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ABSTRACT

The success of the Internet is remarkable in light of the wkeak
ized manner in which it is designed and operated. Unlike ksmal
scale networks, the Internet is built and controlled by gdarum-
ber of disperate service providers who are not interesteahin
global optimization. Instead, providers simply seek to mmaze
their own profit by charging users for access to their seriteers
themselves also behave selfishly, optimizing over pricecpradity

of service. Game theory provides a natural framework fostbdy

of such a situation. However, recent work in this area teadisdus
on either the service providers or the network users, bubatit.
This paper introduces a new model for exploring the intéoactf
these two elements, in which network managers compete &rsus
via prices and the quality of service provided. We study thiere

to which competition between service providers hurts therall
social utility of the system.
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1. INTRODUCTION

One of the most surprising features of the Internet is howoeff
tively it operates on a global scale, despite the fact tisatdtious
components (Autonomous Systems) are operated by separate s
vice providers, each of whom seeks only to maximize their own
come. A number of recent papers have considered competgive
work design games as simple models of how selfish agents might
construct such a network. These models tend to assume @ stati
user population, typically with fixed demands. In this paperad-
dress the fact that the potential network users are justuasatito
the construction of a network as the service providers tleéras.
Network managers compete for users via prices and the yadlit
service provided. We propose a simple game to explore a basic
question that arises in this situation: how is the qualitgeivice
affected when the service providers set prices so as tootxirax-
imum profit? We consider the special case of a graph with lghral
links (or scheduling parallel machines), where the qualityhe
service is modeled as delay that increases linearly witlcohges-
tion, and user demand is concave. For such a game, we show that
a pure equilibrium exists, and we provide a constant facbomd
on theprice of anarchy which roughly speaking measures the in-
efficiency of competitive play. We give an improved boundtfor
special case in which delay is a pure congestion effect (wieday
is 0 with no congestion).

Selfish routing and network design are two important clases
network games that have received much attention in recersye
In work on selfish routing (or load balancing) [10, 11, 12, 18,

20, 21, 22] users in a network route their traffic selfishlyhvihe
aim of minimizing their latency. These papers show bounds on
the price of anarchy in the corresponding games, that ig,dhe
bounds on the performance degradation caused by the selfish r
ing as compared to a centrally designed optimal solutiorihése
games the sole selfish goal of users is to minimize the detay; i
particular, user demand is fixed (independent of the delapen
system), and the network is passive, in that it does not teffaxt
routing behavior by changing the properties of its edges.

Network games have also been used to try to understand the qua
ity of networks built by selfish agents. The price of anarchgrice
of stability for such network creation games were studiedenra
few related models [5, 6, 13]. Such network creation gammestai
model the behavior of agents, such as Autonomous Systents, wh
seek to build networks. However, the models considered &isce
assume that demand is fixed, and not dependent on the pesperti
of the contructed network. In particular, network desigmga typ-
ically cannot model congestion effects. Furthermore,gheedels
assume that network builders want to simply build a cheawarit



satisfying user demand, rather than maximizing their ovoone
by charging users for access to this network.

The primary motivation of this paper is to develop a modet tha
encompasses key aspects of both selfish routing and netwerk d
sigh games. Our main result is a small constant bound on tbe pr
of anarchy in a game that combines profit-maximizing edgeny
players with user demand that is sensitive to both pricescand
gestion. In our model, users perceive the quality of a rquathy) in
a network via a combination of prices and congestion. Edges h
congestion sensitive delays, i.e. the time required toets®s an
edge depends on the amount of traffic using it. To this extant,
model extends the work on selfish routing discussed abover- Ho
ever, we will also assume that each edge is operated by adlisti
selfish player, who can charge traffic for the use of that edige.
nally, we assume that user demand is affected by the quélitgre
vice provided, in that increasing prices and delay lead toadesing
user traffic. We assume that the edges set prices in a selfish ma
ner, aiming to maximize their income. The goal of our work is
to quantify the performance degradation caused by selfshitiee
price of anarchy) in this model. We show that in the speciaéazf
networks with parallel links and linear delays, pure Naghildayia
exist and the price of anarchy is bounded by a small constant.

