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ABSTRACT
The success of the Internet is remarkable in light of the decentral-
ized manner in which it is designed and operated. Unlike small
scale networks, the Internet is built and controlled by a large num-
ber of disperate service providers who are not interested inany
global optimization. Instead, providers simply seek to maximize
their own profit by charging users for access to their service. Users
themselves also behave selfishly, optimizing over price andquality
of service. Game theory provides a natural framework for thestudy
of such a situation. However, recent work in this area tends to focus
on either the service providers or the network users, but notboth.
This paper introduces a new model for exploring the interaction of
these two elements, in which network managers compete for users
via prices and the quality of service provided. We study the extent
to which competition between service providers hurts the overall
social utility of the system.
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1. INTRODUCTION
One of the most surprising features of the Internet is how effec-

tively it operates on a global scale, despite the fact that its various
components (Autonomous Systems) are operated by separate ser-
vice providers, each of whom seeks only to maximize their ownin-
come. A number of recent papers have considered competitivenet-
work design games as simple models of how selfish agents might
construct such a network. These models tend to assume a static
user population, typically with fixed demands. In this paperwe ad-
dress the fact that the potential network users are just as crucial to
the construction of a network as the service providers themselves.
Network managers compete for users via prices and the quality of
service provided. We propose a simple game to explore a basic
question that arises in this situation: how is the quality ofservice
affected when the service providers set prices so as to extract max-
imum profit? We consider the special case of a graph with parallel
links (or scheduling parallel machines), where the qualityof the
service is modeled as delay that increases linearly with theconges-
tion, and user demand is concave. For such a game, we show that
a pure equilibrium exists, and we provide a constant factor bound
on theprice of anarchy, which roughly speaking measures the in-
efficiency of competitive play. We give an improved bound forthe
special case in which delay is a pure congestion effect (whendelay
is 0 with no congestion).

Selfish routing and network design are two important classesof
network games that have received much attention in recent years.
In work on selfish routing (or load balancing) [10, 11, 12, 16,19,
20, 21, 22] users in a network route their traffic selfishly with the
aim of minimizing their latency. These papers show bounds on
the price of anarchy in the corresponding games, that is, they give
bounds on the performance degradation caused by the selfish rout-
ing as compared to a centrally designed optimal solution. Inthese
games the sole selfish goal of users is to minimize the delay; in
particular, user demand is fixed (independent of the delay inthe
system), and the network is passive, in that it does not try toeffect
routing behavior by changing the properties of its edges.

Network games have also been used to try to understand the qual-
ity of networks built by selfish agents. The price of anarchy or price
of stability for such network creation games were studied under a
few related models [5, 6, 13]. Such network creation games aim to
model the behavior of agents, such as Autonomous Systems, who
seek to build networks. However, the models considered herealso
assume that demand is fixed, and not dependent on the properties
of the contructed network. In particular, network design games typ-
ically cannot model congestion effects. Furthermore, these models
assume that network builders want to simply build a cheap network



satisfying user demand, rather than maximizing their own income
by charging users for access to this network.

The primary motivation of this paper is to develop a model that
encompasses key aspects of both selfish routing and network de-
sign games. Our main result is a small constant bound on the price
of anarchy in a game that combines profit-maximizing edge-pricing
players with user demand that is sensitive to both prices andcon-
gestion. In our model, users perceive the quality of a route (path) in
a network via a combination of prices and congestion. Edges have
congestion sensitive delays, i.e. the time required to traverse an
edge depends on the amount of traffic using it. To this extent,our
model extends the work on selfish routing discussed above. How-
ever, we will also assume that each edge is operated by a distinct
selfish player, who can charge traffic for the use of that edge.Fi-
nally, we assume that user demand is affected by the quality of ser-
vice provided, in that increasing prices and delay lead to decreasing
user traffic. We assume that the edges set prices in a selfish man-
ner, aiming to maximize their income. The goal of our work is
to quantify the performance degradation caused by selfishness (the
price of anarchy) in this model. We show that in the special case of
networks with parallel links and linear delays, pure Nash equilibria
exist and the price of anarchy is bounded by a small constant.

Our Model.
We define a simple model that combines the issues mentioned

above. We consider a network consisting of two nodess and t,
with k parallel links. Each link is controlled by a distinct player,
who can charge traffic a price for use of her link. One can also
view this game as modeling a type of selfish load balancing prob-
lem. Here the edges correspond to machines, and the flow or traffic
will selfishly balance between them. Each machine has a load de-
pendent delay, and it can charge a price to all users.

