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Abstract

This paper considers a general class of discounted Markov stochastic games charac-

terized by multidimensional state and action spaces with an order structure, and one-

period rewards and state transitions satisfying some complementarity and monotonicity

conditions. Existence of pure-strategy Markov (Markov-stationary) equilibria for the

�nite (in�nite) horizon game, with nondecreasing �and possibly discontinuous �strate-

gies and value functions, is proved. The analysis is based on lattice programming, and

not on concavity assumptions. Selected economic applications that �t the underlying

framework are described: dynamic search with learning, long-run competition with

learning-by-doing, and resource extraction.

JEL codes: C73, C61, D90.

Key words and phrases: Stochastic game, supermodularity, Markov strategy dynamic

programming.

1 I would like to thank Jean-Francois Mertens, Abraham Neyman, Matt Sobel, Zari Rachev and Sylvain
Sorin for helpful exchanges concerning the subject of this paper.
2 Department of Economics, University of Arizona, Tucson, AZ 85721 (E-mail: ramir@eller.arizona.edu)

1



1. Introduction

Stochastic games provide a natural framework for modelling competition over time in sit-

uations where agents� actions in�uence the economic environment in a way that can be

captured by a state variable. Viewed as game-theoretic analogs of dynamic optmization

problems, stochastic games �t as a tool of analysis in a variety of areas in economics, in-

cluding in particular resource extraction and industrial organization. Introduced in a classic

paper by Shapley (1953), stochastic games have been an active �eld of research in pure

game theory3 , in systems theory4 and in economics5 . Interestingly, while a fair amount of

interaction on dynamic games has taken place between the latter two �elds, the pure theory

developed quite independently and, as a general rule, did not provide directly usable results

in applications.

In the pure theory, there is an extensive literature dealing with the existence of subgame-

perfect equilibrium in stochastic games, culminating with the work of Mertens and Parthasarathy

(1987) who establish the aforementioned existence in strategies that are (partly) history-

dependent when the transition law is continuous in the variation norm in the actions, a very

strong assumption that rules out many economic applications of interest. Shifting focus away

from Nash equilibrium, Nowak and Raghavan (1992) and Harris, Reny and Robson (1995)

show existence of a type of correlated equilibrium using the strong continuity assumption

described above (see also Du¢ e et.al., 1988). Recently, Nowak (2002) established the ex-

istence of Markov-stationary equilibrium for a class of games characterized by a transition

law formed as the linear combination of �nitely many measures on the state space.

3 See Neyman and Sorin (2003) for a thorough series of papers covering the state of the art on the theory
of stochastic games.

It is also worthwhile to point out that many of the basic results behind the theory of dynamic pro-
gramming (such as the contraction property in value function space) were already unequivocally laid out in
Shapley�s (1953) seminal paper over a decade before being rediscovered again (Blackwell, 1965 and Denardo,
1967).
4 A standard reference for this part of the literature referring to dynamic games is Basar and Olsder (1999).
5 See Amir (2000) for a fairly thorough survey of the applications of stochastic games to economics and
management science.
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As for economic applications, they can be essentially classi�ed in three di¤erent cate-

gories, as laid out in some detail in Amir (2003). The �rst consists of numerous studies

relying on the well-known linear-quadratic6 model (with deterministic or stochastic tran-

sitions) in various settings. The reason for selecting this choice is clearly tractability: In

any �nite-horizon, there is a unique Markov equilibrium with closed-form strategies that are

linear in the state variable.7

The second restricts the players�s strategy space to open-loop strategies. While the

resulting game is then substantially easier to analyse in most cases, this restriction on

the players�behavior has become less accepted in economics in recent years, in terms of

approximating real-life behavior in most settings. Open-loop strategies simply entail an

excessive level of commitment on the part of the players.

The third category considers Markov behavior and general speci�cation of the primitives

of the model. As in the other two categories, behavior is still limited to pure strategies, as

is often the case in economic modelling. These papers have generally exploited the special

structure dictated by the economic environment to prove existence of a Markov equilibrium

and provide a characterization of its properties.

The present paper contributes both to the general theory and to the third category

above. We consider a Markov-stationary discounted stochastic game with multidimen-

sional state and action spaces, and impose minimal monotonicity and complementarity (i.e.

supermodularity-type) assumptions on the reward and state transition functions that guar-

antee the existence of a Markov-stationary equilibrium. The associated strategies and value

functions are all monotone nondecreasing in the state variable, as a consequence of the

assumed monotonicity and complementarity structure. The resulting structured class of dy-

6 That is, the state transition law is linearly additive in the state, actions and noise variable (if any), and
the one-period reward is quadratic in the state and actions. The general properties of (multidimensional
versions) of this model are analysed in detail in Basar and Olsder (1999).
7 In the framework of resource extraction, Levhari and Mirman�s (1980) well-known model has a solution
sharing these same tractability features.
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namic games may then be appropriately termed discounted supermodular stochastic games.

To relate this paper to the general theory, observe that the main result here is the most

general existence result of Nash equilibrium in Markov-stationary strategies in the literature

on discounted stochastic games with uncountable state and action spaces. Exploiting the rich

structure of our setting, the existence result at hand requires continuity of the (distribution

function) of the transition law only in the topology of uniform convergence in the actions in

the in�nite-horizon case, and of weak continuity of the same in the �nite-horizon case.

This paper also closely relates to economic applications in that the structure at hand

is general enough to encompass many of the stochastic game models in economics. To

illustrate this point, a few speci�c applications of the set-up are presented at the end of the

paper, some in full detail and others listed as possible extensions. While the reader may

at �rst think that the result at hand relies on too many assumptions, these applications

illustrate convincingly that the underlying assumptions are quite natural in a variety of

settings, where clear economic interpretations can be appropriately provided. In this sense,

this paper may be viewed as a �rst step towards a theory of structured stochastic games

oriented towards economic applications. Finally, we stress that the equilibria at hand are

always in pure strategies, which satis�es an important restriction imposed by economists�

persistent reluctance to deal with mixed strategies.

Of all our assumptions, the most restrictive are the complementarity assumptions on

the transition law, which, as we argue later, exclude deterministic transitions from being a

special case of our set-up. Thus, it seems that circumventing the use of mixed strategies

at this level of generality has a price. Indeed, one may think of these complementarity

assumptions on the transitions as re�ecting an assumption of su¢ cient exogenous noise in

the system to replace the endogenous noise usually engendered by mixed strategies. To

add some perspective, it is certainly worthwhile to point out that virtually all the studies

of strategic dynamics conducted at a high level of generality required some assumption(s)
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of the same type as ours here on the transition law that rule out deterministic transitions.

