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Abstract

Designing revenue-maximizing combinatorial auctions
(CAs) is a recognized open problem in mechanism design.
It is unsolved even for two bidders and two items for sale.
Rather than attempting to characterize the optimal auction,
we focus on designing approximations (suboptimal auction
mechanisms which yield high revenue).
Our approximations belong to the family of virtual valuations
combinatorial auctions (VVCA). VVCA is a Vickrey-Clarke-
Groves (VCG) mechanism run on virtual valuations that are
linear transformations of the bidders’ real valuations.
We pursue two approaches to constructing approximately op-
timal CAs. The first is to construct a VVCA with worst-case
and average-case performance guarantees. We give a log-
arithmic approximation auction for basic important special
cases of the problem: 1) limited supply of items on sale with
additive valuations and 2) unlimited supply. The second ap-
proach is to search the parameter space of VVCAs in order
to obtain high-revenue mechanisms for the general problem.
We introduce a series of increasingly sophisticated algorithms
that use economic insights to guide the search and thus reduce
the computational complexity. Our experiments demonstrate
that in many cases these algorithms perform almost as well
as the optimal VVCA, yield a substantial increase in rev-
enue over the VCG mechanism and drastically outperform
the straightforward algorithms in run-time.

1 Introduction
Combinatorial auctions (CAs), where agents can bid on bun-
dles of items, are popular autonomy-preserving ways of al-
locating items (goods, tasks, resources, services, etc.). They
are relatively efficient both in terms of process and outcome,
and are extensively used in a variety of allocation problems
in economics and computer science.

One of the main open problems in CAs (and the whole
field of mechanism design) is designing optimal auctions,
that is, auctions that maximize the seller’s expected rev-
enue. A major advance on the problem was the full char-
acterization of 1-item auctions (Myerson 1981), later ex-
tended to the case of selling multiple units of the same
item. However, the characterization of multi-item auctions
has been obtained only for very specialized models (two
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items, two agents drawing valuations for the items from
the same binary distribution (Avery & Hendershott 2000;
Armstrong 2000)).

Rather than attempting to characterize the optimal CA,
we focus on designing approximations (suboptimal auction
mechanisms which yield high revenue). Our approximations
belong to the family of virtual valuations combinatorial
auctions (VVCA) (Likhodedov & Sandholm 2004). VVCA
is a Vickrey-Clarke-Groves (VCG) mechanism run on vir-
tual valuations that are linear transformations of the bidders’
real valuations. The coefficients of these linear transforma-
tions parameterize the family of VVCAs. The restriction to
linear transformations is motivated by incentive compatibil-
ity.

In this paper we use the VVCA concept to design the
mechanisms, which yield high revenue. In Section 3 we de-
sign a randomized mechanism, based on VVCAs that yields
a logarithmic worst-case approximation and deterministic
VVCAs that yield a logarithmic average case approximation
to the optimal auction, for the basic settings of 1) items in
limited supply and additive valuations (no complementary
or substitutable items), and 2) items in unlimited supply and
general valuations.

In Section 4 we pursue the approach of designing the
high-revenue auctions automatically. We present increas-
ingly sophisticated algorithms for searching the parametric
families of VVCAs and a more general family of affine max-
imizer auctions (AMA) for good parameters for the specific
setting (seller’s prior over the bidders’ valuations). The al-
gorithms use economic insights to navigate the search space
efficiently in order to enhance computational speed. The ex-
periments show that they yield significantly higher revenue
than the VCG, that they scale much better than the previous
automated design algorithms for this problem (Conitzer &
Sandholm 2003; Likhodedov & Sandholm 2004), and that
the more sophisticated methods indeed drastically outper-
form the more obvious ones in both absolute run-time and
anytime performance.

2 Notation and framework
We study a setting with one seller (index 0 refers to the
seller), a set N of n bidders, and a set G = (g1, . . . , gm)
of heterogeneous items on sale.

In an auction, the bidders submit bids for the bundles of



items and the auction rules determine the allocation a and
the payments t, where ai is the bundle of goods that bidder
i receives and ti is the payment by bidder i.