Our Model.

We define a simple model that combines the issues mentioned

above. We consider a network consisting of two nogdemdt,
with k parallel links. Each link is controlled by a distinct player
who can charge traffic a price for use of her link. One can also
view this game as modeling a type of selfish load balancing-pro
lem. Here the edges correspond to machines, and the flowffic tra
will selfishly balance between them. Each machine has a lead d
pendent delay, and it can charge a price to all users.

Link ¢ (or machines) has a latency (or delay) functiofy(x),
indicating the delay experienced by a volumezadfraffic usings.
We will primarily focus on strictly increasing linear latees, i.e.
li(z) = a;x + b;, wherea; > 0 andb; > 0. We assume that
user experience in routing flow through linklepends on the sum
of the price and the latency, which we will call tHesutility. More
precisely, if player chargegp; and f; volume of flow uses link,
then that flow experiences a disultility pf + ¢ (f;).

We assume that traffic routes itse#lfishly meaning that traffic
will not route along one link if it can switch links and incutawer
disutility. As a result, all traffic will necessarily experice the
same disutility.

Finally, we also assume that the total amount of traffic frota
t is dependent on the disutility that traffic experienceshasdisu-
tility increases, the total amount of flow interested in nogtfrom
s tot decreases. We model this with a demand funciigy), also
referred to as thdemand curvewhich indicates the amount of flow
willing to incur a disutility ofy. We will naturally assume that de-
mandD(y) is decreasing in disutility. We will focus on demand
curves that are continuous and concave. Different demanegu
are used to model demand in different industries. A concave d
mand curve is applicable for modeling demand for a servidb ai
comparable alternative (at a high enough price all useiswitch
to the alternate service).

It will often be useful for us to consider(z) = D~ (z), which
we call thedisutility curve This measures the disutility that will
be tolerated by a volume aof flow. By definition, u(z) is also
decreasing and concave. For ease of exposition, we willnassu

thatu(z) is strictly decreasing, but this assumption can be dropped

without substantially changing our results.
To define our problem more precisely, we say that a price vecto

p induces a flow vectof satisfying the following properties.
1. Foranyi,jif f; > 0, thent;(f;) + pi < £;(f;) + p;-
2. If fz >0 then&(fi) +pi = U(Zj f])

The first condition ensures that no traffic can decrease sts di
tility by rerouting. The second condition states that theutliity
experienced by any traffic must match the the disutility thaol-
erated by the given volume of flow. It is not hard to see thatesin
the demand is continuous and decreasing, such flows alwésts ex
and since latencies are strictly increasing, these flowaricpie as
well.

We may now complete the definition of the game. Each player
1 selects a price; for her link. These prices, together with the
latencies and the demand curve, induce a unique floan each
link. Players seek to maximize their profit; = p; - f;. We say
that a set of priceg is atNash equilibriumif, by changing a single
price p; to pj, the resulting flowf’ does not give player a larger
profit (w; = p; - f7).

For a set of prices, we are interested in measuringstieal
utility of a given solution. For a solution with pricesinducing
total flow F' = ZJ. f;, and disutilityd, we define the social utility
to be

Ulp) = ZW + /O (u(z) — d)dz.

The first term accounts for players’ profits, and the seconude
represents the utility gathered by the traffic that getsadufn ex-
ample of an instance of the game with two links is shown in Fégu
1. The social utility of this instance is indicated by thedibdarea.

We will be interested in bounding thgice of anarchyof this
game. Ifp* is the set of prices that maximizes social utility, then
theprice of anarchyis the maximum possible ratio of

max 2P
r U’

where the pricep range over the possible equilibrium prices. Note
that the total area under(x) provides an upper bound on the max-
imum possible social utility. However, to achieve this bdume
would need to route the maximum possible traffic volume witho
incurring any delay.