In particular, Amir (1996a-b) and Ericson and Pakes (1995) assume a strong notion of

convexity on the transitions that is quite closely related to our assumptions here, as brought

out precisely in our end applications here.

From a methodological perspective, it is hoped this paper will convey a sense that the

lattice-theoretic approach is well-suited for analysing dynamic games in economics, as it

provides a natural framework for turning a lot of natural economic structure into appealing

monotonic relationships that survive the dynamic programming recursion while satisfying

the pure-strategy restriction.

2. Existence of Pure-Strategy Markov Equilibrium

This section provides the formal description of our stochastic game, the assumptions needed

for the underlying analysis, the main results and a discussion of the scope of the assumptions

and of the results.

2.1 Problem Statement

Consider an n-player discounted stochastic game described by the tuple
n
S;Ai; eAi; �i; ri; po

with the following standard meaning. The state space S and actions spaces Ai are all

Euclidean intervals, with S � Rk and Ai � Rki : Denote the joint action set by A = A1 �

::: � An and a typical element a = (a1; :::; an) = (ai; a�i), for any i. eAi is the feasibility
correspondence, mapping S to the subsets of Ai; so that eAi(s) is player i�s set of feasible
actions when the state is s. The one-period reward function for player i is ri : S � A! R,

and his discount factor is �i 2 [0; 1): Finally, p denotes the transition probability from S�A

to (the set of probability measures on) S:

Throughout this paper, it is convenient to place assumptions on, and work with, the
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cumulative distribution function F associated with the transition probability p; de�ned by

F (s
0
=s; a) , Pr ob(st+1 � s

0
=st = s; at = a) for any s; s

0 2 S and a 2 A: (1)

The standard de�nitions of pure Markov and Markov-stationary strategies, and expected

discounted payo¤s are now given. A general pure-strategy for Player i is a sequence �i =

(1; 2; :::; t; :::) where t speci�es a (pure) action vector to be taken at stage t as a (Borel-

measurable) function of the history of all states and actions up to stage t: If this history

up to stage t is limited to the value of the current state, st; then the strategy is said to be

Markov. If a Markov strategy (1; 2; :::; t; :::) is time-invariant, i.e. such that j = k , 

for all j 6= k, then the strategy is said to be Markov-stationary, and can then be designated

by :

Given an n-tuple of general strategies � = (�1;�2; :::;�N) for the N players, and an initial

state s 2 S, there exists a unique probability distribution m(�; s) that is induced on the

space of all histories, according to Ionescu-Tulcea�s Theorem (see e.g. Bertsekas and Shreve,

1978). Given a horizon of T periods (which may be �nite or in�nite, as will be speci�ed),

it can be shown via standard arguments that the expected discounted payo¤ of player i can

be written as

Ui(�; s) = (1� �)
TX
t=0

�tRti(�)(s); (2)

where Rti(�) is the stage-t expected reward for player i, or in other words, with m
t
i denoting

the stage-t marginal of m(�; s) on Ai;

Rti(�)(s) =

Z
ri(st; at)dm

t
i(�; s):

An n-tuple of strategies �� = (��1;�
�
2; :::;�

�
N) constitutes a Nash equilibrium if no player can

strictly bene�t from a unilateral deviation, or, for all i = 1; 2; :::; N;

Ui(�
�; s) � Ui(�i;���i; s) for any strategy �i. (3)
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A Nash equilibrium is Markov (Markov-stationary) if the associated equilibrium strategies

are Markov (Markov-stationary). In checking for Markov equilibrium, whether we restrict the

space of allowable deviations to Markov strategies only or allow general (history-dependent)

strategies is immaterial, in the sense that whatever payo¤ a unilateral deviation by one

player can achieve using a general strategy can also be achieved relying only on Markov

deviations. In other words, a Markov equilibrium obtained when considering only Markov

deviations remains an equilibrium when more general strategies are allowed. Since Markov

strategies are much easier to handle, this invariance property is very convenient.

When the horizon is in�nite (T = 1), we can de�ne a Markov-stationary equilibrium

in an analogous way, using Markov-stationary strategies as deviations. Such an equilibrium

remains an equilibrium if the players are allowed to use arbitrarily more general strategies

according to an analogous mechanism as for Markov strategies.8 An important consequence

of these facts is that the most general existence result for a Markov (in�nite-horizon Markov-

stationary) discounted stochastic game, i.e. one with reward and transition law that are

Markov (Markov and time -invariant), is in Markov (Markov-stationary) strategies.

2.2 The Assumptions and their Scope

The following Standard Assumptions on the state and action spaces (S), rewards (R), transi-

tions (T) and feasible action correspondence (A), for each i = 1; :::; n; are in e¤ect throughout

this paper, without further reference. Let Rk+ denote the positive orthant of k-dimensional

Euclidean space. Upper semi-continuity will always be abbreviated by u.s.c. for functions

and u.h.c. for correspondences. A brief summary of all the lattice-theoretic notions and

results invoked here is provided in the Appendix.

�On the basic spaces and the feasibility correspondence of the game:
8 This follows from general results in dynamic programming theory: Given all the other players use Markov
(Markov-stationary) strategies, the player under consideration faces a Markov (Markov-stationary) dynamic
program, for which it is known that an optimal strategy (achieving the global maximum of the overall payo¤)
exists within the space of Markov (Markov-stationary) strategies: See e.g. Bertsekas and Shreve (1978).
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(A1) The state space S is an interval in Rk+:

(A2) The actions spaces Ai are all compact Euclidean intervals, with Ai � Rki+ :

(A3) eAi(s) is a compact sublattice of Ai for each s 2 S.
(A4) eAi is ascending and upper hemi-continuous in s:
(A5) eAi is expanding, i.e. eAi(s2) � eAi(s1) whenever s1 � s2:
�On the reward function:

(R1) ri is jointly continuous in (ai; a�i) for �xed s and u.s.c in s for �xed (ai; a�i):

(R2) ri is increasing in (s; a�i), for each ai:

(R3) ri is supermodular in ai and has strictly nondecreasing di¤erences in (ai; a�i; s).

