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Abstract

Modern banking systems are highly interconnected. Despite their various benefits,
the linkages that exist between banks carry the risk of contagion. In this paper we
investigate how banks decide on direct balance sheet linkages and the implications
for contagion risk. In particular, we model a process of network formation in the
banking system. The trade-off between the gains and the risks of being connected
shapes banks’ incentives to form links. We show that banks manage to form networks
that are resilient to contagion. Thus, in an equilibrium network, the probability of

contagion virtually 0.
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1 Introduction

A notable feature of the modern financial world is its high degree of interdependence. The
incentives for linking are driven by the benefits these links bring. For instance, banks
can solve their liquidity unbalances without requiring the intervention of a Central Bank
simply by transferring funds from the ones that have a cash surplus to those with a cash
deficit. The supply and demand for liquidity connect this way the financial institutions
into a network. Are the connections in the financial world, however, limited to the ones
created by market forces? There are many instances that suggest this is not the case. The
"too big to fail" phenomenon, that receives a lot of attention in the economic literature,
is one example. Linking, under the form of lending money, is not motivated here by the
intersection of supply and demand. The rational behind bailing out a certain institution
is given by the danger of contagion.

Banks and other financial institutions are linked in a variety of ways. The realized
connections are shaped by the choices of the banks and the institutional constraints.
Despite their obvious benefit, the linkages come at the cost that small shocks, which
initially affect only a few institutions, can propagate through the entire system. Thus,
the decisions the financial institutions take when adopting mutual exposures towards one
another influence directly the impact a small disturbance has on the system. This paper
addresses this issue. We investigate how banks form linkages with each other, when a link
is represented by the transfer of funds between two institutions. In particular, we study a
network formation process that is mainly driven by the risk of contagion.

Since these linkages carry the risk of contagion, an interesting question is whether
banks choose a degree of interdependence that sustains systemic stability. This question
is particularly important for emerging markets economies. Without sound regulatory
frameworks, that characterize the developed financial systems, the banking systems of
developing economies have to rely on the ways banks take decisions. Moreover, the risk of
contagion crucially depends on the pattern of interactions that is formed between banks.
Thus, it is useful to understand what network of banks emerges and what are the incentives
to which banks respond when forming this network.

The use of tools issued from the theory of network formation seem to be helpful to
answer this question. A recent and rapidly growing literature on this topic has developed

since a few years. There are already several papers that brought important contributions



by building theoretic tools to study network formation processes among which we can cite
Bala and Goyal (2000), Jackson and Watts (2002), Jackson and Wolinsky (1996) or Dutta
et. al (2005).

Despite the numerous applications these models found in the social science context,
the literature on financial networks is still very much incipient. There are two approaches
in this literature. On the one hand, there is a number of papers that look for contagious
effects via direct balance sheet interlinkages. For instance, Freixas et al. (2000) considers
the case of banks that face liquidity needs as consumers are uncertain about where they are
to consume. In their model the connections between banks are realized through interbank
credit lines that enable these institutions to hedge regional liquidity shocks. The authors
analyze different market structures and find that a system of credit lines, while it reduces
the cost of holding liquidity, makes the banking sector prone to experience gridlocks, even
when all banks are solvent. Dasgupta (2004) also discusses how linkages between banks
represented by crossholding of deposits can be a source of contagious breakdowns. Fragility
arises when depositors, that receive a private signal about banks’ fundamentals, may wish
to withdraw their deposits if they believe that enough other depositors will do the same.
To eliminate the multiplicity of equilibria the author uses the concept of global games,
first introduced by Carlsson and van Damme (1993). A unique equilibrium is isolated and
this depends on the value of the fundamentals. Eisenberg and Noe (2001) take a more
technical approach when investigating systemic risk in a network of financial institutions.
First the authors show the existence of a clearing payment vector that defines the level of
connections between banks. Next, they develop an algorithm that allows them to evaluate
the effects small shocks have on the system. Another interesting issue is addressed by
Leitner (2005). The model constructed in this paper shows that agents may be willing to
bail out other agents, in order to prevent the collapse of the whole network.

The other approach focuses on indirect linkages. Lagunoff and Schreft (2001) construct
a model where agents are linked in the sense that the return on an agent’s portfolio depends
on the portfolio allocations of other agents. Similarly, de Vries (2005) shows that there is
dependency between banks’ portfolios, given the fat tail property of the underlying assets,
and this caries the potential for systemic breakdown. Cifuentes et al. (2005) present a
model where financial institutions are connected via portfolio holdings. The network is

complete as everyone holds the same asset. Although the authors incorporate in their



model direct linkages through mutual credit exposures as well, contagion is mainly driven
by changes in asset prices. These papers, they all share the same finding: financial systems
are inherently fragile. Fragility, not only arises exogenously, from financial institutions’
exposure to macro risk factors, as it is the case in de Vries (2005). It also endogenously
evolves through forced sales of assets by some banks that depress the market price inducing
further distress to other institutions, as in Cifuentes et al. (2004).

The empirical papers which study banking contagion paint a more optimistic message.
Recently, there has been a substantial interest in looking for evidence of contagious failures
of financial institutions resulting from the mutual claims they have on one another. Most
of these papers use balance sheet information to estimate bilateral credit relationships for
different banking systems. Subsequently, the stability of the interbank market is tested
by simulating the breakdown of a single bank. Upper and Worms (2004) analyze the
German banking system. Sheldon and Maurer (1998) consider the Swiss system. Cocco et
al. (2003) present empirical evidence for lending relationships existent on the Portuguese
interbank market. Furfine (2003) studies the interlinkages between the US banks, while
Wells (2002) looks at the UK interbank market. Boss et al. (2004) provide an empirical
analysis of the network structure of the Austrian interbank market and discuss its stability
when a node is eliminated. In the same manner, Degryse and Nguyen (2004) evaluate the
risk that a chain reaction of bank failures would occur in the Belgian interbank market.
These papers find that the banking systems demonstrate a high resilience, even to large
shocks. Simulations of the worst case scenarios show that banks representing less than
five percent of total balance sheet assets would be affected by contagion on the Belgian
interbank market, while for the German system the failure of a single bank could lead to
the breakdown of up to 15% of the banking sector in terms of assets.

