in NH(!)� TH(!).

Since all the banks in NH(!)�TH(!) have an inner degree �inneri < t, the total amount

of links these banks have should not exceed (n� �)t. Thus, the following inequality must

hold:

(n� �)(n� � � 1) + �(t� � + 1) < (n� �)t

This inequality can be rewritten as

15Links here are counted twice for each node. However, we maintain the same double counting for the

rest of the proof, such that in the end it cancels out.
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(t� � + 1)(2� � n) < (n� �)(2� � n)

Since t � � + 1 < n � � , it must be that 2� � n > 0 , � > n=2. This concludes the

proof.

Proposition 5Let g be a bilateral equilibrium network. Then the probability that the

failure of a bank will spread through contagion is at most �=2n.

Proof. We show that in a bilateral equilibrium networks there exists at most one node i

such that �inneri < t.

Suppose that in an equilibrium network there exist at least two nodes i and j such that

�inneri < t, �innerj < t. In a network that there are at least two nodes with an insu¢ cient

number of links, there are two sources of contagious failure. Thus the probability a bank

associates to failing by contagion is at least 2�=2n.

Let ~g be such a network. Then there exist a pair ij of nodes of a di¤erent type (i.e.

i 2 NH(!) and j 2 NL(!)) such that it pays o¤ to severe the links they are involved

in and form the link ~gij , if ~gij =2 ~g. Formally, let ~si and ~sj be the strategy pro�le bank

i and bank j follow, respectively, in network ~g:And let s�i = (0; 0; :::; 0
1;:::;j�1

; 1; 0; 0; :::; 0
j+1;:::;n

) and

s�j = (0; 0; :::; 0
1;:::;i�1

; 1; 0; 0; :::; 0
i+1;:::;n

). Then

ui(~g(s
�
i ; s

�
j ; ~s�i�j)) > ui(g(~si; ~sj ; ~s�i�j)) and uj(~g(s

�
i ; s

�
j ; ~s�i�j)) > uj(~g(~si; ~sj ; ~s�i�j))

(A.5)

In the new network, the only link i and j have is ~gij and thus they are exposed to

contagion stemming from one source. If ~gij is the only link banks i and j have, thus

this link will bear the entire amount of deposits necessary to provide insurance against

liquidity shocks: z. Thus, if one of the banks fails, the other one fails by necessity, since

the loss it incurs is much above the limit loss threshold. However, the probability that

one of the two banks will fail is �=2n and smaller than in the network ~g. Hence, ~g cannot

be an equilibrium.

Since, in a bilateral equilibrium there exists at most one node i such that �inneri < t,

it follows that the probability that the failure of a bank will spread through contagion is

at most �=2n.
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