(R4) ri is uniformly bounded, i.e. 9K > 0 such that jri(s; a)j � K; for all (s; a) 2 S � A:

�On the transition law:

(T1) p is weak�-continuous in (s; ai; a�i) for each s0 2 S; i.e. for every Borel set E � S;

p(E=sk; ak)! p(E=s; a) whenever (sk; ak)! (s; a) and p(@E=s; a) = 0;

where @E is the boundary of E:9

(T2) F is increasing in (s; a) in the sense of �rst-order stochastic dominance.

(T3) F is supermodular in a and has increasing di¤erences in (a; s).

We next discuss the scope and limitations of this set of assumptions. For the sake of

brevity, we will skip assumptions that are either self-evident in content, or made for purely

technical reasons, in a standard sense. (A4) and (A5) essentially say that as the state

variable increases, new higher actions become feasible while no actions are lost on the low

end of the feasible set. For any given player, a higher value of the state variable and/or of

9 Equivalently, Assumption (T1) may be restated as: F (s0
0
=sk; ak) �! F (s0

0
=s; a) as (sk; ak) ! (s; a)

at every point s0 of continuity of the limit function F (s0=s; a), where F (�=s; a) is the c.d.f. associated with
p(�=s; a). An alternative characterization of Assumption (T1), most useful in proofs, is: For every continuous
bounded function v,Z

v(s0)dF (s0=(sk; ak)) �!
Z
v(s0)dF (s0=(s; a)) as (sk; ak) �! (s; a):
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the rivals�actions increases the reward today (R2), the probability of a higher state in the

next period (T2), the marginal returns to an increase in the player�s actions (R3), and the

marginal increase (with respect to an increase in own actions) in the probability of a higher

value of the state in the next period (T3). Similarly, a higher value of a subset of a player�s

actions increases the marginal reward (R3) and the marginal (probabilistic) increase in the

next state (T3), due to higher values of the remaining actions.

The assumption of continuity specifying the dependence of the state transition probabili-

ties on the state-action pair is always a central assumption in the theory of stochastic games.

Here, (T1), often referred to as weak convergence, is essentially the most general assumption

possible in such a context. In particular, it is compatible with having deterministic transi-

tions that are continuous functions of the state and action variables (see (4) below from the

expression for F then). In the present paper, (T1) is su¢ cient to analyze the �nite-horizon

game, but not the in�nite-horizon game, which will require a stronger notion of continuity

(discussed below).

Of all the above assumptions, the most restrictive is arguably the supermodularity as-

sumptions on the transitions, (T3). Indeed, it rules out (nondegenerate) deterministic tran-

sitions, as argued below. Before doing so, it is insightful to consider (T3) for the special case

of real state and action spaces. It is then easily shown (Topkis, 1968) that (T3) is equivalent

to10 ,11

F (s0=s; ai; a�i) being submodular in (s; a), for each s0 2 S.

A transition probability of the Dirac type cannot satisfy either component of Assumption

(T3). To see this, consider a deterministic transition law given by st+1 = f(st; ati; a
t
�i),

where f is a continuous function. The distribution function of the corresponding transition

10The requirement of supermodularity of the transitions with respect to ai is trivially satis�ed when ai is a
scalar.
11To avoid confusion, note that the supermodularity of F as de�ned in Appendix is equivalent to the
submodularity of the function F (s0=s; ai; a�i) in the indicated arguments. This is only valid in the scalar
case.
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probability can be written as

F (s0=s; ai; a�i) =

8><>: 0 if s0 < f(s; ai; a�i)

1 if s0 � f(s; ai; a�i)
(4)

Assume, for simplicity (and for the sake of the present argument only), that there are only

two players (i and �i) and that the state and the action spaces are all given by [0; 1]: Then

it is easy to verify that, as de�ned by (4), F (s0=s; ai; a�i) cannot be submodular (say) in

(ai; a�i) for �xed s; unless f is actually independent of one of the a�s. To see this, simply

graph F on the (ai; a�i)-unit square, and observe that unless the zero-one discontinuity of F

happens along a vertical or a horizontal line, F will not be submodular in (ai; a�i) 2 [0; 1]2

for �xed s:12 A similar argument holds for the other pairs of arguments.

Nonetheless, the exclusion of deterministic transitions notwithstanding, Assumptions

(T1)-(T3) are general enough to allow for a wide variety of possible transition probabilities,

including rich families that can be generated by mixing autonomous distribution functions,

ordered by stochastic dominance, according to mixing functions satisfying the complemen-

tarity and monotonicity conditions contained in (T2)-(T3). Speci�cally, let F1 and F2 be

distribution functions such that F1 � F2, where � stands for �rst-order stochastic domi-

nance, and let g : S�Ai�A�i �! [0; 1] be nondecreasing in s; supermodular in a and have

increasing di¤erences in (s; a): Then the transition probability given by

F (s0=s; ai; a�i) = g(s; ai; a�i)F1(s
0) + [1� g(s; ai; a�i)]F2(s0)

is easily seen to satisfy Assumption (T2)-(T3). Indeed, for any nondecreasing function

v : S ! R,Z
v(s0)dF (s0=s; ai; a�i) = g(s; ai; a�i)

Z
v(s0)dF1(s

0) + [1� g(s; ai; a�i)]
Z
v(s0)dF2(s

0)

so that, invoking Theorem ?, the veri�cation follows immediately from Theorem ? for the

smooth case, and upon standard inequality manipulations without smoothness assumptions.
12To perform the veri�cation, simply check the usual inequality on the four vertices of a rectangle in R2+,
i.e. with a0i � ai and a0�i � a�i : F (a0i; a0�i)� F (ai; a0�i) � F (a0i; a�i)� F (ai; a�i):
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2.3 The Main Results and their Scope

The main results of this paper are:

Theorem 1 Under the Standard Assumptions, for every �nite horizon, the discounted sto-
chastic game has a Markov equilibrium, with strategy components and corresponding value
functions that are upper semi-continuous and nondecreasing in the state vector.

The in�nite-horizon game requires a stronger notion of continuity in the actions (but

not in the state) than (T1) for the transition probability p, that is best expressed on the

associated distribution function F :

(T1)* F (�=s; a) is weak�-continuous in s for each a 2 A; and continuous in a in the topology

of uniform convergence for each s 2 S; i.e.

sup
s02C

��F (s0=s; ak)� F (s0=s; a)��! 0 as ak ! a for any s 2 S and compact subset C � S:

Theorem 2 Under the Standard Assumptions and (T1)*, the in�nite-horizon discounted
stochastic game has a Markov-stationary equilibrium, with strategies and corresponding value
functions that are upper semi-continuous and nondecreasing in the state vector.