2.1 Valuations and mechanism design principles
We make the standard assumption that each bidder i has a
quasi-linear utility function ui = vi(a) − ti, where vi(a)
is the valuation of bidder i for allocation a. Each bidder’s
true valuations are private information. Thus a bidder might
strategically misrepresent her valuations in order to gain
higher utility.

As is standard in the (computer science) mechanism de-
sign literature, we focus on ex-post incentive compatible
(IC) mechanisms, that is, mechanisms where each bidder
maximizes her utility by bidding truthfully, regardless of
what valuations the other bidders reveal. Such mechanisms
are also called dominant-strategy mechanisms. They are ro-
bust in the sense that the bidders do not benefit from counter-
speculating each others’ valuations and rationality. Limiting
the scope to truthful mechanisms is without loss of gener-
ality: the well-known revelation principle shows that any-
thing that can be accomplished with an arbitrary mechanism
can also be accomplished with a truth-promoting mecha-
nism (Mas-Colell, Whinston, & Green 1995).

As usual, we also require that the mechanism be ex post
individually rational (IR): each bidder is no worse off by
participating than not participating, for all possible valuation
revelations of the other bidders.

2.2 Affine maximizer auctions (AMA)
An important family of auctions that satisfies the above con-
ditions is the affine maximizer auction (AMA).
Definition 2.1 Affine maximizer auction (AMA). Each
bidder i submits her valuations, vi. The allocation, a, is
computed so as to maximize1

SWµ
λ (a) =

n∑
i=0

µivi(a) + λ(a) (2.1)

Here µi are positive numbers and λ(a) is an arbitrary func-
tion of allocation. Both µ and λ are chosen by the auction
designer, and they are common knowledge. The payments
are

ti =
1
µi

[∑
j 6=i

µjvj(a−i) + λ(a−i)−
∑
j 6=i

µjvj(a)− λ(a)
]

where

a−i = argmaxã

n∑
j=0,j 6=i

µjvj(ã) + λ(ã) (2.2)

An AMA with all µ = 1 and λ ≡ 0 is the famous
Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 1961;
Clarke 1971; Groves 1973), aka Generalized Vickrey Auc-
tion). The winning allocation of the VCG is efficient, that
is, it maximizes the sum of the bidders’ true valuations.

1Throughout this paper, ties in allocation rules can be broken
arbitrarily.

The AMA was introduced by Roberts (Roberts 1979). He
proved that AMAs are the only ex-post incentive compat-
ible mechanisms over unrestricted domains of valuations.
The valuations in combinatorial auction (CA) domain are
not unrestricted because they satisfy the following restric-
tions: 1) no externalities: the valuation of any bidder i for
each allocation a depends only on the bundle ai that the bid-
der receives, not on how the items that i does not receive get
allocated, 2) free disposal: the value of a subset of a bun-
dle is less than or equal to the value of a bundle (∀ b

′ ⊂ b,
vi(b

′
) ≤ vi(b)), and 3) the valuation for the empty bun-

dle is 0. However, even in the CA domain the set of in-
centive compatible auction mechanisms is almost limited to
AMAs: (Lavi, Mu’Alem, & Nisan 2003) showed that under
certain natural assumptions, every ex post incentive compat-
ible CA is an AMA.

Therefore it is natural to look for high-revenue CAs
within the AMA family. This approach reduces the prob-
lem of finding a good CA to a search in the space of AMA’s
parameters, as studied in (Likhodedov & Sandholm 2004).

In this paper we focus on an important subclass
of AMA—virtual valuations combinatorial auctions
(VVCAs)—introduced in (Likhodedov & Sandholm 2004).

Definition 2.2 Virtual valuations combinatorial auction
(VVCA). The mechanism computes an allocation a that
maximizes

SWµ
λ (a) =

n∑
i=0

[
µivi(a) + λi(a)

]
(2.3)

Here µ are positive, λi(a) = c{i,b} for all allocations that
give bidder i exactly bundle b, and λi(a) = 0 otherwise. The
µ and c{i,b} are parameters chosen by the auction designer,
and they are common knowledge.

The payment rule is

ti =
1
µi

[∑
j 6=i

[
µjvj(a−i) + λj(a−i)

]
−

∑
j 6=i

[
µjvj(a) + λj(a)

]
− λi(a)

]
(2.4)

The revenue of the seller is the sum of payments of bidders,
that is

∑n
i=1 ti.