Link i (or machinei) has a latency (or delay) functioǹi(x),
indicating the delay experienced by a volume ofx traffic usingi.
We will primarily focus on strictly increasing linear latencies, i.e.
`i(x) = aix + bi, whereai > 0 and bi ≥ 0. We assume that
user experience in routing flow through linki depends on the sum
of the price and the latency, which we will call thedisutility. More
precisely, if playeri chargespi andfi volume of flow uses linki,
then that flow experiences a disutility ofpi + `i(fi).

We assume that traffic routes itselfselfishly, meaning that traffic
will not route along one link if it can switch links and incur alower
disutility. As a result, all traffic will necessarily experience the
same disutility.

Finally, we also assume that the total amount of traffic froms to
t is dependent on the disutility that traffic experiences; as the disu-
tility increases, the total amount of flow interested in routing from
s to t decreases. We model this with a demand functionD(y), also
referred to as thedemand curve, which indicates the amount of flow
willing to incur a disutility ofy. We will naturally assume that de-
mandD(y) is decreasing in disutilityy. We will focus on demand
curves that are continuous and concave. Different demand curves
are used to model demand in different industries. A concave de-
mand curve is applicable for modeling demand for a service with a
comparable alternative (at a high enough price all users will switch
to the alternate service).

It will often be useful for us to consideru(x) = D−1(x), which
we call thedisutility curve. This measures the disutility that will
be tolerated by a volume ofx flow. By definition, u(x) is also
decreasing and concave. For ease of exposition, we will assume
thatu(x) is strictly decreasing, but this assumption can be dropped
without substantially changing our results.

To define our problem more precisely, we say that a price vector

p induces a flow vectorf satisfying the following properties.

1. For anyi, j if fi > 0, then`i(fi) + pi ≤ `j(fj) + pj .

2. If fi > 0 then`i(fi) + pi = u(
P

j
fj).

The first condition ensures that no traffic can decrease its disu-
tility by rerouting. The second condition states that the disutility
experienced by any traffic must match the the disutility thatis tol-
erated by the given volume of flow. It is not hard to see that since
the demand is continuous and decreasing, such flows always exist,
and since latencies are strictly increasing, these flows areunique as
well.

We may now complete the definition of the game. Each player
i selects a pricepi for her link. These prices, together with the
latencies and the demand curve, induce a unique flowfi on each
link. Players seek to maximize their profit,πi = pi · fi. We say
that a set of pricesp is atNash equilibriumif, by changing a single
pricepi to p′

i, the resulting flowf ′ does not give playeri a larger
profit (π′

i = p′
i · f

′
i ).

For a set of prices, we are interested in measuring thesocial
utility of a given solution. For a solution with pricesp inducing
total flow F =

P

j
fj , and disutilityd, we define the social utility

to be

U(p) =
X

i

πi +

Z F

0

(u(x) − d)dx.

The first term accounts for players’ profits, and the second terms
represents the utility gathered by the traffic that gets routed. An ex-
ample of an instance of the game with two links is shown in Figure
1. The social utility of this instance is indicated by the shaded area.

We will be interested in bounding theprice of anarchyof this
game. Ifp∗ is the set of prices that maximizes social utility, then
theprice of anarchyis the maximum possible ratio of

max
p

U(p∗)

U(p)
,

where the pricesp range over the possible equilibrium prices. Note
that the total area underu(x) provides an upper bound on the max-
imum possible social utility. However, to achieve this bound we
would need to route the maximum possible traffic volume without
incurring any delay.

We note that there are other reasonable measures of social ul-
tility; we could have considered either the players’ profitsor the
users’ utility as social welfare functions. However, the sum of these
two objectives seems the most reasonable if we take the economic
perspective, in which money is transferable. Furthermore,under
either measure alone, simple examples demonstrate an unbounded
price of anarchy.

We can think of our problem as a type of two-stage game where
there are two types of players: the owners of the edges, and the
users with traffic. In the first stage, the edge-players set pricespi

on edges. In the second stage, traffic routes itself selfishlyfrom
the source to the sink with respect to new latencies`i(x) + pi,
where the rate of flow is dictated by the disutility curve. Forthe
remainder of this paper, we will focus on the first stage of this game,
the game of setting prices, and will assume that players anticipate
the flow resulting from their chosen prices. However, the existence
and uniqueness of these flows follow directly from observingthis
connection.
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Figure 1: An instance of the network pricing game with two players.