The paper that is closest related to ours is by Allen and Gale (2000). They asses the
impact of degree of network completeness on the stability of the banking system. Allen
and Gale show that complete networks are more resilient to contagious effects of a single
bank failure than incomplete structures. In their model, though there is no aggregate
shortage of liquidity, the demand for cash is not evenly distributed in the system. This
induces banks to insure against such regional liquidity shocks by exchanging deposits on
the interbank market. The interbank market is perceived as a network where the banks

are nodes and the deposits exchanged represent links.



This paper departs from the Allen and Gale paper in a very important respect. Al-
though, we use the same framework to motivate interactions on the interbank market, we
no longer consider that the network of banks is fixed. We allow the endogenous formation
of links and analyze what are the implications for the stability of the banking system. We
show that banks manage to form networks that are usually resilient to the propagation
of shocks. Moreover, the completeness of the network, although a sufficient condition to
guarantee the stability of the banking system!', is not also a necessary condition. Indeed,
most of the networks banks form turn out to be incomplete.

The model is based on a framework introduced by Diamond and Dybvig (1983). There
are three periods t = 0, 1,2 and a large number of identical consumers, each endowed with
one unit of a consumption good. Ex-ante, consumers are uncertain about their liquidity
preferences. Thus, they might be early consumers, who value consumption at date 1, or
late consumers, who value consumption at date 2. The consumers find optimal to deposit
their endowment in banks, which invest on their behalf. In return, consumers are offered
a fixed amount of consumption at each subsequent date, depending when they choose to
withdraw. Banks can invest in two assets: there is a a liquid asset which pays a return of
1 after one period and there is an illiquid asset that pays a return of r < 1 after one period
or R > 1 after two periods. In addition, liquidity shocks hit the economy randomly, in
the following way. Although there is no uncertainty about the average fraction of early
consumers, the liquidity demand is unevenly distributed among banks in the first period.
Thus, each bank experiences either a high or a low fraction of early consumers. To insure
against these regional liquidity shocks, banks exchange deposits on the interbank market
in period 0.

Deposits exchanged between banks constitute the links that connect the banks in a
network. Each link formed this way, exposes banks to the risk of contagion. The risk
of contagion is evaluated in terms of the loss that a bank incurs when a neighbor bank
fails. This loss can be decreased either by reducing the size of deposits exchanged or by
increasing the connectivity level in the banking system. We model how banks respond to
the loss that follows the failure of a neighboring bank by creating links.

This paper is organized as follows. Section 2 presents an illustrative example of how

a network formation process develops in a 4 - bank framework. The details of the model
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are presented in Section 3, while Section 4 constructs a game theoretical structure and
introduces the payoffs banks have from forming links. Section 5 models the network
formation process and Section 6 analyses the efficiency of banks’ link formation decisions.

Section 7 concludes.

2 Example

Allen and Gale (2000) study how banking system responds to contagion when banks are
connected under different network structures. The authors show that incomplete networks
are more prone to contagion than complete structures. Specifically, they take the case of
an incomplete network where the failure of a bank may trigger the failure of the entire
banking system. They prove that, for the same set of parameters, if banks are connected in
a complete structure, then the system is resilient to contagious effects. Hence, the solution
for a social planner that has as objective function a 0 level of contagion is rather trivial.
When faced with the problem of designing an optimal network, the planner would opt for
the complete structure. An interesting question that follows immediately is whether banks
themselves form networks resilient to contagion. We further elaborate on this question to
see whether banks are able to implement the efficient solution.

To illustrate what incentives banks have when forming link, we take the 4 bank case
studied in Allen and Gale. Shocks in the liquidity demand differentiate banks into two
types in the following way: there will be two banks that have a liquidity surplus +2z and
two banks with a liquidity shortage —z. Although ex-ante banks do not have information
on their type, they know how the liquidity shocks are correlated. Thus, they can insure
against these shocks simply by transferring funds between banks of a different type. These
transfers create links between banks, exposing the system to the risk of contagion. Explic-
itly, when a bank fails it induces a loss to all the neighboring banks. If this loss is above
a threshold, the banks that incur it will go bankrupt as well. This way, the initial shock
propagates to other banks via links.

We have learned that the risk of contagion depends on the size of the loss a failed bank
induces to its neighbors. The loss has two interesting properties. First, it is increasing
in the size of the deposits transferred between banks. The size of the deposits, however,

depends on the number of connections with banks of a different type.? Hence, the loss a

2Qnly transfers between banks of a different type play a role in balacing the liquidity surplus or shortage
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Figure 2.1: Different states of the banking system

bank incurs to its neighbors decreases with the number of neighbor banks of a different
type. Second, the loss is decreasing in the total number of links a bank has. Thus,
increasing the connectivity level in the banking system reduces its propensity to contagion.
This explains why a complete network is more resilient to the propagation of shocks than
incomplete structures.?

We take the following initial state of the banking system simply to illustrate how these
two properties affect the banks’ link formation decisions. Consider a banking system
connected as in fig. 2.1(a), and the corresponding transfers of interbank deposits marked
by arrows. We assume that the set of parameters is such that a shock in one of the banks
will propagate through contagion in the entire system. For the same parameters, however,
the complete network? is sufficient to prevent contagion. We do not impose necessity, in
order to follow the link formation process gradually.

Social planner solution: A social planner that is able to organize transfers between
banks faces a trivial problem. Simply redirecting the links in order to move the banking
system to the network shown in fig. 2.1(b) reduces the size of interbank deposits by half.
If the loss associated to the new level of deposits is below the limit loss threshold, than
the failure of a bank will have no significant effects on the other banks in the system. The
social planner can achieve the objective of 0 contagion. Otherwise, the social planner can
further decrease the loss by increasing the connectivity level in the system. Adding a link

between banks 1 and 2 on the one hand, and banks 3 and 4, on the other hand increases

of each bank. Moreover, when a bank has two neighbors of a different type it can use both connections to

gain insurance, thus reducing by half the size of each transfer.
3We show why the two properties hold in Section 3.
*All the concepts are properly defined in Section 4.



the number of connections each bank has and, thus, reduces the loss a bank spreads when
it fails. The parameters are assumed to insure that the complete network is resilient to
contagion. Thus, the social objective is completed again.

Banks solution: The banking system has the incentive to implement the social planner
solution. To understand what drives the link formation decision of banks, one should
note that the payoffs from linking are heterogenous. Linking with banks of the same
type is costly, as it exposes banks to the risk of contagion without bringing any direct
benefits. While links with banks of a different type provide insurance against liquidity
shocks, links with banks of the same type serve only to reduce systemic risk by increasing
the connectivity of the system. Since the connectivity of the system depends only on the
number of links each bank has, banks will always trade a link with a bank of the same
type for a link with a bank of a different type.