The VVCA can be thought of as Vickrey-Clarke-Groves
mechanism run on bidders’ virtual valuations rather than
their real valuations: the mechanism replaces the valuation
of bidder i, vi(a), with the virtual valuation µivi(a)+λi(a).
This technique allows one to apply the ideas of the Myerson
revenue-maximizing single-item auction (Myerson 1981) to
the case of CAs: the revenue can be increased by setting re-
serve prices and boosting the valuations of disadvantaged
bidders (disadvantaged bidders are ones that are likely to
have low true valuations). Both of these levers increase com-
petition in the auction and thus increase the expected rev-
enue of the seller. In the VVCA, these levers are controlled
by setting the parameters µ and λ.



2.3 Average-case and worst-case framework
The problem of designing high-revenue CAs can be ana-
lyzed in two different frameworks:

1. Average case analysis is the standard approach in design-
ing high-revenue auctions, both in economics and com-
puter science. In this setup we assume that the valuations
of the bidders are drawn from some underlying proba-
bility distributions (not necessarily the same for different
bidders), and the auction designer knows the distributions,
but not the exact draws, i.e. valuations, of the bidders. We
do not assume that the bidders know each others’ distribu-
tions. In this framework the goal is to construct an auction
which yields high revenue on average with respect to the
distributions.

2. Worst case analysis of the problem has sometimes been
used in computer science: in that framework the objec-
tive is to construct an auction with worst case perfor-
mance guarantees (Goldberg, Hartline, & Wright 2001;
Guruswami et al. 2005). The advantage is that the design
typically does not require complete knowledge of the un-
derlying distributions, although the mechanisms are not
completely prior-free. A disadvantage is lower expected
revenue. An essential feature of auctions with worst-case
performance guarantees is randomization: in many cases
deterministic auctions perform far worse than randomized
ones with respect to the worst case performance objective
(Goldberg, Hartline, & Wright 2001).

In this paper we take the more standard approach of aver-
age case analysis. However, some of the results also hold in
the worst case framework, as the propositions will point out.

In the next section we present theoretical results on de-
signing CAs whose revenue is within a provable bound of
optimal. In the section after that, we present iterative algo-
rithms for automatically designing CAs with high expected
revenue.

3 Logarithmic approximations to the optimal
CA

In this section we study two basic subclasses of CA setting.
For each setting, we derive VVCAs that guarantee average-
case and worst-case revenue that are provably within a
bound of optimal. It should be noted that the revenue per-
formance of VCG auction can be arbitrarily bad (Conitzer &
Sandholm 2004).

3.1 Additive valuations
In this section we study the special case where valuations
are additive (∀i ∈ N,∀b ∈ 2G, vi(b) =

∑
g∈b vi({g})). In

addition we make the following mild natural assumptions
about the priors:

1. Define l to be the lowest possible valuation of any bidder
for any individual item. We assume l > 0, and that the
auction designer knows l. (l can be arbitrary small.)

2. Define h to be the highest possible valuation of any bid-
der for any individual item. We assume that the auction
designer knows h.

We now construct a CA which guarantees a fraction
1

2+2blog (h/l)c of the revenue of the optimal CA, even in the
worst case. This generalizes the result in (Guruswami et al.
2005), which was for bidders that only demand one item
each.
Proposition 3.1 Let V V CAk be the virtual valuations
combinatorial auction with the following parameters:

1. µi = 1 for all i.
2. c{i,b} = 0 for all i > 0 and all b

3. c{0,gj} = l · 2k for all items gj in G

4. c{0,b} = |b|·l·2k for all bundles b, where |b| is the number
of items in b

In other words, V V CAk is a Vickrey-Clarke-Groves auction
in which the seller submits a bid of l · 2k for every item (and
any number of those bids can be accepted).

Consider the mechanism M , which uniformly randomly
selects k from {0, 1, ..., blog (h/l)c} and runs V V CAk.
Then M is ex-post incentive compatible, ex-post individu-
ally rational and for any given set of valuations v yields the
expected revenue of at least

Ropt

2 + 2blog (h/l)c
where Ropt is the revenue of the optimal CA (note, that the
bound hold for all sets of valuations v and the expectation is
taken w.r.t. k, which is the only source of randomness).