Our Results.

• We show that for our pricing game, in a network with parallel
links, concave demand and linear delays, there is always a
pure Nash equilibrium.

• Furthermore, we bound the price of anarchy in this game by
5.064, even when delays are relaxed to be convex.

• In the special case when delay is exclusively a congestion
effect, that is, all links havèi(0) = 0, the price of anarchy
is bounded by at most 3.125.

Related Work.
In our model traffic evaluates its experience via a combination

of price and delay. Modelling traffic as experiencing disutility in
terms of price and delay has been studied in the transportation lit-
erature as early as in 1920 [18] (see also [7]) and more recently in
a sequence of papers started by Cole, Dodis and Roughgarden [8,
9] (see also [14, 15]). These works view prices as a tax that isset
by a benevolent network manager so as to improve network per-
formance. Acemoglu and Ozdaglar [2] consider a version of our
pricing problem in a monopolistic setting with fixed demand.They
assume that all edges are owned by a single service provider,and
focus on establishing the existence of an equilibrium and character-
izing this equilibrium. More recently, after we obtained our results,
the same authors extended their model to oligopolies, whilestill
assuming fixed demand and delays which are exclusively due to
congestion, i.e.̀ i(0) = 0 for all i (see [1]). They thereby ana-
lyzed a special case of our model and proved a tight bound of 6/5
for the price of anarchy. Along different lines, Vetta [23] shows
a nice bound on the price of anarchy in a two-stage pricing game
for facility location. In Vetta’s game the players’ strategies are the
facilities they select, and prices are determined based on the facil-
ity locations, much as our prices determine the flow through the
system.

There is a large body of economics literature dedicated to under-
standing the effects of pricing with service delays, with the focus
being on establishing the existence of stable equilibria, and consid-
ering qualitative properties of equilibria (such as whether improved
service leads to improved profit). Lee and Mason [17] consider the
most closely related model with identical links and non-uniform
users. More complex models are discussed in the recent papers by
Allon and Federgruen [4] and Afèche [3] and their references. Just
as in our work, these papers assume that user experience depends

on a combination of price and delay, and that prices are set byself-
ish, income-maximizing players. However, these papers consider
more complex environments, including heterogeneous users, and
situations in which not only prices, but also delays can be used as
strategic variables. However, unlike our work, these papers do not
provide bounds on the quality degradation caused by selfish pric-
ing.

Paper Organization.
The remainder of this paper is organized as follows. In section

2, we prove that pure Nash equilibria always exist in this game.
In doing so, we first prove a number of lemmas that will be use-
ful throughout the paper. We present our main result in section 3,
where we argue that the price of anarchy in this game is bounded
by a small constant. In section 4, we consider alternate classes
of demand and latency functions. In particular, we show thatpure
equilibria may not exist if latencies are convex, although when they
do, our price of anarchy result still applies. We also argue that in
the presence of convex demand, the price of anarchy may be un-
bounded.

2. EXISTENCE OF PURE EQUILIBRIA
We say that a player iscontentif she has no incentive to deviate

from her current price. To prove that pure Nash equilibria exist,
it will be critical to relate the price charged by a content player to
the flow she receives, and to the slopes of the latency and disutility
functions. This is achieved through the following technical lemma,
which will also play a key role in later bounding the price of anar-
chy.

Lemma 2.1 Let p be the price vector chosen by the players andf
be the corresponding flow vector, with total flowF =

P

i fi. De-
finev− andv+ respectively as the left and right derivatives (slopes)
of the disutility curve atF . We will assume thatv− and v+ are
both well defined (note that they are both negative), though they do
not have to be equal. If playeri is content, then the following two
conditions must hold:

1. ( pi

fi
− ai)(

P

j 6=i
1

aj
− 1

v−
) ≥ 1

2. ( pi

fi
− ai)(

P

j 6=i
1

aj
− 1

v+ ) ≤ 1.

Observe that equality must hold if the disutility curve is continu-
ously differentiable atF .

Before proving this, we establish some basic results concerning
the monotonicity and continuity of this game. We first show that
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Figure 2: The immediate effect of a player (a) decreasing and(b) increasing her price.

if a single player changes her link price, the flow induced by all
players’ prices changes in the natural way. In particular, if a player
increases her price, the newly induced flow will route less traffic
on her link, at least as much traffic on every other link, and less
traffic in total. Similarly, the symmetric claims hold if theplayer
decreases her price. More precisely we have

Lemma 2.2 Let p1, . . . , pk be a price vector with associated flow
vectorf1, . . . , fk. Assume that the first player increases her price
to p′

1 > p1 while the others keep their prices unchanged. Denote
the new flow vector byf ′

1, . . . , f
′
k. If f1 > 0, then,

1. f ′
1 < f1,

2. f ′
i ≥ fi, for all i 6= 1.