We note that there are other reasonable measures of social ul
tility; we could have considered either the players’ profitshe
users’ utility as social welfare functions. However, thensof these
two objectives seems the most reasonable if we take the Btono
perspective, in which money is transferable. Furthermoneler
either measure alone, simple examples demonstrate an nofdxbu
price of anarchy.

We can think of our problem as a type of two-stage game where
there are two types of players: the owners of the edges, and th
users with traffic. In the first stage, the edge-players seegp;
on edges. In the second stage, traffic routes itself selfisbin
the source to the sink with respect to new latendigs) + p,
where the rate of flow is dictated by the disutility curve. [Hoe
remainder of this paper, we will focus on the first stage & tlaime,
the game of setting prices, and will assume that playersipate
the flow resulting from their chosen prices. However, thetexice
and uniqueness of these flows follow directly from obsentinig
connection.
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Figure 1: An instance of the network pricing game with two players.

Our Results. on a combination of price and delay, and that prices are sselby
ish, income-maximizing players. However, these papersiden
e We show that for our pricing game, in a network with parallel more complex environments, including heterogeneous userds
links, concave demand and linear delays, there is always a situations in which not only prices, but also delays can lesl s
pure Nash equilibrium. strategic variables. However, unlike our work, these papernot
provide bounds on the quality degradation caused by selfish p
e Furthermore, we bound the price of anarchy in this game by ing.
5.064, even when delays are relaxed to be convex.

Paper Organization.

The remainder of this paper is organized as follows. In eacti
2, we prove that pure Nash equilibria always exist in this gam
In doing so, we first prove a number of lemmas that will be use-
ful throughout the paper. We present our main result in sec@j
where we argue that the price of anarchy in this game is balinde

¢ In the special case when delay is exclusively a congestion
effect, that is, all links havé;(0) = 0, the price of anarchy
is bounded by at most 3.125.

Related Work. by a small constant. In section 4, we consider alternatesetas
In our model traffic evaluates its experience via a combamati  of demand and latency functions. In particular, we show plmée

of price and delay. Modelling traffic as experiencing dikiytiin equilibria may not exist if latencies are convex, althoudtewthey

terms of price and delay has been studied in the transpmnrthti do, our price of anarchy result still applies. We also ardus in

erature as early as in 1920 [18] (see also [7]) and more rigdent the presence of convex demand, the price of anarchy may be un-
a sequence of papers started by Cole, Dodis and Roughga8den [ pounded.
9] (see also [14, 15]). These works view prices as a tax thegtis

by a benevolent network manager so as to improve network per-2 ~ EX|STENCE OF PURE EQUILIBRIA
f0|_'n_1ance. Acemoglu and O_zdgglar [2] co_nsm_ier a version of ou We say that a player isontentif she has no incentive to deviate
pricing problem in a monopolistic setting \-Nlth fixed .demaiﬁdley from her current price. To prove that pure Nash equilibristex
assume that all edges are owned by a single service proader, it will be critical to relate the price charged by a contersy@r to

focus on establishing the existence of an equilibrium arsdastter- the fl h X dtothe sI fthe lat i
izing this equilibrium. More recently, after we obtained oesults, € Tlow She receives, and to the siopes of the [atency an tjsu
functions. This is achieved through the following techhleenma,

the same authors extended their model to oligopolies, wiile hich will al | K le in later bounding the orice oBa.
assuming fixed demand and delays which are exclusively due to\évh;c will also play a key role in fater bounding the price

congestion, i.e.£;(0) = 0 for all ¢ (see [1]). They thereby ana-
lyzed a special case of our model and proved a tight boundsof 6/
for the price of anarchy. Along different lines, Vetta [23]osvs

a nice bound on the price of anarchy in a two-stage pricingegam
for facility location. In Vetta’s game the players’ straiegare the
facilities they select, and prices are determined baset®fatil-

ity locations, much as our prices determine the flow through t

Lemma 2.1 Letp be the price vector chosen by the players gnd
be the corresponding flow vector, with total fldw= 3", f;. De-
finev™ andv™ respectively as the left and right derivatives (slopes)
of the disutility curve at’. We will assume that~ andv™ are
both well defined (note that they are both negative), thobgh tio
not have to be equal. If playéris content, then the following two