Before giving the proof, we need to introduce the fol-
lowing notation. Let aeff be an efficient allocation, ak be
the winning allocation of V V CAk, and ak

−i be the alloca-
tion that would have won had bidder i not submitted any
bids. Let vN (gj) be the highest bid for item gj : vN (gj) =
maxi′∈N vi′(gj). Also let vk

N∪{0}(gj) be the highest bid
for item gj , including the bid of the seller: vk

N∪{0}(gj) =
max

{
vN (gj), l · 2k

}
. Finally, let vk

N∪{0}\{i}(gj) be the
highest bid for item gj , including the bid of the seller,
but excluding the bid of bidder i: vk

N∪{0}\{i}(gj) =
maxi′∈{1...n}\{i}

{
vi′(gj), l · 2k

}
.

Because the valuations are additive, aeff allocates every
item gj according to vN (gj), that is, to bidder i′ (1 ≤ i′ ≤ n)
that submitted vN (gj). Since the seller’s bids are also addi-
tive, ak allocates every item gj according to vk

N∪{0}(gj) and
ak
−i allocates every item gj according to vk

N∪{0}\{i}(gj).
We will use the following lemma in the proof.

Lemma 3.1 Consider a set of bidders’ valuations v. If bid-
der i wins bundle b in V V CAk, she pays at least |b| · l · 2k.
Proof. By Equation (2.4), the payment of bidder i is

ti = SWµ
λ (ak

−i)− SWµ
λ (ak) + vi(b)

=
(∑

gj /∈b

vk
N∪{0}\{i}(gj) +

∑
gj∈b

vk
N∪{0}\{i}(gj)

)

−
m∑

j=1

vk
N∪{0}(gj) + vi(b)



Obviously vi(b) =
∑

gj∈b vk
N∪{0}(gj). Thus the last two

terms simplify to

−
m∑

j=1

vk
N∪{0}(gj) + vi(b) = −

∑
gj /∈b

vk
N∪{0}(gj)

For the items which are not allocated to bidder i we have∑
gj /∈b

vk
N∪{0}\{i}(gj) =

∑
gj /∈b

vN∪{0}(gj)

Therefore
ti =

∑
gj∈b

vk
N∪{0}\{i}(gj)

which by definition of vk
N∪{0}\{i} is no less than |b| · l ·2k. 2

Proof of Proposition 3.1. Since every V V CAk is ex-post
incentive compatible and ex-post individually rational and
M is a randomization over V V CAk, M is also ex-post in-
centive compatible and ex-post individually rational.

We now prove the revenue bound. By Lemma 3.1, any
bidder that wins a bundle, b, in V V CAk, pays at least
|b| · l ·2k. Because valuations are additive, ak allocates every
item gj to the same bidder as aeff if vN (gj) ≥ l · 2k, and
leaves the item for the seller otherwise. Therefore the rev-
enue in V V CAk is at least nk · l ·2k, where nk is the number
of such gj that vN (gj) ≥ l · 2k:

nk =
m∑

j=1

I
[
vN (gj) ≥ l · 2k

]
,

where I is an indicator function which equals 1 if its argu-
ment is true and 0 otherwise.

So, when the valuations of bidders are given by v, the
expected revenue of mechanism M , Ek

[
RM (v)

]
, is at least

1
1 + blog (h/l)c

blog (h/l)c∑
k=0

l · 2k ·
m∑

j=1

I
[
vN (gj) ≥ l · 2k

]
=

1
1 + blog (h/l)c

m∑
j=1

blog (h/l)c∑
k=0

I
[
vN (gj) ≥ l · 2k

]
l · 2k (3.1)

The sum on the right of (3.1) can be bounded as follows

vN (gj) ≤ l +
blog (h/l)c∑

k=0

I
[
vN (gj) ≥ l · 2k

]
· l · 2k (3.2)

≤ 2 ·
blog (h/l)c∑

k=0

I
[
vN (gj) ≥ l · 2k

]
· l · 2k

Substituting (3.2) into (3.1) we obtain

Ek

[
RM (v)

]
≥ 1

2 + 2blog (h/l)c

m∑
j=1

vN (gj) (3.3)