3. F ′ ≤ F , whereF =
P

i
fi andF ′ =

P

i
f ′

i .

The symmetric claim holds if player 1 reduces her price.

PROOF. We will assume without loss of generality that there are
at least two players with positive flow, since otherwise the claims
are trivial.

1) Suppose the flow on link1 does not decrease. Then, since
the price increased, the disutility must strictly increase. Consider
any other link that had positive flow. This link now has greater
disutility, and since the price has not changed, must carry more
flow. But this implies that both the disutility and total flow have
increased, which is a contradiction.

2) Suppose some linki 6= 1 loses flow. Sincepi is unchanged
and latencies are strictly increasing, the disutility muststrictly de-
crease. This implies that all links that carried flow must nowcarry
less flow. Since we know that link1 loses flow, the total flow de-
creases. But then both the disutility and the total flow have de-
creased, which is a contradiction.

3) Finally, since flow on any link other than1 can only increase,
the disutility can only increase, and thus the total volume of flow
can only decrease.

The next lemma argues that the amount of flow routed along any
link is a continuous function of the players’ prices.

Lemma 2.3 Let p be a price vector and letfi(pi) be the amount
of flow routed through linki as a function ofpi (assuming all other
prices inp are fixed). Then the functionfi(pi) is non-increasing
and continuous for anyp.

PROOF. The non-increasing part follows from Lemma 2.2. As
for continuity, we again prove by contradiction. We will argue that
if there is a discontinuity, a small change in price can be found
that violates monotonicity of disutility. For some price vector p let
pi be a point of discontinuity offi(·). Let f be the flow vector
corresponding to the pricesp with player i chargingpi. Assume
without loss of generality thatfi(·) is upper-discontinuous atpi.
Then there exists a small∆ > 0 such that for anyε > 0, if playeri
increasespi by ε, the flow going through theith link will decrease
by at least∆ (notice that it must decrease by Lemma 2.2). Since
latencies are strictly monotone, the loss of at least∆ flow decreases
the latency on linki by at least someL > 0. Chooseε < L. Then
if player i selects a price ofpi + ε, the resulting latency will more
than offset the increase in price. Thus the disutility will strictly
decrease, contradicting Lemma 2.2.

Having shown that flow is a continuous function of price, it isnot
difficult to extend this result to show continuity of profit. Indeed,
application of elementary analysis yields the following.

Lemma 2.4 Letπ : R
k 7→ R

k be the function mapping a vector of
pricesp to the vector of profits obtained by the players when they
charge the corresponding prices, i.e.π(p) = (π1, . . . , πk) means
that the profit of playeri is πi under the price vectorp. Then the
functionπ(·) is a continuous function ofp.

This continuity allows us to prove Lemma 2.1.

PROOF OFLEMMA 2.1. The intuition behind the proof of this
lemma is based on the following observations. For a playeri to be
content, she must not be able to benefit by changing her price at all.
The lemma will follow from observing that, in particular, she will
not benefit from very small changes to her price. Intuitively, the
gain from an increase in price must be outweighed by the resulting
loss of flow. In Figure 2 the shaded boxes indicate the immediate
effect of a player increasing or decreasing her pricewithout taking
into account the resulting change in flow of the other players. The
actual resulting flow depends not only on playeri’s latency func-
tion, but also on the disutility curve (determining how muchflow
leaves the system altogether), and other players’ latencies (deter-
mining how much flow they steal). For sufficiently small increases
in price, the magnitude of this loss is dictated solely by thelocal
slopes of these curves, resulting in the first inequality. Likewise,
the second inequality follows by considering a small decrease in
price.