Whether the banking system will be shaped as an incomplete network, depends on
whether an incomplete network is resilient to contagion. Nonetheless, the initial state of
the system is unstable, since banks have the incentive, as reasoned above, to severe the
links with neighbors of the same type. Provided that they can coordinate, banks will move
the system to the network represented in fig. 2.1(b). If this pattern of connections is yet
insufficient to prevent contagion, the banks can and will move the system to the complete
network. Consider, for instance, the case of banks 1 and 2 in fig. 2.1(b). Although there
is no link between 1 and 2, the failure of either bank will trigger the failure of the other.
The failure of bank 1 (2) will determine banks 3 and 4 to go bankrupt and this will cause
in turn bank 2 (1) to fail.> Assuming that the loss a bank spreads can be further reduced
by increasing the number of links per bank, than both banks 1 and 2 are better off in a
network where they are directly connected. Hence, both banks 1 and 2 will agree to form
the link that will prevent them failing by contagion. Similar incentives determine bank 3

and 4 to link. The complete network is formed.

®Note that bank 2 (1) will fail independently of how many links banks 3 and 4 have. Although banks 3
and 4 might have sufficient links such that a single bank failure will not propagate further in the system,

when both fail simultaneously the cumulated loss will be large enough to trigger the failure of 2 (1).



3 The Model

3.1 Consumers and Liquidity Shocks

We assume that the economy is divided into 2n regions, each populated by a continuum
of risk averse consumers. There are three time periods t = 0,1,2. Each agent has an
endowment equal to one unit of consumption good at date t = 0. Agents are uncertain
about their liquidity preferences: they are either early consumers, who value consumption
only at date 1, or they are late consumers, who value consumption only at date 2. In the
aggregate there is no uncertainty about the liquidity demand in period 1. Each region,
however, experiences different liquidity shocks, caused by random fluctuations in the frac-
tion of early consumers. Thus, although it is known with certainty that on average the
fraction of early consumers is ¢ = (pyg + pr)/2, this is realized only with a small probabil-
ity m. Each region, however, will face with probability (1 — 7)/2 either a high proportion
pr of agents that need to consume at date 1 or a low proportion py, of agents that value
consumption in period 1.

All the uncertainty is resolved at date 1, when the state of the world is realized and
commonly known. At date 2, the fraction of late consumers in each region will be (1 — p)

where the value of p is known at date 1 as either py or pr.

3.2 Banks, Demand Deposits and Asset Investments

We consider that in each region 7 there is a competitive representative bank. Agents
deposit their endowment in the regional bank. In exchange, they receive a deposit contract
that guarantees them an amount of consumption depending on the date they choose to
withdraw their deposits. In particular, the deposit contract specifies that if they withdraw
at date 1, they receive C7 > 1, and if they withdraw at date 2, they receive Cy > Cf.
There are two possibilities to invest. First, banks can invest in a liquid asset with a
return of 1 after one period. They can also choose an illiquid asset that pays a return of
r < 1 after one period, or R > 1 after two periods. Let x and y be the per capita amounts
invested in the liquid and illiquid asset, respectively. It seems natural that banks will use
the liquid asset to pay depositors that need to withdraw in the first period and will reserve
the illiquid asset to pay the late consumers. Since the average level of liquidity demand at

date 1 is ¢C7, we assume that the investment in the liquid asset, x, will equal this amount,



while the investment in the illiquid asset, 3, will cover (1 — q)Cy/R.% This way at date 1
each bank has with probability (1 — 7)/2 either a liquidity shortage of zC7 = (pg — ¢)C1
or a liquidity surplus of zCi = (¢ — pr)Ch.

In addition, banks are subject to idiosyncratic shocks that are not insurable. For
reasons that will become clear in due course, these idiosyncratic shocks are attached to
the state of the world S. In particular, with a small probability =, the failure of a bank
will occur in period 1. This implies that each bank has an individual probability of 7/2n
of going bankrupt in period 1. This event is anticipated and the way will affect banks’
actions will be explained later in the paper.

The shocks in the regional liquidity demand can now be expressed as shortages or
excesses in the liquidity holdings of each bank. Table 1 best describes the states of the

world for the banking system and the attached probability distribution.

Probability | State/Bank | 1 2 e | m|n+1l{n+2] ... | 2n
(1—m)/2 S1 -z | —z | —z|—z| +=z +z | +z | +z
(1—m)/2 S +z | +z |tz |tz || —z -z | —z| —z

/2n S1 fail | 0 0 0 0 0 0 0

T/2n Sy 0 | fail | O 0 0 0 0 0

/2n

7/2n Som 0 0 0] 0 0 0 0 | fail
Table 1: Distribution of shocks in the banking system

3.3 Balance Sheet Linkages

The regional liquidity shocks that characterize the states of the world S; and Sy is what
motivates the banks in the first place to interact. These interactions create balance sheet
linkages between banks. In particular, the links take the form of interbank deposits that
banks exchange at date 0. As we explained above, at date 1 each bank has with probability
(1 — m)/2 either a liquidity shortage of 2C1 = (pg — ¢)Ci or a liquidity surplus of zC; =
(¢ — pr)C1. Since in aggregate the liquidity demand matches exactly the liquidity supply,
banks will hedge these liquidity shocks simply by transferring funds as interbank deposits

% Allen and Gale (2000) show in their paper that both the deposit contract and the investement in liquid

and illiquid asset are such that they maximize the expected utility of consumers.
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at date 0.7 This way, a contract would be closed between two banks that gives the right
to both parts to withdraw their deposit, at any of the subsequent dates. For the amounts
exchanged as deposits, each bank would receive the same return as consumers: C1, if they
withdraw after one period, and Cs if they withdraw after two periods.

Banks’ portfolios consist now of three assets: the liquid asset, the illiquid asset and
the interbank deposits. Each of these three assets can be liquidated in any of the last
2 periods. However, the costliest in terms of early liquidation is the illiquid asset. This
implies the following ordering of returns:

Co R

1< =< — Nl
<C'1<7’ (3.1)

The states S and Sy differentiate the banks into two types. Banks are said to be of a
different type if they will experience different liquidity shocks in period 1. In particular, a
bank is of type H if it will face a high liquidity demand, that is a liquidity shortage, and
a bank is of type L if it will face a low liquidity demand, that is a liquidity surplus.