Here,
∑m

j=1 vN (gj) is the welfare of the efficient alloca-
tion. No individually rational auction can yield more rev-
enue than that. Therefore the revenue of the optimal auction
is bounded from above by

∑m
j=1 vN (gj). It follows that

Ek

[
RM (v)

]
≥ Ropt(v)

2 + 2blog (h/l)c
.2 (3.4)

The same bound can also be made to hold in the average-
case framework with a deterministic CA:
Corollary 3.1 There exists such k that V V CAk yields a
fraction 1

2+2blog (h/l)c of the revenue of the optimal auction
on expected revenue basis.
Proof. By construction of M in Proposition 3.1, we have

Ek

[
RM (v)

]
=

1
1 + blog (h/l)c

blog (h/l)c∑
k=0

RV V CAk(v)

Substituting Ek

[
RM (v)

]
into (3.4) and taking expecta-

tions over v we obtain∑blog (h/l)c
k=0 Ev

[
RV V CAk(v)

]
1 + blog (h/l)c

≥ Ev

[
Ropt(v)

]
Since the sum of V V CAk contains exactly 1+blog (h/l)c

terms, there exists such k0 that

Ev

[
RV V CAk0 (v)

]
1 + blog (h/l)c

≥ Ev

[
Ropt(v)

]
k0 can be found by enumeration of all V V CAk and evalu-
ating their expected revenues.2

The logarithmic bounds in Proposition 3.1 and Corol-
lary 3.1 were obtained by comparing revenue of our auctions
to the welfare of an efficient allocation, SW (aeff ), which
obviously bounds the revenue of any individually rational
auction. This proof technique cannot get us past the log-
arithmic approximation, as demonstrated by the following
example.
Example 3.1 Consider an n-item auction with n bidders.
Assume the valuation of bidder bi for item gj is drawn from
distribution Fi with the density

fi(vi) =

{
h

(h−1)v2
i

for vi ∈ [1, h]

0 otherwise

The valuations of other bidders for item gj are 0. The
valuations for the bundles are additive.
In the above setup no incentive compatible individually ra-
tional mechanism can raise more than(

1− 1
h

)
·
Ev

[
SW (aeff )

]
lnh

on expected revenue basis. Due to limited space, we omit
the proof.

3.2 Unlimited supply
Another special case of the optimal CA design problem is
the case when items are available in unlimited supply: the
auctioneer is still selling items g1, . . . gm, but each item is
now available in an infinite number of copies. In this setting
we assume that each bidder is interested in at most one copy
of every item. This is not a restrictive assumption, since
the preferences of a bidder who wants several copes of the



same item can be expressed by adding these copies to the
set of items G. As in Subsection 3.1, we assume that the
lowest and highest possible valuation (for any bidder for any
bundle), l and h, are known by the auction designer. We do
not assume that valuations are additive.

Since items are available in unlimited supply, there is no
competition among the bidders: under the efficient alloca-
tion every bidder is allocated her most wanted bid. Due to
free disposal, the allocation aeff which allocates a bundle
bG with all items in G to every bidder is also efficient. This
allows us to prove the following:

Proposition 3.2 Let V V CA′k be the virtual valuations
combinatorial auction with

1. µi = 1 for all i.
2. c{i,b} = −∞ for all i > 0 and all b 6= bG

3. c{i,bG} = −l · 2k for all i ∈ N .

Consider the mechanism M ′ which uniformly randomly
selects k from {0, ...blog (h/l)c} and runs V V CA′k. M ′

is ex-post incentive compatible, ex-post individually ratio-
nal and for every given set of valuations v yields expected
revenue of at least

Ropt

2 + 2blog (h/l)c

where Ropt is the revenue of the optimal auction.

Proof. M ′ is ex post incentive compatible and individually
rational because it is a randomization over ex post incentive
compatible and individually rational auctions. Let ak be the
winning allocation in V V CA′k and ak

−i be the allocation
that would have been optimal had bidder i not submitted
any bids. Since there is no competition, ak

−i and ak are the
same for all bidders except for bidder i. By construction of
V V CA′k, bidder i wins bG iff vi(bG) ≥ −l · 2k and wins
nothing otherwise.