More formally, let us prove the second inequality. The prooffor
the first one is analogous. Assume that playeri changes her price



so that the system disutility is decreased by a tiny amountδ > 0.
Then the flow of a playerj 6= i will decrease byδ/aj and the total
flow in the system will increasey by−δ/v+ 1. Hence playeri’s
flow must increase by∆fi = δ(

P

j 6=i
1

aj
− 1

v+ ). This increase in

flow will result to a latency increase ofai · δ(
P

j 6=i
1

aj
− 1

v+ ). So

i must decrease her price by∆pi = δ + ai · δ(
P

j 6=i
1

aj
− 1

v+ ).
We next observe that for anyε > 0, there exists a small enoughδ

such that,∆pi/∆fi ≥ pi/fi − ε. Indeed, if∆pi/∆fi < pi/fi − ε
thenpi∆fi > fi∆pi + fi∆fiε. Now playeri can obtain more
profit by setting her price topi−∆pi, because her new profit would
be(pi −∆pi)(fi + ∆fi) = pifi − fi∆pi + pi∆fi −∆pi∆fi >
pi · fi if we chooseδ small enough to ensure thatεfi > ∆pi

(which we can do due to continuity of latencies and demand). But
this can not happen, since playeri was content. Thus in the limit of
δ approaching 0 we get∆pi/∆fi ≥ pi/fi.

Therefore asδ tends to 0,

δ + ai · δ(
X

j 6=i

1

aj

−
1

v+
) = ∆pi ≥

pi

fi

∆fi

=
pi

fi

· δ(
X

j 6=i

1

aj

−
1

v+
).

1 + ai(
X

j 6=i

1

aj

−
1

v+
) ≥

pi

fi

(
X

j 6=i

1

aj

−
1

v+
),

(
pi

fi

− ai)(
X

j 6=i

1

aj

−
1

v+
) ≤ 1.

We can now analyze the best response functionβ : R
k 7→ R

k.
This function maps a price vectorp to another price vectorp′, such
thatp′

i maximizes playeri’s profit assuming all other players price
as inp. We define playeri’s best response to bepi = 0 if there is no
price at whichi can derive a positive profit. We will use Lemma 2.1
to show that a player’s best response is unique, and hence theβ(p)
is well defined. This and the continuity ofβ(·) will be sufficient to
prove the existence of pure equilibria.

Lemma 2.5 For any set of existing pricesp, all players’ best re-
sponse is unique (and hence theβ(p) is well defined). Furthermore
β(·) is a continuous function ofp.

PROOF. Suppose that the best response for some playeri is not
unique, and letp′

i > p′′
i be two best response prices for player

i. Let f ′ andf ′′ be the corresponding flow vectors when playeri
selects pricesp′

i andp′′
i respectively, with corresponding total flow

F ′ andF ′′. Lemma 2.2 implies thatf ′
i < f ′′

i andF ′ < F ′′. Let
v′ denote the right slope ofu(·) at F ′ andv′′ denote left slope of
u(·) at F ′′. By concavity ofu(·), v′ ≥ v′′ (recall that both values
are negative).

Since bothpi andp′′
i are best responses for playeri, we can apply

Lemma 2.1:

1 ≥ (
p′

i

f ′
i

− ai)(
X

j 6=i

1

aj

−
1

v′
) > (

p′′
i

f ′′
i

− ai)(
X

j 6=i

1

aj

−
1

v′′
) ≥ 1.

This is a contradiction, and thus a players best response must be
unique. The continuity ofβ(·) is a direct consequence of the con-
tinuity of π(·) (Lemma 2.4).

1To be formal, we have to take a sequence ofδ’s approaching 0.

Since there is a maximum priceP such that any player charging
aboveP gathers no profit, we can restrict our attention onβ(·)
to the convex and compact region[0, P ]k. Thus we can apply
Brouwer’s fixed point theorem and thereby prove the following.

Theorem 2.6 The network pricing game has a Nash equilibrium.

3. PRICE OF ANARCHY
In this section we prove our main result, namely that selfish be-

havior on the part of the players yields a social utility thatis within
a small constant factor of optimal. More formally, we prove

Theorem 3.1 The price of anarchy for the network pricing game
is at most 5.064.

The first step is to take a general instance of a game with prices
at Nash equilibrium, and create a new game instance in which the
equilibrium gathers no traffic utility (see Figure 3). In doing this
we preserve the original equilibrium, and only increase theprice
of anarchy. Now, in this modified game, we can bound the social
utility of an optimal solution solely against the player profit at Nash
equilibria.

We will consider a general instance of the game with disutility
functionu and latencies̀i(·) for 1 ≤ i ≤ k. We assume we have
a price vectorp at Nash equilibrium, with induced flow vectorf ,
total flow volumeF and disutilityd.

Lemma 3.2 Define a new disutility curve

w(x) =



d if x < F
u(x) otherwise

Then pricesp are also at Nash equilibrium given this truncated
demand curve, and the price of anarchy of this instance has not
decreased.