Let a;; denote the amount exchanged as deposits between banks 7 and j at date 0. We
consider that deposit contracts are bilateral, hence we have a;; = aj;. Let IN; be the set of
banks i is linked to and let N/"*® be a subset of N; representing the banks of a different
type ¢ is linked to. Then, the total amount of deposits ¢ exchanges with its neighbors
should balance out its liquidity shortage or excess. Since the insurance against liquidity
shocks is provided only through links with banks of a different type, a;; should satisfy the

feasibility constrain:

Z aij =z (3.2)

jeNL_cToss

TAn important feature of the model is that the swap of deposits occurs ex-ante, before the state of the
world is realized. Note, however, that this prevents cases when lenders have some monopoly power to arise.
For instance, in an ex-post market for deposits, lenders might take advantage of their position as liquidity
providers to extract money from banks with a shortage of liquidity. To avoid this unfavorable situation,

banks prefer to close firm contracts that set the price of liquidity ex-ante.
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3.4 Losses Given Default

In the previous section we have argued that regional shocks in the liquidity demand and
liquidity supply create incentives for banks of a different type to form links by exchanging
deposits. In this section we turn to analyze the effects of the idiosyncratic shocks that
occur in states Si, ..., Son.

The non insurable idiosyncratic shocks, bare the risk of contagion. That is, the shock
that affects initially only one institution can propagate in the entire system. To understand
why this is the case, recall that these shocks take the form of an exogenous failure of a
bank in period 1. If this event realizes, then it might spill over first, to any bank linked to
the failed bank and next, via links, to all the other banks. In order to evaluate contagion
risk we need to introduce a measure that quantifies it. The risk of contagion is evaluated
in terms of loss given default (henceforth LGD). LGD expresses the excess of nominal
liabilities over the value of the assets of the failed bank. In our setting, LGD will be
given by the loss of value a bank incurs on its deposits when one of its neighbor banks is
liquidated.

To calculate LGD we need to determine the value of the assets of the failed bank.
If a bank 7 fails, its portfolio of assets is liquidated at the current value and distributed
equally among creditors. Now, recall that a bank portfolio consists of three assets. First,
banks hold an amount of x per capita invested in a liquid asset that pays a return of
1. Second, banks have invested an amount y per capita in an illiquid asset that pays a
return of r < 1 if liquidated in the first period. And lastly, there are interbank deposits
summing up to ZkeNi a;r, that pay a return of C; per unit of deposit. On the liability
side, a bank will have to pay its depositors, normalized to 1 and at the same time to repay
its interbank creditors that also add up to Eke N; Qik- This yields a new return per unit

I+Ty+2k N; aikCl 8 .
1+Ek€€Ni Qik < Cl‘ The LGD of bank i

9.

of good deposited in a bank i equal to C; =

given that bank ¢ has failed is easy now to express as

Ci—x—ry

LGD:: =a:.:(Ch —C:) = a.::
7t Cljz( 1 z) aJZl—i_ZkeNi ain

8Eq. (3.1) ensures that the inequality holds.
In principle LGDj; # LGD;j; since it may be that ZkeNi aik # ZkeNk ajk
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LGD has two interesting properties that have important implications on the way banks

form links.

e First, LGDj; is increasing in amount of deposits a;; exchanged between banks. This

gives banks an incentive to exchange the minimum amount of deposits.

e Second, LGDj; is decreasing in (3_jcn,_g;3 @k). This implies that the more con-
nected one bank is, the smaller the loss it induces to its neighbors in case it fails. In
other words, the more connected one bank’s neighbors are, the better the respective

bank is.

3.5 Limit Loss

In the previous section we have introduced losses given default and implied that the failure
of a bank might spill over to other banks via links. In this section we explain how this
spill over effect realizes.

Recall that the failure of a banks characterizes the state of the world S, ..., So,. When
this event realizes, any neighbor bank of the failed bank incurs a loss in the value of the
deposits exchanged with the bank that is liquidated (LGD). A closer look at the balance
sheet of a bank that incurs a loss, shows that the value of the liquid asset ¢C1 is reduced
by the size of LGD. Thus, in order to meet its obligations towards early consumers,
which rise to gC7, a bank needs to compensate the difference by liquidating part of the
illiquid asset. More precisely, the amount it liquidates from the illiquid asset should match
the LGD value. Liquidating the illiquid asset prematurely, however, involves a penalty
rate 7 < 1 and has negative consequences for the late consumers. In fact, if too much of
the illiquid asset is liquidated, the consumption of late consumers may be reduced to a
level below C]. In this case, the late consumers might gain more by imitating the early
consumers and withdrawing their investment from the bank at date 1. This will induce a
run on the bank and, subsequently, it will trigger the failure of the bank.

We can determine the maximum amount of the illiquid asset that can be liquidated
without causing a run. This can be expressed as a function that depends on the fraction

of late consumers.

blg)=r [y - (1_}3)01] (3.4)
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The maximum amount of illiquid asset that can be liquidated without causing a run
on the bank can be interpreted as a limit loss. Thus, any bank that incurs a LG'D higher
than b(q) will inevitably fail. A value of LGD below the threshold b(q) will not trigger
the failure of a bank. It will, however, be costly for the late consumers, given that their

consumption is now reduced to Co < Co.10

4 The Game

4.1 Concepts and Notations

Let N = {1,2,...,2n} denote the set of banks. A network g on the set N is a collection
of g;; pairs, with the interpretation that ¢ and j are linked. Thus, if ¢ and j are linked in
the network g, then g;; € g.

The set of neighbors of bank i in the network g is N;(g) = {j € N | gij € g}. Let
n;(9) = |Ni(g)|, where |-| represents the cardinality of a finite set. The number of neighbors
bank i has in the network g is called the degree of bank i. In addition, let N/""(g) =
{j € N|gij € g and 4, j are of the same type} and 7i""*"(g) = ‘Nf”"er(g)|. The number
of neighbor banks of the same type is defined as the inner degree of bank 7. An equivalent
notation exists for banks of a different type N°%%(g) = N;(g) ~ N/"*"(g) and the number
of neighbor banks of a different type is: 1{"**(g) = ‘Ni(g) ~ Nf”””(g)‘.