system. . _ . conditions must hold:
There is a large body of economics literature dedicated dern '
standing the effects of pricing with service delays, with fhcus L% —ai)(X; % -=)>1
being on establishing the existence of stable equilibrid,@nsid-
ering qualitative properties of equilibria (such as whetheproved 2. (% - ai)(Z#i % - ,ﬁ) <L
service leads to improved profit). Lee and Mason [17] consiuke Observe that equality must hold if the disutility curve isiiou-

most closely related model with identical links and nonfoimn

users. More complex models are discussed in the recentphper
Allon and Federgruen [4] and Afeche [3] and their referencist Before proving this, we establish some basic results coirogr
as in our work, these papers assume that user experienceddepe the monotonicity and continuity of this game. We first shoatth

ously differentiable af'.
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Figure 2: The immediate effect of a player (a) decreasing an¢b) increasing her price.

if a single player changes her link price, the flow induced by a PROOF The non-increasing part follows from Lemma 2.2. As
players’ prices changes in the natural way. In particufar glayer for continuity, we again prove by contradiction. We will aggthat
increases her price, the newly induced flow will route leaffitr if there is a discontinuity, a small change in price can benfbu
on her link, at least as much traffic on every other link, argsle  that violates monotonicity of disutility. For some pricecter p let
traffic in total. Similarly, the symmetric claims hold if th@ayer p: be a point of discontinuity off;(-). Let f be the flow vector
decreases her price. More precisely we have corresponding to the pricgswith playeri chargingp;. Assume

without loss of generality thaf;(-) is upper-discontinuous ai;.
Then there exists a smal > 0 such that for any > 0, if playeri

Lemma 2.2 Letps, ..., px be a price vector with associated flow | ) 1 '
: ; ; increase®; by e, the flow going through thé” link will decrease
vector f1,.. ., fr. Assume that the first player increases her price ¢ ' : .
to p; > p1 while the others keep their prices unchanged. Denote by at I_eastA (no_tlce that it must decrease by Lemma 2.2). Since
the new flow vector by!, ..., f.. If fi > 0, then latencies are strictly monotone, the loss of at Iéafiow decreases
bk ' ' the latency on link by at least somé& > 0. Choose: < L. Then
1. f1 < fi1, if player ¢ selects a price of; + ¢, the resulting latency will more
than offset the increase in price. Thus the disutility witictly
2. fl > fi, foralli # 1. decrease, contradicting Lemma 2.2.]
3. F' < F,whereF =Y. f;andF' =3, f/. Having shown that flow is a continuous function of price, i
- ! ! difficult to extend this result to show continuity of profitdeed,
The symmetric claim holds if player 1 reduces her price. application of elementary analysis yields the following.

PrROOFR We will assume Wi.thout loss qf generality .that there are | amma 2.4 Letr : R* i RF
at least two players with positive flow, since otherwise tteénes
are trivial.

1) Suppose the flow on link does not decrease. Then, since
the price increased, the disutility must strictly increaS®nsider
any other link that had positive flow. This link now has greate
disutility, and since the price has not changed, must camyem This continuity allows us to prove Lemma 2.1.
flow. But this implies that both the disutility and total flovave
increased, which is a contradiction.

2) Suppose some link # 1 loses flow. Since; is unchanged
and latencies are strictly increasing, the disutility matsctly de-
crease. This implies that all links that carried flow must reasry
less flow. Since we know that link loses flow, the total flow de-
creases. But then both the disutility and the total flow hase d
creased, which is a contradiction.

3) Finally, since flow on any link other thaincan only increase,
the disutility can only increase, and thus the total volurhélcwv
can only decrease.[]

be the function mapping a vector of
pricesp to the vector of profits obtained by the players when they
charge the corresponding prices, i.e(p) = (m1,...,T,) Mmeans
that the profit of playet is 7; under the price vectop. Then the
functionr(+) is a continuous function gf.