PROOF. Clearly no player has an incentive to decrease her price,
as this would increase the total flow, and thus yield a flow vector
that was achievable underu(x). But we assumed thatp was at equi-
librium for u(x), so this can not benefit any player. Furthermore,
no player has in incentive to increase their price, as the potential
gain of any such move is strictly smaller than it would have been
prior to the truncation.

As for the price of anarchy, note that this truncation destroys all
traffic utility of the given equilibrium, as shown in Figure 3. But
this is also an upper bound on the decrease in the social utility of
the new optimal solution under the truncated disutility curve. Thus
the price of anarchy can only increase.

The next lemma provides a simple lower bound on the price that
players charge at equilibrium, both in terms of the system disutility
d and their own latency function. This result will clearly be useful
in lower bounding player profits in the Nash equilibrium.

Lemma 3.3 At equilibrium, any playeri chargespi ≥
d−bi

2
, where

bi = `i(0).

PROOF. For simplicity, we will assume we have a truncated
disutility curve, although the lemma is also true without this as-
sumption. Defineq = d−bi. We will claim that if playeri charged
pi < q

2
, then she can increase her profit by chargingq

2
. Observe

thatai · fi + bi + pi = d. Thus we can express

πi = pi · fi = pi(q − pi)/ai <
q2

4ai

.
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Figure 3: A disutility curve with prices and flows at equilibr ium and the corresponding truncated curve.

However, since we are assuming a truncated demand curve, in
charging q

2
, the resulting flowf ′ would be determined solely by

`i(x). Hence,f ′ satisfies the same condition, i.e.ai ·f
′
i +bi +

q

2
=

d. Thus the profit would be exactlyq
2

4ai
.

We now prove our main result. We consider an instance of our
game with equilibrium pricesp, and corresponding flow vectorf ,
total flowF , and disutilityd. We assume that our disutility function
u(x) is truncated as in Lemma 3.2, i.e.u(x) = d on the interval
[0, F ], and thusU(p) is represented entirely by player profit.

PROOF OFTHEOREM3.1. As observed, in our truncated instance
of the game, the given Nash equilibrium generates no traffic util-
ity. Thus we must bound both the player profit and traffic utility
of the optimal solution against the profit of the players at Nash
equilibrium. We will consider an optimal price vectorp∗, with cor-
responding flowsf∗, F ∗, and disutility valued∗. We can trivially
bound the traffic utility of the optimal solution byF ∗ · (d − d∗),
and we can attributef∗

i · (d − d∗) of this bound to each player
i. Thus we will think of each playeri in the optimal solution as
contributingπ∗

i + f∗
i · (d − d∗) to U(p∗).

We first partition the players by the slope of their latencies. More
precisely, let us call a playersteepif ai ≥

1

2

pi

fi
. Otherwise, we will

say a player isshallow. We will now argue that there is at most one
shallow player. Then we will show that the contribution of a steep
playeri to the optimal solution can be bounded in terms ofπi. Fi-
nally, we consider two cases regarding the shallow player’slatency.
In both cases, we show that the contribution of this shallow player
to the optimal solution can be bounded within a constant factor of
the sum of the profits of all the players at Nash equilibrium.

Let v+ be the right slope ofu(x) at F . Consider any shallow
playeri. By Lemma 2.1, we know that( pi

fi
−ai)(

P

j 6=i
1

aj
− 1

v+ ) ≤

1. Sincei is shallow, the first term is greater thanpi

2fi
. But v+

is negative, so for allj 6= i we must haveaj > pi

2fi
> ai, as

otherwise the above inequality would be violated. This implies that
i must have the unique minimum slope, and thusi must be the only
shallow player.

Consider a steep playerj. As in the proof of Lemma 3.2, we
can argue that the optimal solution can not gather more valuethan
πj by charging more thanpj , as then the player could selfishly do
the same. Thus we only need to consider how the optimal solu-
tion might benefit by havingp∗

j < pj . By assumption,aj ≥ 1

2

pj

fj
.

The maximum feasible rectangle (corresponding to gatheredutil-
ity) that is bounded above byu(x) and below bỳ j(x) has an area
of 1.125πj , which is achieved whenaj = 1

2

pj

fj
by setting a price

of 3

2
pj and inducing a flow of3

4
fj . Thus nearly all players gather

almost as much utility as they would in an optimal solution.