We use the notation g + g;; to denote the new graph obtained from g by linking ¢ and
J, if gij ¢ g. Similarly, we consider that g — g;; represents the graph obtained from g by
deleting an existent link between 4 and j, when g;; € g

A network g is connected if there exists a path between any two nodes ¢ and j from N.
A path of length k between i and j is a sequence of distinct agents (4, j1, ..., jx—1,7) such
that giji, Gjrjase-s 9jr_1j € g- A network g is complete if for any node i € N, n;(9) =n—1.

A network g is regular of degree k if for any node i € N, n,(g) = k.

4.2 Strategies, Objectives and Welfare

The interaction between banks on the interbank market can be modeled as a network
formation game, where banks are the nodes and the deposits they exchange are the links.

The network is formed as a result of banks’ actions, who decide how to form links. Since

10The consumption of late consumers at least equals the consumption of the early consumers: Cy > Ch.
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the deposits are exchanged on bilateral basis (i.e. bank 7 agrees to pass its deposits to bank
j if and only if bank j will pass its deposits to bank 4 in turn), the network is undirected
and the formation of a link requires the consent of both parties involved. However, the
severance of a link can be done unilaterally.

The strategy of bank i can be described as a linking vector s; = (81, $i2, ---, Sion) such
that s;; € {0,1} for each j € N ~{i} and s;; = 0, where s;; = 1 means that ¢ intends to
form a link with bank j. A link between i and j is formed if and only if s;; = sj; = 1.1
Recall that shocks in the liquidity demand differentiate banks into two types. It becomes
apparent banks follow different strategies when linking with banks of a different type than
when linking with banks of the same type. In this paper we model explicitly the network
formation between banks of the same type for a given pattern of interactions between
banks of a different type. In particular we assume that banks of a different type form
a complete bipartite graph. Thus, for any bank i € {1,2,...,n} the linking vector can
be written as s; = (81, $i2 -+, Sins 1, 1, ..., 1), while for any bank j € {n + 1,...,2n} the
linking vector is represented by s; = (1,1, ..., 1, Sjn+1, ..., Sjon). Given this, we model the
interactions between banks of the same type and, furthermore, we study if the bipartite
complete graph can always be supported in the equilibrium.

The factor that mainly drives banks when forming links is to insure against the regional
liquidity shocks that affect the system when the states S; and Ss realize. Banks can hedge
their potential liquidity excess or shortage by linking (i.e. exchanging deposits) with banks
of a different type. Thus, any linking pattern between banks of a different type is sufficient
for insurance purposes, as long as it allows banks to exchange deposits which satisfy the
feasibility constrain (3.2). However, links between banks expose them to contagion risk.
The risk of contagion, measured in terms of LG D, can be reduced on the one hand by
decreasing the size of deposits exchanged or, on the other hand, by increasing the degree
of each bank. If we look only at symmetric solutions, the amount of deposits exchanged
is minimal when each bank is linked to all the other banks of a different type. This is the
rational behind the assumption that banks of a different type form a complete bipartite
graph. In this paper we model how banks endogenously reduce contagion risk by increasing

the degree of each node in the network.

"' This condition capture that the formation of a link between two banks requires the consent of both

participants.
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Proposition 1 Let € be the set of all possible states of the worlds and denote with w an
element of @~ {51, ..., 52, }. Let N (w) denote the set of banks of type H and N*(w) the
set of banks of type L in the state of the world w. Then the minimization problem for LG D
associated to each link has a symmetric solution when any i € N* (w) and i’ € N¥(w) are

connected and a;; = =

Proof. The proof is provided in the Appendix. =
The following remark extends the result from Proposition 1 to links between any two

banks.

Remark 1 For simplicity, we consider that the amount of deposits exchanged between

banks i and j of the same type is also a;; = =.

Banks’ objective: In a network where banks can fully insure against liquidity shocks,
they need only to prevent losses through contagion. Thus, banks’ objective function is
reduced to minimize the probability of failure through contagion. Secondarily, once the
risk of failure through contagion is eliminated, banks minimize the expected loss in states
S1y ey Sop.

Social planner’s objective: The main concern of a social planner is the systemic risk.
In our framework, the systemic risk is given by the number of banks that fail, following a
shock in a single institution. Thus, a social planner objective function is to minimize the

number of banks that fail through contagion.

4.3 Payoffs’ Properties

The notion of limit loss introduced in Section 3.3 comes in handy for describing the payoffs
banks have from linking to other banks. We briefly give the intuition of how the payoffs
are constructed. When a failed bank induces a value of LG D higher than the limit loss,
then all the the neighboring banks will inevitably fail in turn. By assumption, each bank
has at least n neighbors. Thus, the failure of a bank will cause the failure of at least n
banks more. Not surprisingly, this chain of failure will reverberate towards the remaining
banks, triggering, at the end, the failure of the entire system. If, however, the LG D caused
by a failed bank is below the threshold, only the neighboring banks will experience the
consequences, since the consumption of their late consumers will be reduced to Cy < Cs.

Any other bank will be able to pay C7 to the early consumers and C5 to the late consumers.
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In expressing the payoffs, we use the second property of LGD. Namely, the LGD a
failed bank induces to its neighbors depends on how well connected the respective bank
is. Proposition 1 and Remark 1 show that the size of deposits exchanged between any two
banks is z/n. Hence, we can infer that the LG'D induced by a failed bank depends on how
many neighbors the respective bank has.

The limit loss b(q) is identical for each bank and is independent of the number of links
a banks has. Thus we can find a number ¢ € N, in order to bracket the limit loss b(q) as

follows:
zCi—xz—ry z Ci—xz—ry

ol N AP § o
nlt+(m+i)z (Q)<n1+(n+t—1)%

The left hand side of the inequality is exactly the LGD a bank that has (n + t) neighbors

(4.1)

induces and the right hand side is the LGD a bank with (n + ¢ — 1) neighbors generates.
Inequality 4.1 relates the contagious effects of a bank failure to the number of links
banks have. Thus, the failure of a bank that has (n + ¢ — 1) links or less will trigger the
failure of the entire system, through the mechanism described above. The failure of a bank
with at least (n + t) links, however, has only consequences for its neighbors by decreasing
the utility of the late consumers.
We discuss in detail the implications of a bank failure for the case t € (0,n) N N.

Consider the failure of a bank j in a network g. We distinguish the following cases:

inner

1. mi"me(g) < t. In this case, for any i € N;(g) we have LGD;; > b(q). Consequently,
any bank k € N will also fail.!?