3. Proofs

This section provides the proofs of our two main results, breaking up the underlying argu-

ments into a sequence of lemmas. Additional notation is introduced as the need for it arises.

It is actually more convenient to start with the steps leading to the proof of Theorem 2, and

then move on to those of Theorem 1. We begin with setting the various spaces of interest.

For any compact Euclidean set E; let BV (S;E) be the Banach space of right-continuous

functions of bounded variation from S to E endowed with the variation norm13 . Denote by

M(S;E) the subset of BV (S;E) consisting of nondecreasing (right-continuous) functions,

and by MK(S;R) the subset of functions in M(S;R) taking values in [�K;K], where R

stands for the reals and K is the upper bound on the one-period rewards (Assumption

(A.4).)

13This banach space is isomorphic to the space of signed bounded regular measures with the variation norm
(see e.g. Luenberger, 1968).
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The feasible strategy space for player i in the in�nite-horizon game is the following subset

of the set of all stationary strategies:

fMi(S;Ai) ,
n
 2M(S;Ai) such that (s) 2 eAi(s)o :

For a �nite T -period horizon , a Markovian strategy for player i consists of a sequence of

length T of elements of fMi(S;Ai): Let fM(S;A) , fM1(S;A) � ::: � fMn(S;A) = fMi(S;A) �fM�i(S;A):

By Assumption (R.4) and the discounted nature of the payo¤s, all feasible payo¤s in this

game are � K. Hence, the space of all possible value functions in this game is a subset of

MK(S;R):

It is well-known that BV (S;E) is the dual of the Banach space C(S;E) of bounded

continuous functions with the sup norm. Throughout the proof, we will endow the e¤ective

strategy and value function spaces, fM(S;A) and MK(S;R) respectively, with the weak�

topology of the corresponding BV space. The well-known characterizations of convergence

in this topology are given in Footnote 7.

Player i�s best-response problem for the in�nite-horizon stochastic game may be de�ned

as follows, given the rivals�stationary strategies �i (note that we write V(s) instead of

V�i(s) for notational simplicity):

V(s) , supE
(
(1� �i)

1X
t=0

�tir(s
t; ati; �i(s

t))

)
(5)

subject to

st+1 � p(�=st; ati; �i(st)) with s0 = s; (6)

where the expectation E f�g is over the unique probability measure on the space of all

histories that is induced by s; �i(�) and a stationary strategy by player i. Furthermore, the

supremum may be taken over the space of stationary strategies without any loss of value

since, as discussed earlier, given the other players� strategies �i(�); (5)-(6) is a Markov-

stationary dynamic programming problem.
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We begin with some preliminary lemmas of a technical nature (recall that the Standard

Assumptions are in e¤ect throughout the paper, without further mention.)

Lemma 3 Let v 2MK(S;R). Then
R
v(s0)dF (s0=s; ai; a�i) is jointly u.s.c. in (s; ai; a�i):

Proof. Recall that a function is u.s.c. if and only if it is the pointwise limit of a de-

creasing sequence of continuous functions (see e.g. Go¤man, 1953). From this fact, we

know here that since v is u.s.c., there exists a sequence of continuous functions vm # v.

For each m,
R
vm(s0)dF (s0=s; ai; a�i) is continuous in (s; ai; a�i) due to the continuity of

vm, Assumption (T.1) and the well-known characterization of weak� convergence via in-

tegrals. Furthermore, by the Monotone Convergence Theorem, since vm # v; we haveR
vm(s0)dF (s0=s; ai; a�i) #

R
v(s0)dF (s0=s; ai; a�i). Hence, being the limit of a decreasing

sequence of continuous functions,
R
v(s0)dF (s0=s; ai; a�i) is u.s.c. in (ai; a�i), using again the

fact stated at the start of this proof.

Lemma 4 Let i be a sublattice-valued correspondence from S to Ai that is u.h.c. from
above14 and such that every one of its selection is nondecreasing: Then i has a maximal
selection, i; which is u.s.c. and continuous from above. Furthermore, i is the only selection
of i satisfying these properties.

Proof. The existence of the maximal selection i follows from the fact that i(s) is

a sublattice of Ai for each s 2 S: i is nondecreasing in s by assumption. To show i

is u.s.c., observe that for any s0 2 S, lim sups#s0 i(s) � max i(s0) = i(s0); where the

inequality follows from i being u.h.c. from above. Since i is nondecreasing, it follows that

lim sups!s0 i(s) � lim sups#s0 i(s) � i(s0). Hence, i is u.s.c.

To show i is continuous from above, consider for any s0 2 S and any sequence sn # s0:

i(sn) � i(s0) since i is nondecreasing, so that lim inf i(sn) � i(s0): Furthermore, lim sup

i(sn) � i(s0) since i is u.s.c. Combining the two inequalities yields lim i(sn) = i(s0)

whenever sn # s0, or that i is continuous from above.

14This is de�ned as: sk # s and aki ! ai with aki 2 i(sk)) ai 2 i(s):
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We now show i is the unique selection that is continuous from above. Since every

selection of i is nondecreasing, all selections of i must coincide on a dense set of points

where i is single-valued and thus continuous as a function. It follows that any other selection

that is continuous from above must coincide with i, since the values of i on S are then

completely determined by its values on a dense subset, as i is continuous from above .

Lemma 5 Let �i 2 fMi�i(S;Ai). Then V; as de�ned by (7), is in MK(S;R) and is the
unique solution to the functional equation

V(s) = max
ai2 eAi(s)

�
(1� �i)r(s; ai; �i(s)) + �i

Z
V(s

0)dF (s0=s; ai; �i(s))

�
: (7)

Proof. For �i 2 fM�i(S;A), de�ne an operator T on MK(S;R) by

Tv(s) , sup
ai2 eAi(s)

�
(1� �i)r(s; ai; �i(s)) + �i

Z
v(s0)dF (s0=s; ai; �i(s))

�
: (8)

We show that T maps MK(S;R) into itself. To this end, we �rst show that Tv is nonde-

creasing in s. Let v 2 MK(S;R) and s1 � s2. Then, by Assumption (R.2) and (T.2) and

the fact that �i is nondecreasing, we have

(1� �i)r(s1; ai; �i(s1)) + �i
Z
v(s0)dF (s0=s1; ai; �i(s1)) (9)

� (1� �i)r(s2; ai; �i(s2)) + �i
Z
v(s0)dF (s0=s2; ai; �i(s2)):

Since Ai(s2) � Ai(s1) by Assumption (A.5), the conclusion that Tv(s1) � Tv(s2) follows

from taking sups on both sides of (9).