PROOF OFLEMMA 2.1. The intuition behind the proof of this
lemma is based on the following observations. For a playebe
content, she must not be able to benefit by changing her pgrade a
The lemma will follow from observing that, in particular,eskvill
not benefit from very small changes to her price. Intuitivéhe
gain from an increase in price must be outweighed by thetiagul
loss of flow. In Figure 2 the shaded boxes indicate the imntedia
effect of a player increasing or decreasing her pwébouttaking
into account the resulting change in flow of the other play&te
actual resulting flow depends not only on playerlatency func-
tion, but also on the disutility curve (determining how mutdw
leaves the system altogether), and other players’ later{dieter-

_ The next lemma argues that the amount of flow routed along any ining how much flow they steal). For sufficiently small ineses

link is & continuous function of the players’ prices. in price, the magnitude of this loss is dictated solely by Ithzl
slopes of these curves, resulting in the first inequalitykehiise,

Lemma 2.3 Letp be a price vector and lef;(p;) be the amount the second inequality follows by considering a small desea

of flow routed through link as a function op; (assuming all other price.

prices inp are fixed). Then the functiofi(p;) is non-increasing More formally, let us prove the second inequality. The prioof

and continuous for any. the first one is analogous. Assume that playehanges her price



so that the system disutility is decreased by a tiny améumt 0.
Then the flow of a playej # ¢ will decrease by /a; and the total
flow in the system will increasey by-6/v™ 1. Hence playeti’s
flow must increase b f; = §(3°., = — -L). This increase in

JF£ a_j v
; H 1 1
flow will result to a latency increase af - 6(3_,_; i =)- So

i must decrease her price Byp; = 6 +a; - 6(3;; % - ).

We next observe that for amy> 0, there exists a small enough
such thatAp; /A f; > pi/fi —e. Indeed, ifAp; /A f; < pi/fi—€
thenp;Af; > fiAp; + fiAfie. Now player: can obtain more
profit by setting her price tp; — Ap;, because her new profit would
be (pi — Api)(fi + Afi) = pifi — fildpi + pidfi = ApiAfi >
pi - fi if we choosed small enough to ensure thaf; > Ap;
(which we can do due to continuity of latencies and demand}. B
this can not happen, since playaxas content. Thus in the limit of
0 approaching 0 we gekp; /Af; > pi/ fi.

Therefore ag tends to 0,

s+a-5(S L Ly ap > By,
v Ji
Pi 1 1
N T R
fi (ﬁ“aJ v+)
1. ps 11
1 i — )2 = — - —),
+a(_‘ v+)*fi(__aj )
J#i J#i
i 1 1
oL Ly<
hi A

We can now analyze the best response funcflanR”* — R,
This function maps a price vectprto another price vectqyr, such
thatp; maximizes playei’s profit assuming all other players price
as inp. We define playei’s best response to pe = 0 if there is no
price at whichi can derive a positive profit. We will use Lemma 2.1
to show that a player’s best response is unique, and heng¥ the
is well defined. This and the continuity 6f-) will be sufficient to
prove the existence of pure equilibria.

Lemma 2.5 For any set of existing prices, all players’ best re-
sponse is unique (and hence fB) is well defined). Furthermore
B3(+) is a continuous function qf.

PROOF. Suppose that the best response for some plaigemot
unique, and lep; > p; be two best response prices for player
i. Let f/ and f” be the corresponding flow vectors when player
selects pricep; andp!’ respectively, with corresponding total flow
F’andF”. Lemma 2.2 implies thaf] < f/’ andF’' < F". Let
v" denote the right slope af(-) at F’ andv” denote left slope of
u(+) at F”. By concavity ofu(-), v > v” (recall that both values
are negative).

Since botlp; andp;’ are best responses for playgwe can apply
Lemma 2.1:

(s

. /
a; v

i
Pi 1 1
F_ai)( — =1

vy — a
¢ J#i i#i 7

This is a contradiction, and thus a players best responsé lmus
unigue. The continuity of(-) is a direct consequence of the con-
tinuity of 7(-) (Lemma 2.4). O

To be formal, we have to take a sequencé'sfapproaching 0.