Since ak
−i and ak are equivalent for bidders other than i,

the payment of bidder i for bundle bG is

ti =
(
SWµ

λ (ak
−i)− SWµ

λ (ak)
)

+ vi(bG)

=
(
−vi(bG) + l · 2k

)
+ vi(bG) = l · 2k

Using the notation of Proposition 3.1, the expected rev-
enue of mechanism M ′, Ek

[
RM (v)

]
, can be written as

1
1 + blog (h/l)c

blog (h/l)c∑
k=0

l · 2k
n∑

i=1

I
[
vi(bG) ≥ l · 2k

]
≥∑n

i=1 vi(bG)
2 + 2blog (h/l)c

=
SW (aeff )

2 + 2blog (h/l)c
≥ Ropt(v)

2 + 2blog (h/l)c
.2

Again, the same bound can be obtained with a determin-
istic mechanism in the average-case model.

Corollary 3.2 There exists such k that V V CA′k yields
fraction 1

2+2blog (h/l)c of the revenue of the optimal auction
on an expected revenue basis.

4 Designing high-revenue auctions
algorithmically

In Section 3 we designed several auctions with average-
case performance guarantees. However, these guarantees
are fairly weak and for most of the problem setups superior
mechanisms exist. In this section we suggest several auto-
mated approaches for constructing such mechanisms numer-
ically. We focus on average-case analysis.

We first consider general AMAs. The expected revenue is
a function of the AMA parameters. Thus the problem of de-
signing a high revenue auction is reduced to a search for the
maximum of expected revenue in the AMA parameter space.
We implement this search by sampling the valuations from
the prior distributions (every sample point is the complete
set of valuations of all bidders) and running a hill climbing
algorithm in the parameter space. The expected revenue of
the AMA with a given set of parameters is estimated by run-
ning that AMA on each sample and averaging. (Likhodedov
& Sandholm 2004) state the following two main obstacles
to this:

1. The revenue surface is not convex in the parameter space
and can have many local maxima.

2. There is a large number of parameters: (n + 1)m (one for
every possible allocation).
Our experiments, summarized in the table in Subsec-

tion 4.1 suggest that the local maxima of the revenue sur-
face are likely not to be significantly inferior that the global
maximum. That justifies the following algorithm:

Algorithm 1 (Basic local optimization of AMA)
1. Sample the valuations from the prior distributions.
2. Start at some known AMA (typically VCG or one of the

AMAs with average-case performance guarantees from
Section 3). Evaluate the mechanism at the sample points.

3. Run Fletcher-Reeves conjugate gradient ascent (Stoer &
Bulirsch 1980) in the AMA parameter space from the
starting point.

However, Algorithm 1 is still susceptible to the second
problem, i.e., the prohibitive number of optimization para-
meters. (For one, in order to compute the gradient for choos-
ing the direction of the climb at every step, the algorithm
must consider an exponential number of parameters.)

To address this problem we introduce new algorithms that
guess the climbing direction based on insights drawn from
the fact that we are in a CA domain. The idea of the first
of these algorithms is from Equation (2.2), i.e., the payment
rule of AMA. If the payment, ti, of bidder i in allocation a
is much lower than her valuation for a, one should expect
that the her payment could have been increased. The pay-
ment can be increased directly only by 1) decreasing λ(a),
2) increasing λ(a−i), or 3) modifying the µ parameters.

Algorithm 2 (Allocation boosting of AMA)
1. Sample the valuations from the prior distributions.
2. Start at some known AMA (typically VCG or one of the

auctions from Section 3).



3. For every sample point, compute the revenue loss on the
winning allocation a (variant a) or the second-best allo-
cation (variant b). (The revenue loss from a bidder is the
difference between the bidder’s valuation and her pay-
ment. The revenue loss is the sum of the bidders’ revenue
losses.) Note that each allocation may be associated with
multiple samples. Let the revenue loss of an allocation be
the sum of the revenue losses of the samples associated
with the allocation. Make a list of allocations in decreas-
ing order of revenue loss.

4. Choose the first allocation, a, from the list. If the list is
empty, exit.

5. Run Fletcher-Reeves conjugate gradient ascent in the
{µ, λ(a)} subspace of the AMA parameter space; leave
the other parameters unchanged. If the values of
{µ, λ(a)} did not change (i.e., we cannot further improve
the revenue by modifying {µ, λ(a)}), remove a from the
list and go to step 4. Otherwise go to step 3.