The next step is to show that Tv is u.s.c. To this end, we �rst show that the maximand

in (8) is jointly u.s.c. in (ai; s): In view of the fact that �i is nondecreasing and right-

continuous, an argument similar to the proof of Lemma 3 shows that
R
v(s0)dF (s0=s; ai; �i(s))

is u.s.c. in (s; ai): The term r(s; ai; �i(s)) is also u.s.c. in (s; ai), by Assumptions (R.1) and

(R.2) and the fact that �i is right-continuous and nondecreasing. Hence, being the sum

of two u.s.c. functions, the maximand in (8) is also u.s.c. in (s; ai), by the subadditivity of

the lim inf operator. Since Ai(s) is u.h.c., Tv is u.s.c. by the Maximum Theorem. Since Tv
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is nondecreasing in s, it is also right-continuous in s (such a step is shown in the proof of

Lemma 4.)

It is clear that Tv(�) � K: Hence we have established that T maps MK(S;R) into

itself. MK(S;R) is a norm-closed subset of the Banach space of bounded Borel measurable

functions with the sup norm. Hence, MK(S;R) is a complete metric space in the sup norm.

A standard argument in discounted dynamic programming shows that T is a contraction,

with a unique �xed-point, V(�); which then clearly satis�es 7.

Lemma 6 Let �i 2 fM�i(S;A�i). Then a maximal best-response i exists, and is the only
best-response in fMi(S;Ai).

Proof. We �rst show that the maximand in (7) is supermodular in ai and has nonde-

creasing di¤erences in (ai; s): The supermodularity in ai follows directly from Assumptions

(R.3) and (T.3) , Theorem 12 (in Appendix) and the fact that V(�) is nondecreasing. To

show strictly increasing di¤erences for the r term in (7), let a
0
i > ai and s

0 > s and consider,

r(s0; a0i; �i(s
0))� r(s0; ai; �i(s0)) > r(s; a0i; �i(s

0))� r(s; ai; �i(s0))

� r(s; a0i; �i(s))� r(s; ai; �i(s))

where the �rst inequality follows from the strictly increasing di¤erences of r(�; �; �i(s0)) in

(s; ai) from Assumption (R.3); and the second is from the nondecreasing di¤erences of r(s; �; �)

in (ai; a�i) and the fact that �i(�) is nondecreasing so that �i(s0) � �i(s). Increasing

di¤erences for the integral term in follows from analogous steps, upon invoking Theorem 12

(in Appendix). The details are omitted. Hence, the maximand in (7) has strictly increasing

di¤erences in (ai; s); since this property is preserved by summation.

Since the maximand in (7) is also u.s.c. in ai (from Lemma 5); and the feasible set eAi(s)
is compact-valued and ascending , it follows from Topkis�s Theorem 13 (in Appendix) that

the maximal best-response i of the best-response correspondence 
�
i exists and (along with

all the other best-response selections) is nondecreasing in s.
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We now show that i is u.s.c. and continuous from above in s 2 S: From Lemma 3 and

the proof of Lemma 4, we know that
R
V(s

0)dF (s0=s; ai; �i(s)) is u.s.c. and continuous

from above in (s; ai). Furthermore, by Assumptions (R.1)-(R.2) and the fact that �i is

nondecreasing and continuous from above, r(s; ai; �i(s)) is also continuous from above in

(s; ai). Hence, the maximand in (7) is also continuous from above in (s; ai). Now, let sk # s

and aki # ai with aki 2 �i (sk): Towards showing ai 2 �i (s) or that �i is u.h.c. from above,

consider

(1� �i)r(s; ai; �i(s)) + �i
Z
V(s

0)dF (s0=s; ai; �i(s))

� lim sup
k!1

�
(1� �i)r(sk; aki ; �i(sk)) + �i

Z
V(s

0)dF (s0=sk; aki ; 
k
�i(s

k))

�
= (1� �i)r(s; ai; �i(s)) + �i

Z
V(s

0)dF (s0=s; ai; �i(s))

= V(s);

where the inequality is due to the fact that the bracketed term is u.s.c. in (s; ai); and the �rst

equality to the fact that it is continuous from above in (s; ai): This shows that ai 2 �i (s),

so that �i (s) is upper hemi-continuous from above at s. Since the maximal selection i is

nondecreasing, it is u.s.c. in s, and hence also continuous from above in s (lemma 4). That

i is the only best response that is continuous from above also follows from Lemma 4. Hence,

i is the unique best-response in fMi(S;Ai):

An important step in the proof of continuity of the best-response map is contained in

the following intermediate result.

Lemma 7 For any vki !� v in MK(S;R); a
k
i ! ai and ak�i ! a�i, we have for each �xed

s 2 S; Z
vki (s

0)dF (s0=s; aki ; a
k
�i)!

Z
vi(s

0)dF (s0=s; ai; a�i) (10)

provided vki (s)! vi(s), where s , supS.
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Proof. By the integration by parts formula (see ?), we haveZ
vki (s

0)dF (s0=s; aki ; a
k
�i) =

�
vki (s

0)F (s0=s; aki ; a
k
�i)
�s0=1
s0=0

�
Z
F (s0=s; aki ; a

k
�i)dv

k
i (s

0)(11)

= vki (s)�
Z
F (s0=s; aki ; a

k
�i)dv

k
i (s

0);

since we always have F (s=s; aki ; a
k
�i) = 1 and F (inf S=s; a

k
i ; a

k
�i) = 0: Likewise,Z

vi(s
0)dF (s0=s; ai; a�i) = vi(s)�

Z
F (s0=s; ai; a�i)dvi(s

0): (12)

As (aki ; a
k
�i)! (ai; a�i), we have, by Assumption (T1)*, for each �xed s 2 S;

F (s0=s; aki ; a
k
�i)! F (s0=s; ai; a�i); uniformly in s0on compact subsets of S: (13)

The fact that vki (s
0) !� vi(s

0) together with (13) implies that (see e.g. Billingsley, 1968,

p.34), for each �xed s 2 S;Z
F (s0=s; aki ; a

k
�i)dv

k
i (s

0)!
Z
F (s0=s; ai; a�i)dvi(s

0): (14)

Since vki (s)! vi(s) by assumption, (10) follows from (11), (12)and (14).