Since there is a maximum prid@ such that any player charging
above P gathers no profit, we can restrict our attention @)
to the convex and compact regidd, P]*. Thus we can apply
Brouwer's fixed point theorem and thereby prove the follayvin

Theorem 2.6 The network pricing game has a Nash equilibrium.

3. PRICE OF ANARCHY

In this section we prove our main result, namely that selfish b
havior on the part of the players yields a social utility tisaithin
a small constant factor of optimal. More formally, we prove

Theorem 3.1 The price of anarchy for the network pricing game
is at most 5.064.

The first step is to take a general instance of a game withgrice
at Nash equilibrium, and create a new game instance in whigh t
equilibrium gathers no traffic utility (see Figure 3). In dgithis
we preserve the original equilibrium, and only increasetiee
of anarchy. Now, in this modified game, we can bound the social
utility of an optimal solution solely against the player firat Nash
equilibria.

We will consider a general instance of the game with digutili
functionu and latencieg;(-) for 1 < ¢ < k. We assume we have
a price vectomp at Nash equilibrium, with induced flow vectgr,
total flow volumeF' and disutilityd.

Lemma 3.2 Define a new disutility curve

ife<F
otherwise

v ={

Then pricegp are also at Nash equilibrium given this truncated
demand curve, and the price of anarchy of this instance has no
decreased.

PrRooF Clearly no player has an incentive to decrease her price,
as this would increase the total flow, and thus yield a flowaect
that was achievable undefz). But we assumed thatwas at equi-
librium for u(zx), so this can not benefit any player. Furthermore,
no player has in incentive to increase their price, as thentiat
gain of any such move is strictly smaller than it would haverbe
prior to the truncation.

As for the price of anarchy, note that this truncation destrall
traffic utility of the given equilibrium, as shown in Figure But
this is also an upper bound on the decrease in the socidl uifli
the new optimal solution under the truncated disutilityveurThus
the price of anarchy can only increasd.]

The next lemma provides a simple lower bound on the price that
players charge at equilibrium, both in terms of the systesutdity
d and their own latency function. This result will clearly bseful
in lower bounding player profits in the Nash equilibrium.

4bi where

Lemma 3.3 At equilibrium, any playef chargesp; >
b; = £;(0).

PrROOF For simplicity, we will assume we have a truncated
disutility curve, although the lemma is also true withoutths-
sumption. Defing = d — b;. We will claim that if player; charged
pi < %, then she can increase her profit by chargingObserve
thata; - f; + b; + p; = d. Thus we can express

2
q

i =Di- Ji =Dpilq —Dpi)/a;: < .
mi =pi - fi = pi(lqg—pi)/a 1a,



(a)

(b)

Figure 3: A disutility curve with prices and flows at equilibr ium and the corresponding truncated curve.

However, since we are assuming a truncated demand curve, in  Now we are left with the task of bounding the value gathered by

charging, the resulting flowf’ would be determined solely by
£;(x). Hence,f’ satisfies the same condition, i@ f; +b; + £ =

d. Thus the profit would be exactlf%. O

the shallow playet in the optimal solution. We again know that to
gather more value with, the optimal solution must charge a lower
price and carry more flow, as any benefit in raising the priagdco
also be realized by the player at equilibrium. Thus our comée

We now prove our main result. We consider an instance of our that somehow the optimal solution sends a huge amount of flow a

game with equilibrium priceg, and corresponding flow vectgh,
total flow F', and disutilityd. We assume that our disutility function
u(z) is truncated as in Lemma 3.2, i.e(z) = d on the interval
[0, F], and thudJ(p) is represented entirely by player profit.