2. né-””er(g) > t. In this case, for any i € N;(g) we have LGD;; < b(q). Thus, any
bank i € N;(g) will pay the early consumers C;. The late consumers, however,
will have their consumption reduced to Cy < Cy. Any other non-neighboring bank
k € N~ Nj(g) will not be affected in any way and will be able to pay its consumers
C1 at date 1 and C5 at date 2.

4.4 Payoffs

The arguments presented above are useful in defining the payoff a bank i gains from

network g. When the limit loss b(q) satisfies inequality 4.1, then the higher the number

12With this discussion, we are able to conclude that the existence of a single bank with insufficient link

may trigger the failure of the entire system.
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of banks with an inner degree larger than ¢, the higher the benefits to each bank. Linking
is nevertheless costly, thus the fewer neighbors with an inner degree larger than ¢ a bank
has, the lower the costs for the respective bank.

Formally, we can express the payoff of a bank ¢ € N as a function u, increasing in
the number of nodes with an inner degree higher than ¢ and decreasing in the number of

neighbors with an inner degree higher than t.

ui(g) = f(IT],[Ni(9) N T1) (4.2)

where T'= {j € N nz-””er(g) >t} and || represents the cardinal of a set.
In addition, if the limit loss b(q) satisfies the inequality 4.1, then for any node ¢ and

any inner degree 1" the payoff u; has the following properties:
i

L ui(g + gij) = ui(g) and ui(g — gij) = wi(g), Vi € N s.t. i (g) <t — 1
The explanation for this indifference relies on the fact that the failure of a node with
an inner degree below ¢ will trigger the failure of the entire system. The failure of
7 leads to the failure of ¢, regardless of ¢ creating a link or severing an existent link

with j.

2. ui(g + gij) > ui(g), Vj € N s.t. i (g) =t — 1

If né-”"” (9) =t —1 and i creates a link with j, then the inner degree of j becomes
né”"eT(g) = t. Thus, ¢ trades a situation when the failure of j induces its own failure,
for a situation when the failure of j results in merely a lower utility for i’s late

consuimers.

3. ui(g + 9ij) <ui(g), Vj € N s.t. n?-””er(g) >t
When j has already an inner degree sufficiently high, its failure will have only effects
for the neighbor banks. Linking with j does not bring ¢ any benefits, but it comes
at the cost represented by the loss ¢ might incur if j fails.

4. ui(g — gij) > ui(g), Vj € N s.t. ng-””er(g) >t+1

Severing an existent link with j, will leave j with an inner degree still sufficiently

high. It will, however, spare i from experiencing a loss in case j fails.
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5 Network Formation

The main goal of this paper is to understand what networks are more likely to arise in a
banking system where financial players’ incentives to form links are shaped by the effects
of two types of shocks. On the one hand, the need for insurance against regional liquidity
shocks determines the formation of links between banks that have negatively correlated
shocks. For this case, however, we assume that the pattern of interactions that permits
the proper transfer of funds takes the form of a bipartite complete graph. On the other
hand, the same links that allow banks to hedge the liquidity shocks expose them to the
risk of contagion. Nevertheless, we have showed that the risk of contagion may be reduced
by increasing the number of links each bank has. We will focus thus on developing a model
of endogenous link formation between banks driven by the risk of failure by contagion.
In order to identify what networks are stable, we introduce the following concept of

equilibrium due to Jackson and Wolinsky (1996).

Criterion 1 Let g;; = min(s;j, s;;) and consider that g;; € g when g;; = 1. A network g

18 pairwise stable if

1. for all gij € g, ui(g) > ui(9 — gij) and w;(g) > u;(g — gij) and
2. for all gi; & g, if ui(g9) < ui(g + gij) then u;(g) > uj(g + gij)-

where wu;(g) is the payoff of bank i in the network g.'3

The first condition of the stability criterion establishes that in equilibrium there is
no bank that wishes to severe a link it is involved in. At the same time, the second
condition requires that in a stable network there should not exist two unconnected banks
that would both benefit by forming a link between themselves. In other words, a network
is an equilibrium if there are no banks that wish to deviate neither unilaterally (by severing
existent links), nor bilaterally (by adding a link between two banks).

All the following results hold under two assumptions:

1. the limit loss b(q) satisfies the inequality 4.1;

Cross

2. for any bank i € N, in the network g the crossing degree is 7"°**(g) = n.

13We use the standard notations: g —ij denotes the graph obtained by deleting link ¢j from the existing
graph g, while g + ij is the graph obtained by adding the link 75 to the graph g.
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The first result gives a necessary condition for a stable network to exist.

Proposition 2 Let g be a pairwise stable network. Then any bank ¢ € N must have an

inner degree ni"°"(g) < t.

%

Proof. The proof follows immediately from properties 3 and 4 described in the previous
section, properties that characterize the payoffs a bank ¢ gains from the network g. Suppose
that there exists a bank i such that 7" (g) > t. Than, any neighbor j € N;(g) has an
incentive to severe the link that connects it with 4. This way, ¢ is no longer an equilibrium.
]

This result provides only a partial characterization of stable networks. In fact, under

payoffs that respect properties 1 — 4, there exists a broad range of networks that are

pairwise stables. It is easy to check that any network for which each node ¢ has an inner

inner
)

degree n (9) < t—2 constitutes an equilibrium. This multiplicity of equilibria is mainly
driven by the indifference in forming or severing links expressed in property 1. In what it
follows we alter property 1 in order to restrict the set of equilibria. Namely, we consider
that banks have a slight preference to forming links with other banks. The remaining
properties are unchanged.

Formally, when the limit loss b(q) satisfies the inequality 4.1, then for any node i and

any inner degree 772”, the payoff u; has the following properties:
1. ui(g + gi5) = ui(g) + € and u;(g — gi5) = ui(g) — €, Vj € N s.t. né-""er <t-—1;
L. ui(g + gi5) > ui(g), Vj € N s.t. 773-"”” =t—1;
2. ui(g + 9ij) <ui(g), Vj € N s.t. 772-"”” >t
3. ui(g — gi) > ui(g), Vj € N s.t. 77;'-””” >t+ 1.

The new set of payoffs’ properties allows us to characterize comprehensively the set of

equilibria and give prediction for the stability of the banking system.