We are now ready to de�ne the single-valued best-response map B for our stochastic

game, that associates to each n-vector  of stationary strategies the unique maximal best

response, ; in the sense of Lemma 6, i.e.

B : fM1(S;A)� :::� fMn(S;A) �! fM1(S;A)� :::� fMn(S;A)

(1; 2; :::; n) �! (1; 2; :::; n):

Lemma 8 B is continuous in the product weak�-topology.

Proof. It su¢ ces to show continuity along one coordinate, i.e. of the map �i �! i:

Let k�i �! �i and assume (by going to a subsequence if needed, which is possible sincefMi(S;Ai) is weak�-compact by the Alaoglu-Bourbaki Theorem) that ki �! i: We must

show that i is the maximal best-response to �i. Denoting Vk�i by V
k
i ; we have

V ki (s) = (1� �i)r(s; ki (s); k�i(s)) + �i
R
V ki (s

0)dF (s0=s; ki (s); 
k
�i(s))

= maxai2 eAi(s) �(1� �i)r(s; ai; k�i(s)) + �i R Vk(s0)dF (s0=s; ai; k�i(s))	 : (15)
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By Helly�s Selection Theorem (or the Alaoglu-Bourbaki Theorem) , the sequences of func-

tions k�i; 
k
i and V

k
i all have weak� convergent subsequences, each with a nondecreasing

right-continuous limit. By iterating if necessary, take a common convergent subsequence for

all three sequences, that has the further property that V ki (s)!� Vi(s), where s = supS (see

Lemma 7). W.l.o.g., relabel this subsequence with the index k (for simpler notation.) Thus,

we have k�i !� �i; 
k
i !� i, V

k
i !� Vi and V ki (s)!� Vi(s):

The rest of the proof will consist of taking weak� limits, term-by-term, on both sides

of (15) along the subsequence just identi�ed. Since weak� convergence is equivalent to

pointwise convergence on the subset of points of continuity of the limit function (Billingsley,

1968), and since the latter is dense for a nondecreasing function, there is a dense subset, call

it SC ; of S such that �i; i and Vi are all continuous on SC :

For any �xed s 2 SC , we have ki (s)! i(s) and 
k
�i(s)! �i(s). Also, V

k
i !� Vi:Hence,

by Lemma 7,
R
V ki (s

0)dF (s0=s; ki (s); 
k
�i(s)) !

R
Vi(s

0)dF (s0=s; i(s); �i(s)): Likewise, by

Assumption (R.1), r(s; ki (s); 
k
�i(s)) ! r(s; i(s); �i(s)): Since Vi is continuous at s and

V ki !� Vi, we must have V ki (s)! Vi(s). All together then, we have from (15),

Vi(s) = (1� �i)r(s; i(s); �i(s)) + �i
Z
Vi(s

0)dF (s0=s; i(s); �i(s)) for every s 2 SC : (16)

Recall that the values of a right-continuous function are all determined by its values on a

dense subset of its domain. Since Vi(s); i(s) and �i(s) are all right continuous, (16) must

hold for every s 2 S:

It follows from (16) and standard results in discounted dynamic programming that i(s)

is a best response to �i(s): To terminate the proof, it remains only to show that i(s) is the

largest best-response to �i(s): Recall from the proof of Lemma (6) that the best-response

correspondence to �i(�) is u.h.c. from above and has the property that all its selections are

nondecreasing. Hence, being u.s.c., i must be the (unique) largest best-response by Lemma

4.

We are now ready for the
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Proof of Theorem 2. It is easy to see that a pair of (Markov-stationary) strategies

is a stationary equilibrium if it is a �xed point of the mapping B: Since B is a continuous

operator in the weak� topology from fM1(S;A)�:::�fMn(S;A) to itself, and since the latter is

compact in the product weak� topology (by the Alaoglu-Bourbaki theorem) and also clearly

convex, the existence of a �xed-point follows directly from Shauder�s �xed-point theorem.

We now move on to the proof of Theorem 1, and the argument proceeds in several steps

here as well. We de�ne the following auxiliairy games. Let v = (v1; :::; vn) 2M(S;R)n be an

n-vector of continuation values, and consider an n -person one-shot game Gv parametrized

by the state variable, where Player i has as strategy space the set of all Borel measurable

functions from S to Ai; and as payo¤ function

�i(v; s; ai; a�i) , (1� �i)ri(s; ai; a�i) + �i
Z
vi(s

0)dF (s0=s; ai; a�i): (17)

For each �xed s 2 S, let the game where Player i has action set Ai and payo¤ (17) be

denoted by Gsv.

Lemma 9 For any v = (v1; :::; vn) 2 M(S;R)n and any �xed s 2 S, Gsv is a supermodular
game.

Proof. We �rst prove that �i(v; s; ai; a�i) has the requisite complementarity properties.

By Theorem 12 and Assumption (T.3), since v is nondecreasing,
R
vi(z

0)dF (z0=z; ai; a�i) is

supermodular in ai, and has strictly nondecreasing di¤erences in (ai; a�i). Since both these

properties are preserved under scalar multiplication and addition, it follows from Assumption

(R.3) that �i is supermodular in ai and has increasing di¤erences in (ai; a�i):

Next, it follows from Lemma 3 that �i(v; s; ai; a�i) is jointly u.s.c. in (ai; a�i): Finally,

since each Ai(s) is compact, Gsv is a supermodular game for each s 2 S:

Lemma 10 For any v = (v1; :::; vn) 2M(S;R)n, the game Gv has a largest Nash equilibrium
av(s) = (av1(s); :::; a

v
n(s)), which is such that each a

v
i (s) is a nondecreasing u.s.c. function of

s.
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Proof of Lemma ?. Since Gsv is a supermodular game for each s 2 S; it has a largest

Nash equilibrium for each s, by Tarski�s �xed-point theorem. Call it av(s) = (av1(s); :::; a
v
n(s)):

By Assumptions (T.3) and (R.3),
R
vi(s

0)dF (s0=s; ai; a�i) and ri(s; ai; a�i) have nondecreas-

ing di¤erences in (s; ai) for each a�i. Hence, so does �i(v; s; ai; a�i). By Theorem 15 (ii),

av(s) = (av1(s); :::; a
v
n(s)) is nondecreasing in s 2 S:

We now show that each avi (s) is u.s.c. and continuous from above in s 2 S: Suppose

not. Then there is some s 2 S such that avi (:) is not continuous from above at s: Let �i(�)

coincide with avi (�) everywhere except (possibly) at s where �i(�) is continuous from above,

for each i:

The argument in the proof of Lemma 6 is clearly valid here (the di¤erence being that

v is �exogenous�here, and �endogenous�there) and it shows that Player i�s best-response

to ��i(s) is u.h.c. from above at s, so that its maximal selection at s must be �i(s); cf.