ProoF oFTHEOREM3.1. As observed, in our truncated instance

of the game, the given Nash equilibrium generates no traffic u
ity. Thus we must bound both the player profit and traffic wili
of the optimal solution against the profit of the players asfNa
equilibrium. We will consider an optimal price vectot, with cor-
responding flows'™, F*, and disutility valued*. We can trivially
bound the traffic utility of the optimal solution by* - (d — d*),
and we can attributg;" - (d — d*) of this bound to each player
1. Thus we will think of each player in the optimal solution as
contributingr; + f; - (d — d*) to U(p*).

We first partition the players by the slope of their latencMere
precisely, let us call a playsteepf a; > 1 L1 Otherwise, we will
say a player ishallow We will now argue that there is at most one
shallow player. Then we will show that the contribution ofteep
player: to the optimal solution can be bounded in termsrof Fi-
nally, we consider two cases regarding the shallow playatéscy.
In both cases, we show that the contribution of this shallayegr
to the optimal solution can be bounded within a constanbfaat
the sum of the profits of all the players at Nash equilibrium.

Let vt be the right slope ofi(z) at F. Consider any shallow
playeri. By Lemma 2.1, we know thd#: —a:) (3, ., o~ — %) <

JF#i ag

1. Sincei: is shallow, the first term is greater thaﬁ? But v
is negative, so for alj # i we must haver; > 2= > a;, as
otherwise the above inequality would be violated. Il‘hls iepthat
1 must have the unique minimum slope, and thauist be the only
shallow player.

Consider a steep playgr As in the proof of Lemma 3.2, we
can argue that the optimal solution can not gather more \thkre
m; by charging more thap;, as then the player could selfishly do

the same. Thus we only need to consider how the optimal solu-

tion might benefit by having} < p;. By assumptiong; > %?—J
The maximum feasible rectangle (corresponding to gathenbd
ity) that is bounded above hy(x) and below by/;(x) has an area

of 1.1257;, which is achieved whea; = 1 ”—J by setting a price

of %pj and inducing a flow of}lfj. Thus nearly all players gather
almost as much utility as they would in an optimal solution.

lower price oni, thereby gathering substantially larger social utility.
We consider two cases, based on just how shallgatency is.

Case 1:4;(4f;) — £:(fi) > pi/4. In this case the latency is not
very shallow, and we can simply bound the maximum contrdsuti
of player: to the optimal solution by ignoring all other players and
assumingu(z) = d. Then the best choice faris to charge?=%
(thereby maximizing the area of a rectangle inscribed ireagle).
Given our condition orf;, this can be shown to yield a profit of at
most3.52;.

Case 2:4;(4f:) — £i(fi) < pi/4. This case deals with a very
shallow latency. A trivial upper bound on the amount thatapg-
mal solution can gather througtis

JRCEETIE
wherer is defined byu(r) = ¢;(f;). This is the value could
gather in the absence of other player {fr) never exceedet ( f;).
We will partition this area into two regions, representing/,. (u(x)
4;(fi))dz, and B, representing the rest, with arédd — ¢;(f;)),
as shown in Figure 4(a).

To bound A, recall thata; < %p—? Since the slope of's la-
tency is shallow, the disutility curve must be relativelgegt, as
otherwise,: could decrease; slightly and dramatically increase
fi. More precisely, Lemma 2.1 implies that < —1Z.. Since

u(x) is concave, the area iA can be upper bounded by a triangle
of heightp; and slopev™. This has area at mogt - f; = ;.

To boundB, we partition the steep players (all% ) into two
classes. Lef ™ be the set of all playersfor whomb; > £;(f;) +
pi/2, and letS™ consist of all remaining steep players, as shown in
Figure 4(b). Defing"~ and F'™ to be the total flow carried by all
players inS~ andS™ respectively at equilibrium. By Lemma 3.3,
we know that for any playej € S*, p; > (d — b;)/2, and hence
the total profit of all players i is at leasp; F* /4. Furthermore,
we can argue tha&~ must be small, as if it was very large, player
¢ would have an incentive to undercut all the playersSin. In
particular, we claim that"~ < 3f;. Otherwise, playei would
have an incentive to charge a quarter of her current prices tbu
the above shallowness condition on her latency, she is autaed
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Figure 4: (a) The regionsA and B for the shallow player, (b) Partitioning the steep playersito S~ and S™.

to more than quadruple her flow before any playe$inroutes any
traffic. Clearly this would generate more profit, contraidigtour
assumption of equilibrium. Thus we can bound the total afeid o
by dmi +43 ", ;.