Proposition 3 Let g be a pairwise stable network and T = {i € N |ni"""(g) = t}. Then

i

7| > 2(n — t).

Proof. The proof is provided in the Appendix. =
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Proposition 3 has strong implications for the stability of the banking system, especially
when ¢ is small. If ¢ is small, proposition 3 shows that in equilibrium most of the banks have
sufficient links to prevent a shock in one of the institutions spreading through contagion.
For t large, however, the predictions are weaker. We need thus a refinement for large

values of t. The following proposition provides such a refinement.

Proposition 4 Let g be a pairwise stable network and T = {i € N |ni"""(g) =t}. If
t >n/2, then |T| > n.

Proof. The proof is provided in the Appendix. =
Proposition 4 establishes that in an equilibrium network, at least half the banks will
have a sufficiently large number of links to insure losses that are small enough. The

following two results relate these findings to implications for the stability of the system.

Corollary 1 Let g be a pairwise stable network and T = {i € N }n%"”er(g) =t}. If
t < mn/2, then the probability that the failure of a bank will spread through contagion is at

most tmw/n.
Proof. The proof follows simply from Proposition 3. m

Corollary 2 Let g be a pairwise stable network and T = {i € N ‘nﬁ"”er(g) =t}. If

t > n/2, then the probability that the failure of a bank will spread through contagion is at

most w/2.

Proof. The proof follows simply from Proposition 4. m

The first result implicitly insures that for high levels of the limit loss the probability
of contagion is significantly low. The intuition for this result relies on the fact that the
higher the limit loss is, the lower the number of links banks need in order prevent contagion.
Proposition 3 indicates that a lower connectivity of the banking system is easier to obtain.
A low level of the limit loss, however, requires a high connectivity in the banking system.

Hence, the increased probability of contagion.
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6 Efficiency

When the limit loss b(q) satisfies the inequality 4.1, the failure of a bank with at least
(n 4 t) links, although it has consequences for its neighbors by decreasing the utility of
the late consumers, will not propagate by contagion. Thus, there is a complete range of
efficient networks a social planner can design in order to prevent contagion in the banking

system. The set of efficient networks is characterized in the following proposition.

Proposition 5 Let g be a network such that n57°%%(g) = n and ni""(g) >t , Vi € N.

7 )

Then g is efficient.

Proof. Since ni™" > ¢,V i € N then it follows immediately that n, > n+t¢, Vi € N.
Thus, for any pair ¢j it must be that LGD;; < %&@%ﬁ% As the limit loss b(q) satisfies
inequality 4.1, then LGD;; < b(q) for any pair of banks ij. Hence, in the network g the
failure of a bank will not trigger the failure of other banks in the system. m

The conflict between efficient outcomes and individual incentives is a classical theme in

economics. In this model, however, the incentives are partially aligned. Indeed, the set of

equilibrium networks, described by proposition 3 and 4, includes the efficient equilibrium.

mnner
)

It is easy to check that a network g such that n (g) =t, Vi € N is pairwise stable
and, by proposition 5, is also efficient.

The set of equilibrium networks, nevertheless, incorporates many non-efficient equilib-
ria, especially for large values of t. We show that we can restrict the set of equilibria to
the efficient one if we extend the pairwise stability concept previously used, to allow for
deviations in which a pair of players each can delete one or more links and/or add a link in

a coordinated manner. For this purpose, we introduce the notion of bilateral equilibrium.

Criterion 2 Let g;; = min(s;j;, si) and consider that g;; € g when g;; = 1. A network g*

is a bilateral equilibrium if:

1. There is a Nash equilibrium strategy profile s* which yields g*.

2. For any pair of players i,j € N, and every strategy pair (s;,s;),

*

ui(g(sis 85,875 5)) > wilg(si, 85,875 5)) = ujlg(si 85,87 5)) < uilg(si, sj, 875 5))

4 The existance of such an equilibrium efficient network is conditional on the existance of a t-regular

network. Lovasz (1979) discusses in detail conditiond for the existance of a t-regular network with n nodes.
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A network g can be, thus, supported in a ‘bilateral equilibrium’ if no player or pair
of players can deviate and benefit from the deviation (at least one of them strictly).
This equilibrium concept allows a pair of players to deviate by creating a link between
themselves, if the link did not exist before, and, at the same time, by severing other links
they are involved in. The terminology of ‘bilateral equilibrium’ was introduced in Goyal
and Vega-Redondo (2004). Note that any bilateral equilibrium network is also pairwise
stable.

Proposition 6 Let g be a bilateral equilibrium network. Then the probability that the

failure of a bank will spread through contagion is at most w/2n.

Proof. The proof is provided in the Appendix. m

The bilateral equilibrium concept rules out all the inefficient equilibria, except for

CTross

i = n, where a single node 7 that has an

one. For instance, a network such that n
insufficient number of link, """ < ¢ and 1737&’}\?7; (i = tean be sustained in equilibrium.
In this network, although the probability of contagion is very low, 7/2n, the failure of
bank 4 triggers the failure of the entire system. Thus, with probability m/2n there will be
(2n — 1) banks that will fail due to contagious effects.

In this paper we have discussed a particular set of equilibrium networks. Namely, we

Cross
1

have assumed that 7 =n, Vi€ N and we have modeled the link formation process
that takes place between banks of the same type. In other words, we have studied the set
of equilibrium networks for which each bank is linked to all the banks of the other type.
It is important to note, however, that the set of pairwise stable networks is, by no means,
restricted the set of networks for which 7{"*** = n, V¢ € N. Due to the limitations of
the pairwise stability concept, networks where there exist nodes such that the crossing
degree is smaller than n can be sustained in equilibrium. The full characterization of the
set of pairwise stable networks is possible, however not of much interest since there is no
efficient equilibrium that can emerge when there exist nodes such that the crossing degree
is smaller than n, for the given set of parameters.

The bilateral equilibrium concept solves this problem and proposition 6 holds without

any prior assumption about the crossing degree of banks.
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7 Conclusions

The problem of contagion within the banking system is a fairly debated issue. The main
contribution this paper brings to the existent literature is endogenizing the degree of
interdependence that exists between banks. In particular, we develop a model of network
formation for the banking system. We investigate how banks form links with each other,
when the banking system is exposed to contagion risk. The question we address is wether
banks form networks that are resilient to the propagation of small idiosyncratic shocks.
The message this paper transmits is rather optimistic. Banks respond to contagion
risk by forming links. The stable network architectures that emerge are very likely to
support systemic stability. For instance, when the probability of a shock is =, then the
probability that it will spread by contagion is at most 7/2n. For large values of the limit

loss, the probability of contagion is virtually 0.
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A Appendix

In what it follows we will prove some results advanced in the main text.