Now we are left with the task of bounding the value gathered by
the shallow playeri in the optimal solution. We again know that to
gather more value withi, the optimal solution must charge a lower
price and carry more flow, as any benefit in raising the price could
also be realized by the player at equilibrium. Thus our concern is
that somehow the optimal solution sends a huge amount of flow at
lower price oni, thereby gathering substantially larger social utility.
We consider two cases, based on just how shallowi’s latency is.

Case 1:`i(4fi) − `i(fi) > pi/4. In this case the latency is not
very shallow, and we can simply bound the maximum contribution
of playeri to the optimal solution by ignoring all other players and
assumingu(x) = d. Then the best choice fori is to charged−bi

2

(thereby maximizing the area of a rectangle inscribed in a triangle).
Given our condition oǹi, this can be shown to yield a profit of at
most3.52πi.

Case 2:`i(4fi) − `i(fi) ≤ pi/4. This case deals with a very
shallow latency. A trivial upper bound on the amount that theopti-
mal solution can gather throughi is

Z r

0

(u(x) − `i(fi))dx

wherer is defined byu(r) = `i(fi). This is the valuei could
gather in the absence of other players if`i(x) never exceeded̀i(fi).
We will partition this area into two regions;A, representing

R r

F
(u(x)−

`i(fi))dx, andB, representing the rest, with areaF (d − `i(fi)),
as shown in Figure 4(a).

To boundA, recall thatai < 1

2

pi

fi
. Since the slope ofi’s la-

tency is shallow, the disutility curve must be relatively steep, as
otherwise,i could decreasepi slightly and dramatically increase
fi. More precisely, Lemma 2.1 implies thatv+ ≤ − 1

2

pi

fi
. Since

u(x) is concave, the area inA can be upper bounded by a triangle
of heightpi and slopev+. This has area at mostpi · fi = πi.

To boundB, we partition the steep players (allj 6= i) into two
classes. LetS− be the set of all playersj for whombj > `i(fi) +
pi/2, and letS+ consist of all remaining steep players, as shown in
Figure 4(b). DefineF− andF+ to be the total flow carried by all
players inS− andS+ respectively at equilibrium. By Lemma 3.3,
we know that for any playerj ∈ S+, pj ≥ (d − bj)/2, and hence
the total profit of all players inS+ is at leastpiF

+/4. Furthermore,
we can argue thatS− must be small, as if it was very large, player
i would have an incentive to undercut all the players inS−. In
particular, we claim thatF− ≤ 3fi. Otherwise, playeri would
have an incentive to charge a quarter of her current price. Due to
the above shallowness condition on her latency, she is guarranteed



  i(x)

slope = v+

B A
πi(x)

  i(x)

πi(x)

S+S

(a) (b)

pi

Figure 4: (a) The regionsA and B for the shallow player, (b) Partitioning the steep players into S− and S+.

to more than quadruple her flow before any player inS− routes any
traffic. Clearly this would generate more profit, contradicting our
assumption of equilibrium. Thus we can bound the total area of B
by 4πi + 4

P

j 6=i
πj .

The combined area ofA andB is thus at most5πi +4
P

j 6=i
πj ,

and hence the optimal solution can gather a value of no more than
5πi + 5.125

P

j 6=i
πj . Thus the price of anarchy is at most 5.125.

If we return to our bound on the area ofB, note that we can
generalize our definition ofS− to be the set of all playersj for
whombj > `i(fi) + αpi for some realα, and defineS+ similarly.
Optimizing overα yields the desired bound of 5.064.

For the special case when`i(0) = 0 for all i, a proof similar to
the one above yields the following

Theorem 3.4 The price of anarchy of the network pricing game
with a concave demand curve and linear latencies of the form`i(x) =
aix is bounded by 3.125.

To conclude this section we show that the price of anarchy is
lower bounded by 3/2.

Observation 3.5 There exists a 1-player instance of the network
pricing game with linear latencies and concave demand curvewhich
has a price of anarchy of 3/2.

PROOF. Consider the disutility curveu(x) = 1 for 0 ≤ x ≤ 1
andu(x) = 2 − x for 1 ≤ x ≤ 2 and let the player have zero
latency. Then she would obtain maximal profit of 1 by charging
a price of 1 for a social value of 1. Yet the optimal solution can
gather a social value of 3/2 by charging 0. Hence the lower bound.
Finally, it is not difficult to slightly modify this example to ensure
(strict) monotonicity of latency and demand curves.

Remark: It is not difficult to prove that for a single player the
bound 3/2 is tight.