Lemma 4. Hence, �(s) is a Nash equilibrium of the game Gsv, which is larger than a
v(s), by

construction. Since this is a contradiction to the de�nition of av(s), we conclude that av(s)

is continuous from above and u.s.c. at all s 2 S.

Let ��i (v; s) denote the equilibrium payo¤ set of the game Gv. In other words,

��i (v; s) =

�
(1� �i)ri(s; av(s)) + �i

Z
vi(s

0)dF (s0=s; av(s)) : av(�) is Nash equilibrium of Gv

�
Lemma 11 For all v 2 M(S;R); the maximal selection ��i (v; s) of ��i (v; s) is well-de�ned

and satis�es

�
�
i (v; s) = (1� �i)ri(s; av(s)) + �i

Z
vi(s

0)dF (s0=s; av(s)): (18)

Furthermore, �
�
i (v; s) 2M(S;R):

Proof of Lemma. From Assumptions (R2) and (T2), and the well-known characteriza-

tion of �rst-order stochastic dominance, we know that each player�s payo¤ in the game Gsv

is nondecreasing in the rivals�actions. Hence, by applying Theorem 15 (i) for each s 2 S,

we deduce that the equilibrium av(s) is the Pareto-dominant equilibrium. In other words,
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(18) must hold, with �
�
i (v; s) being the largest equilibrium payo¤ in the game Gsv, for each

s 2 S:

We now show that �
�
i (v; s) is nondecreasing in s: Let s1 � s2: Then

�
�
i (v; s1) = (1� �i)ri(s1; av(s1)) + �i

R
vi(s

0)dF (s0=s1; a
v(s1))

� (1� �i)ri(s1; avi (s2); av�i(s1)) + �i
R
vi(s

0)dF (s0=s1; a
v
i (s2); a

v
�i(s1))

� (1� �i)ri(s1; avi (s2); av�i(s2)) + �i
R
vi(s

0)dF (s0=s1; a
v
i (s2); a

v
�i(s2))

= �
�
i (v; s2);

where the �rst inequality follows from the Nash property and Assumption (A5), and the

second from Assumptions (R2) and (T2).

To show that �
�
i (v; s) is u.s.c. in s, consider

�
�
i (v; s1) = max

ai2 eAi(s)
�
(1� �i)ri(s; ai; av�i(s)) + �i

Z
vi(s

0)dF (s0=s; ai; a
v
�i(s))

�
Since the maximand is jointly u.s.c. in (a; s) and eA(�) is u.h.c., ��i (v; s) is u.s.c. in s by the
Maximum Theorem.

Finally, the fact that �
�
i (v; s) � K being obvious, we have overall shown that �

�
i (v; s) 2

M(S;R) whenever v 2M(S;R).

Proof of Theorem 1. The argument follows by backward induction, based on iteration

of the mapping v = (v1; :::; vn) �! ��(v; s) = (��1(v; s); :::;�
�
n(v; s)). Clearly, with v0 �

(0; 0; :::; 0), v1 = (v11; :::; v
1
n) , ��(v0; s) is the equilibrium value function vector for the

one-shot game, with player i�s payo¤ function given by (1� �i)ri(s; ai; a�i): Likewise, v2 =

(v21; :::; v
2
n) , ��(v1; s) is the equilibrium value function vector for the two-period game,

with player i�s payo¤ function given by (1 � �i)ri(s; ai; a�i) +
R
v1i dF (s; ai; a�i), and so on

until the last period in the horizon T: By Lemmas 10 and 11, this process clearly generates a

Markov equilibrium with strategy components in fM(S;A) and corresponding value functions
in MK(S;R). This completes the proof of Theorem 1.
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4. On some Economic Applications

While the list of assumptions required for our main resuts is long and seemingly overly

restrictive, we argue in this section that the results are actually relatively widely applicable

in economics, in view of the natural monotonicity and complementarity conditions that

commonly characterize many problems in strategic economic dynamics. The presentation

below is somewhat informal, in that various regularity conditions conveniently used in the

theory will not be dealt with systematically here.

4.1 Dynamic search with learning.

Consider the following in�nite-horizon search model, which generalizes the model devised

by Curtat (1996) as a dynamic extension of Diamond�s (1982) static model. At every stage,

each of N traders expands e¤ort or resources searching for trading partners. Denoting by

ai 2 [0; 1] the e¤ort level of agent i, by Ci(ai) the corresponding search cost, and by s the

current productivity level of the search process, i�s one-stage reward and the state transition

probability are given by

ri(s; a) = sai
X
j 6=i

aj � Ci(ai) and s0 � F (�=s; a)

It is easy to verify that the one-period reward satis�es Assumptions (R1)-(R4). It is clearly

natural to have F (�=s; a) stochastically increasing in (s; a) as in Assumption (T2). Given

the scalar nature of the state and actions here, Assumption (T3) requires 1 � F (s0=�) to

be supermodular in (s; a) for every s0, which has the following natural complementarity

interpretation: The probability that the next productivity is higher than any given level

increases more due to a change in a player�s search level when the other players search

harder and/or current productivity is higher.

As a special case of this transition law, one may consider s0 � eF (�=s+Pj aj) and assume

that eF (s0=�) is decreasing and concave, for each s0 2 S. This transition law is easily seen
22



to satisfy Assumptions (T1)-(T3), the veri�cation details being left out. The assumptions

of monotonicity and concavity on F (s0=�) have the following economic �increasing returns�

interpretation in this context: The probability of the next search productivity index being

greater than or equal to any given level s0 increases at an increasing rate with the current

index and agents�e¤ort levels. In other words, 1�F (s0=�) is increasing and convex, for each

s0 2 S.

Adding Assumption (T1)�, this model with discounted rewards �ts as a special case of

our general framework. We conclude that a pure-strategy Markov-stationary equilibrium

exists, and has the property that e¤ort levels are nondecreasing functions of the current

search productivity index.