Proposition 1 Let Q be the set of all possible states of the worlds and denote with w
an element of Q2 —{S}. Let N (w) denote the set of banks of type H and N'(w) the set
of banks of type L in the state of the world w. Then the solution for minimizing LGD
associated to each link is for any i € N (w) and i € N (w) to be connected and, hence,
Qi =

Proof. The optimization problem is:
VieN,i € N7, min LGD;y, (A.1)
)

s.t. Z Q50 — 2 (AQ)

i/GNZ{:TO.SS

First we show that LG D;;r is decreasing in a;y. For this it is useful to express LGD as

Ci—xz—ry
LGD;; = ajy A3
T Tt i + Y kenio) Gik (A-3)

k#i!

The derivative of LG D;;» with respect to a;y is given by
o 1 oy @
= 5— >0 (A4)
Oa;jyr (T4 azr + > ke (o) Gik)
ki

A positive sign for the derivative implies that LG D is increasing in a;;.

The only restriction in minimizing LG D;; is the feasibility constraint (3.2). According
to it, any bank ¢ needs to insure that the amount of deposits exchanged with banks of a
different type sums up to z.

We impose that the solution is symmetric. That is a;y = % Since there are n banks
of a different type and LG Dy is increasing in the amount of deposits a;;, the solution to
the minimization problem dictates that each bank creates links to all the other banks of

a different type. Subsequently, the amount exchanged on each link is a;; = =. =

Proposition 3 Let g be a pairwise stable network and T = {i € N |ni""(g) =t}.
Then |T| > 2(n —t).
Proof. Let 2 be the set of all possible states of the worlds and denote with w an element
of @ — {S}. Let N¥(w) (N¥(w)) be the set of banks of type H (L) when the state w
realizes. And let T (w) (T*(w)) be the set of banks of type H (L) that have an inner
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degree ni""“"(g) = ¢ when the state w realizes. Clearly we have |T| = |TH (w)| + |T*(w)|.
In order to prove that |T| > 2(n —t), we show that |TH(w)| >n—tand ‘TL(w)| >n—t.
Since the cases are symmetric, we prove only that ‘TH (w)‘ > n —t. For this we assume
the contrary in order to arrive to a contradiction.

Suppose that |TH(0J)} < n —t. This implies that the set T (w) has at most n —t — 1
elements. Further, this implies that |[N# (w) — T#(w)| > n — (n — ¢ — 1). In other words,
inner

the set of banks with an inner degree 7}

(9) < t has at least t+ 1 elements. By property
1’ and 2 above we know that in a stable network all the banks such that ni""e" < ¢ — 1
must be directly linked with each other. Since the set of banks with this property is at
least ¢ + 1, it must be that each bank in N (w) — TH(w) has an inner degree ni""*" > t.

We arrived thus to a contradiction. m

Proposition 4 Let g be a pairwise stable network and T = {i € N ‘7]2"“”(9) =t}. If
t >n/2, then |T| > n.
Proof. The proof follows similar steps as the proof for the previous result. Adopting the
same notations, we prove only that |77 (w)| > n/2.

Let [T (w)

= 7. If 7 > t, the proof is complete.

Consider the case when 7 < t. By property 1’ and 2 above we know that in a stable
network all the banks in the set N (w) — T (w) must be directly linked with each other.
This implies that the total number of links'® between banks of the same type with an
inner degree 7{""" < ¢ must be (n — 7)(n — 7 — 1). In addition, since 7 < ¢, it must be
that each bank in 77 (w) has some links with banks in N (w) — T (w). Assuming that
all banks in T# (w) are directly linked with each other, there must be at least 7(t — 7 + 1)
links with banks in N7 (w) — TH (w).

Since all the banks in N (w)—T"# (w) have an inner degree ni""*" < t, the total amount
of links these banks have should not exceed (n — 7)¢t. Thus, the following inequality must

hold:

m=7m)n—7=-1)4+7(t—-7+1) < (n—")t

This inequality can be rewritten as

5Links here are counted twice for each node. However, we maintain the same double counting for the

rest of the proof, such that in the end it cancels out.
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t—7+1)27—n)< (n—7)27 —n)

Since t — 7 + 1 < n — 7, it must be that 2r —n > 0 < 7 > n/2. This concludes the
proof. m

Proposition 5Let g be a bilateral equilibrium network. Then the probability that the
failure of a bank will spread through contagion is at most w/2n.
Proof. We show that in a bilateral equilibrium networks there exists at most one node @
such that ni"mer < ¢.

Suppose that in an equilibrium network there exist at least two nodes ¢ and j such that

inner < ¢, né-””er < t. In a network that there are at least two nodes with an insufficient

number of links, there are two sources of contagious failure. Thus the probability a bank
associates to failing by contagion is at least 27 /2n.

Let g be such a network. Then there exist a pair ij of nodes of a different type (i.e.
i € N7(w) and j € N¥(w)) such that it pays off to severe the links they are involved
in and form the link g;;, if §;; ¢ §. Formally, let 5; and §; be the strategy profile bank

i and bank j follow, respectively, in network g.And let s} = (0,0,...,0,1,0,0,...,0) and
I..j-1 JFL.n

sj = (0,0,...,0,1,0,0,...,0). Then
-1 it1,..m

ui(G(s7, 85, 5-i—3)) > ui(9(8i, 85, 5-i—;)) and u;(§(s7, 57, 5-i—;)) > u;(3(5i, 5, 5-i—;))
(A.5)
In the new network, the only link ¢ and j have is g;; and thus they are exposed to
contagion stemming from one source. If g;; is the only link banks ¢ and j have, thus
this link will bear the entire amount of deposits necessary to provide insurance against
liquidity shocks: z. Thus, if one of the banks fails, the other one fails by necessity, since
the loss it incurs is much above the limit loss threshold. However, the probability that
one of the two banks will fail is 7/2n and smaller than in the network §. Hence, § cannot
be an equilibrium.
Since, in a bilateral equilibrium there exists at most one node ¢ such that 77,%"”” <t

it follows that the probability that the failure of a bank will spread through contagion is

at most 7/2n. m
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