4. EXTENSIONS AND RELATED MODELS
In this section we analyze what happens to the network pricing

game when we relax the assumptions on the latency functions and
the demand curve. First, we consider convex, as opposed to linear,
latency functions, while retaining concave demand.

Unfortunately, the network pricing game with convex latencies
and concave demand curve may not have a Nash equilibrium as
illustrated by the following 2-player example. Let the disutility
curve be the unit box:u(x) = 1 for all 0 ≤ x ≤ 1 andu(x) = 0

otherwise. Define the players’ latencies as`1(x) = 0 for all x, and
`2(x) = 1/3 for all 0 ≤ x ≤ 1/3 and `2(x) = ∞ otherwise.
We claim that this instance of the game has no Nash equilibrium.
Indeed, assume that there is a Nash equilibrium with total disutility
d. If d ≤ 1/3 then the first player must make a profit of no more
than1/3. Yet she has a guaranteed profit of2/3 if by charging1.
If d > 1/3, then for the second player to be content, she has to
charge a price ofd− 1/3, and thus the first player can earn a profit
of at most2d/3 by chargingd. But then if the first player reduces
her price slightly tod − ε then all the flow will route through her
link and she will earn a profit ofd − ε > 2d/3. Hence the game
has no Nash equilibrium. Although the above example violates
continuity and strict monotonicity of the latency functions and the
demand curve, it is not difficult to alter it slightly so as to satisfy
these conditions while still maintaining the nonexistenceof Nash
equilibrium.

On the other hand, when such a network pricing game does have
a Nash equilibrium, the proofs of the previous sections can be ex-
tended to yield the same bounds on the price of anarchy.

Theorem 4.1 If an instance of the network pricing game with con-
vex latencies and concave demand has a Nash equilibrium, then
the price of anarchy is bounded by 5.064. Furthermore, if thedelay
is exclusively due to congestion (i.e. all links have`i(0) = 0), then
the bound can be improved to 3.125.

We next consider instances of the game with convex, instead of
concave, demand curves, while maintaining convex latencies. An
example similar to the one above can be constructed to show that
this game may still not have a Nash equilibrium. Unfortunately,
unlike the game with concave demand curves, even when Nash
equilibria do exist, we do not have any such bounds, as there exist
examples with unbounded gap between the social utility of a Nash
equilibrium and an optimal solution.
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[12] A. Czumaj and B. Vöcking. Tight Bounds for Worst-Case
Equilibria.ACM-SIAM Symposium on Discrete Algorithms,
413–420, 2002.

[13] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou,
and S. Shenker. On a Network Creation Game.ACM
SIGACT-SIGOPT Symposium on Principles of Distributed
Computing, 247–251, 2003.

[14] L. Fleischer, K. Jain, and M. Mahdian. Tolls for
Heterogeneous Selfish Users in Multicommodity Networks
and Generalized Congestion Games.IEEE Symposium on
Foundations of Computer Science, 277–285, 2004.

[15] G. Karakostas and S. G. Kolliopoulos. Edge Pricing of
Multicommodity Networks for Heterogeneous Selfish Users.
IEEE Symposium on Foundations of Computer Science,
268–276, 2004.

[16] E. Koutsoupias and C. H. Papadimitriou. Worst-Case
Equilibria. International Symposium on Theoretical Aspects of
Computer Science, 404–413, 1999.

[17] I.H. Lee and R. Mason. Market Structure in Congestible
Markets.European Economic Review, 45 (4-6), 809–818,
2001.

[18] A. C. Pigou. The Economics of Welfare.Macmillan and Co.,
1920.

[19] T. Roughgarden. The Price of Anarchy is Independent of the
Network Topology.ACM Symposium on Theory of
Computing, 428–437, 2002.

[20] T. Roughgarden. Stackelberg Scheduling Strategies.ACM
Symposium on Theory of Computing, 104–113, 2001.

[21] T. Roughgarden and́E. Tardos. How Bad Is Selfish Routing?
IEEE Symposium on Foundations of Computer Science,
93–102, 2000.

[22] S. Suri, C. D. Toth, and Y. Zhou. Selfish Load Balancing and
Atomic Congestion Games.ACM Symposium on Parallel
Algorithms and Architectures, 188–195, 2004.

[23] A. Vetta. Nash Equilibria in Competitive Societies, with
Applications to Facility Location, Traffic Routing and
Auctions.IEEE Symposium on Foundations of Computer
Science, 416–425, 2002.