The combined area ot andB is thus at mosbm; +43 ., m;,
and hence the optimal solution can gather a value of no mare th
5m; +5.125 ., m;. Thus the price of anarchy is at most 5.125.

If we return to our bound on the area 6f, note that we can
generalize our definition of ~ to be the set of all players for
whomb; > ¢;(fi) + ap; for some reaky, and defineS™* similarly.
Optimizing overa yields the desired bound of 5.064[]

For the special case wheép(0) = 0 for all 7, a proof similar to
the one above yields the following

Theorem 3.4 The price of anarchy of the network pricing game
with a concave demand curve and linear latencies of the fo(m) =
a;x is bounded by 3.125.

To conclude this section we show that the price of anarchy is
lower bounded by 3/2.

Observation 3.5 There exists a 1-player instance of the network
pricing game with linear latencies and concave demand cwhieh
has a price of anarchy of 3/2.

PROOF Consider the disutility curva(z) = 1for0 < z <1
andu(z) = 2 —z for1 < z < 2 and let the player have zero
latency. Then she would obtain maximal profit of 1 by charging
a price of 1 for a social value of 1. Yet the optimal solutiom ca
gather a social value of 3/2 by charging 0. Hence the lowentou
Finally, it is not difficult to slightly modify this exampleotensure
(strict) monotonicity of latency and demand curveg.]

Remark: It is not difficult to prove that for a single player the
bound 3/2 is tight.

4. EXTENSIONS AND RELATED MODELS

In this section we analyze what happens to the network myicin
game when we relax the assumptions on the latency functimhs a
the demand curve. First, we consider convex, as opposedear]i
latency functions, while retaining concave demand.

Unfortunately, the network pricing game with convex laiesc

and concave demand curve may not have a Nash equilibrium as

illustrated by the following 2-player example. Let the dibty
curve be the unit boxu(z) = 1 forall 0 < z < 1 andu(z) =0

otherwise. Define the players’ latencies/agr) = 0 for all =, and
la(xz) = 1/3forall 0 < z < 1/3 and{2(z) = oo otherwise.
We claim that this instance of the game has no Nash equitibriu
Indeed, assume that there is a Nash equilibrium with tosaitity
d. If d < 1/3 then the first player must make a profit of no more
than1/3. Yet she has a guaranteed profity8 if by charging1.
If d > 1/3, then for the second player to be content, she has to
charge a price of — 1/3, and thus the first player can earn a profit
of at most2d/3 by chargingd. But then if the first player reduces
her price slightly tad — ¢ then all the flow will route through her
link and she will earn a profit of — ¢ > 2d/3. Hence the game
has no Nash equilibrium. Although the above example vislate
continuity and strict monotonicity of the latency functgoand the
demand curve, it is not difficult to alter it slightly so as tatisfy
these conditions while still maintaining the nonexistené&ash
equilibrium.

On the other hand, when such a network pricing game does have
a Nash equilibrium, the proofs of the previous sections @b
tended to yield the same bounds on the price of anarchy.

Theorem 4.1 If an instance of the network pricing game with con-
vex latencies and concave demand has a Nash equilibrium, the
the price of anarchy is bounded by 5.064. Furthermore, itiblay

is exclusively due to congestion (i.e. all links h&@y@) = 0), then

the bound can be improved to 3.125.

We next consider instances of the game with convex, instéad o
concave, demand curves, while maintaining convex latsnd
example similar to the one above can be constructed to shaiw th
this game may still not have a Nash equilibrium. Unfortuhate
unlike the game with concave demand curves, even when Nash
equilibria do exist, we do not have any such bounds, as thest e
examples with unbounded gap between the social utility oashN
equilibrium and an optimal solution.
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