4.2 Bertrand Competition with Learning-by-doing

Consider the following model of price competition with substitute goods, and constant unit

costs of production that are lowered over time as a consequence of learning-by-doing. Let s

denote the state of know-how in the industry, common to all �rms, and ci(s) the cost per

unit of output of �rm i: Let ai denote �rm i�s price and Di(a) its demand function. Here,

�rm i�s per-period pro�t and the state transition law are given by

ri(s; a) = (ai � ci(s))Di(a) and s0 � F (�=s; a)

Assuming15 that c
0
i(s) � 0 and that �rm i�s demand satis�es the standard assumptions

@Di(a)
@aj

> 0 and @Di(a)
@aj

+ [ai� ci(s)]@
2Di(a)
@aj@ai

� 0 , it is easily veri�ed that the one-period reward

ri is supermodular in (�a; s). It is clearly natural to have F (�=s; a) stochastically increasing

in (�a; s) as lower prices lead to higher demands overall, and thus higher production levels,

or higher industry-wide learning-by-doing for the �rms (Assumption (T2)). Given the scalar

nature of the state and actions here, Assumption (T3) requires 1�F (s0=�) to be supermodular

in (�a; s) for every s0, which has the following natural complementarity interpretation: The
15For the sake of brevity, we omit the description of some regularity conditions (such as boundedness,
compactness,...) on the primitives of the model here.
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probability that the next industry-wide know-how level is higher than any given target

increases more due to an decrease in a �rm�s price when the other �rms�prices are lower

and/or current know-how is higher. Since �rm i�s price set when the state is s is given by

[ci(s);1), Assumption (A.

Adding Assumption (T1)�, this model with discounted rewards �ts as a special case of

our general framework. Hence, a pure-strategy Markov-stationary equilibrium exists, and

has the property that prices are nonincreasing functions (due to the sign change in (�a; s))

of the current know-how level.

Two versions of dynamic Cournot competition with learning-by-doing can be accomo-

dated within our general framework. One is Curtat�s (1996) model with complementary

products. Omitting the diagonal dominance conditions given by Curtat�s (1996), but keep-

ing all his other assumptions, our main result would apply to his model. The second model

would consider homogeneous products and rely on change-of-order arguments to �t the

framework at hand.

4.3 Resource Extraction

Consider two agents noncooperatively exploiting a natural resource or some other common-

property stochastically productive asset. Each agent seeks to maximize his discounted sum

of utilities over time, depending only on his own consumption levels cit. The one-period

reward of agent i and the state transition or growth law are given by

1X
t=0

�tiui(c
i
t) and s

0 s F (�=s� c1t � c2t )

This problem was considered by Amir (1996a) who showed existence of a Markov-stationary

equilibrium with strategies having slopes in [0; 1]. It can be shown that this simple model is

not a special case of our general framework, nor of Curtat�s. However, once one restricts the

strategy space of one player to the class of Liptschitz-continuous functions just described,

one can use exactly the same approach as in Curtat (1996) to carry the analysis through.
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Thus while this model is not a special case, it can be approached in essentially the same

way. Details may be found in Amir (1996a).

5. Appendix

A brief summary of the lattice-theoretic notions and results is presented here.

Throughout, S will denote a partially ordered set and A a lattice, and all cartesian prod-

ucts are endowed with the product order. A function F: A ! R is (strictly) supermodular

if F (a _ a0) + F (a ^ a0) � (>)F (a) + F (a0) for all a; a0 2 A: If A � Rm and F is twice

continuously di¤erentiable, F is supermodular if and only if @2F
@ai@aj

� 0, for all i 6= j. A

function G : A � S ! R has (strictly) increasing di¤erences in s and a if for a1(>) � a2;

G(a1; s)�G(a2; s) is (strictly) increasing in s. If A � Rm, S � Rn and G is smooth, this is

equivalent to @2G
@ai@sj

� 0; for all i = 1; :::;m and j = 1; :::; n:

A set I in Rn is increasing if x 2 I and x � y ) y 2 I. With S � Rn and A � Rm,

a transition probability F from S �A to S is supermodular in a (has increasing di¤erences

in s and a) if for every increasing set I � Rn,
R
1I(t)dF (t=s; a) is supermodular in a (has

increasing di¤erences in s and a) where 1I is the indicator function of I. A characterization

of these properties, using �rst-order stochastic dominance, follows (see Athey, 1998-1999 for

an extensive study of this class of results, including ordinal ones):

Theorem 12 (Topkis, 1968). A transition probability F from S�A to S � Rn is supermod-
ular in s (has increasing di¤erences in s and a) if and only if for every integrable increasing
function v : S ! R,

R
v(t)dF (t=s; a) is supermodular in s (has increasing di¤erences in s

and a).

Let L(A) denote the set of all sublattices of A: A set-valued function H : S ! L(A) is

ascending if for all s � s0 in S, a 2 As; a0 2 As0, a _ a0 2 As0 and a ^ a0 2 As. Topkis�s main

monotonicity result follows (also see Milgrom and Shannon, 1994):

Theorem 13 (Topkis, 1978). Let F : S � A ! R be upper semi-continuous and su-
permodular in a for �xed s, and have increasing (strictly increasing) di¤erences in s and
a, and H : S ! L(A) be ascending. Then the maximal and minimal (all) selections of
argmax fF (s; a) : a 2 H(s)g are increasing functions of s:

25



A game with action sets that are compact Euclidean lattices and payo¤ functions that

are u.s.c. and supermodular in own action, and have increasing di¤erences in (own action,

rivals�actions) is a supermodular game. By Theorem 5.2, such games have minimal and

maximal best-responses that are monotone functions, so that a pure-strategy equilibrium

exists by (see also Vives, 1990):

Theorem 14 (Tarski, 1955). An increasing function from a complete lattice to itself has a
set of �xed points which is itself a nonempty complete lattice.

The last result deals with comparing equilibria.

Theorem 15 A.5 (Milgrom and Roberts, 1990).
(i) If a supermodular game is such that each payo¤ is nondecreasing in rivals�actions,

then the largest (smallest) equilibrium is the Pareto-best (worst) equilibrium.
(ii) Consider a parametrized supermodular game where each payo¤ has increasing dif-

ferences in the parameter (assumed real) and own action. Then the maximal and minimal
equilibria are increasing functions of the parameter.
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