The only parameters considered by Algorithm 2 at each
step are the µ and λ corresponding to the winning or second-
best allocations. In practice the number of those allocations
is small, which dramatically decreases the number of para-
meters in consideration.

Another computational issue is that evaluating the rev-
enue requires computing the optimal allocation of the AMA,
i.e., solving a winner determination problem, which is NP-
complete (Rothkopf, Pekeč, & Harstad 1998). While there
are quite efficient tree search-based algorithms for the basic
CA winner determination problem (for a review, see (Sand-
holm 2006)), with AMA the parameter λ can be different
for every possible allocation, necessitating the explicit enu-
meration of all allocations in the winner determination. This
further hinders the scalability.

To partially solve this problem, and to search in a smaller
number of parameters than the number of parameters that
AMAs have, we can focus on VVCAs instead (a VVCA has
(n + 1)2m parameters, one for every bidder-bundle pair).
The parameters of VVCA are valuation (and not allocation)
specific, and all the methods for winner determination which
apply to the standard VCG mechanism (such as search algo-
rithms) also apply to VVCA. (In the experiments below we
use the dynamic program of (Rothkopf, Pekeč, & Harstad
1998).) Therefore each iteration of the design algorithm
will run faster. Below we present the design algorithm for
VVCAs (which is similar to Algorithm 2 for AMAs).

Algorithm 3 (Bidder-bundle boosting of VVCA)
1. Sample the valuations from the prior distributions.
2. Start at some known VVCA (typically VCG or one of the

auctions from Section 3).
3. For every sample point, compute the payments of winning

bidders. For every bidder i winning bundle b and paying
ti, compute vi(b)−ti, i.e., the revenue loss for that bidder-
bundle pair. Sum up the revenue losses over the sample
and make a list of bidder-bundle pairs in decreasing order
of the revenue loss.

4. Choose the first bidder-bundle pair, {i, b}, from the list. If
the list is empty, exit.

5. Run Fletcher-Reeves conjugate gradient ascent in the
{µ, c{i,b}} subspace of the VVCA parameter space ({i, b}
is the bidder-bundle pair which incurs the highest revenue
loss). Leave the values of all the other parameters un-
changed. If the new values of {µ, c{i,b}} do not change
(i.e., we cannot improve the revenue further by modifying
{µ, c{i,b}}), remove {i, b} from the list and go to step 4.
Otherwise go to step 3.

4.1 Experiments
We conducted experiments with the VCG, the ”optimal”
AMA obtained by grid enumeration of the parameter space,
followed by gradient ascent from every grid point (AMA*),
the ”optimal” VVCA obtained by grid enumeration of that
parameter space, followed by gradient ascent from every
grid point (VVCA*), and the four algorithms described in
this section: basic local optimization of AMA (BLAMA),
allocation boosting AMA (ABAMA variants a and b), and
bidder-bundle boosting VVCA (BBBVVCA).

The first experiment is with 2 items, g1 g2, and 2 bid-
ders with valuation functions v1 and v2, respectively. As-
sume v1(g1) and v1(g2) are drawn from the distribution F1.
v2(g1), and v2(g2) are drawn from the distribution F2. The
valuation of bidder 1 for the bundle of two items is given
by v1(g12) = v1(g1) + v1(g2) + c1 where c1 is a comple-
mentarity parameter drawn from distribution C. Similarly
v2(g12) = v2(g1) + v2(g2) + c2 where c2 is also drawn
from C. As test cases we used the three different settings
from (Likhodedov & Sandholm 2004). The results for vari-
ous distributions F1, F2, C are given in the following table.

Example I Example II Example III
F1 U [0, 1] U [1, 2] U [1, 2]

F2 U [0, 1] U [1, 2] U [1, 5]

C 0 U [−1, 1] U [−1, 1]

V CG 2/3 2.45 2.85

AMA∗ 0.88 2.79 4.22

V V CA∗ 0.87 2.79 4.20

BLAMA 0.78 2.78 3.76

ABAMAa 0.78 2.78 3.77

ABAMAb 0.78 2.78 3.76

BBBV V CA 0.79 2.79 3.75

The columns correspond to the three settings. The first
three rows specify distributions F1, F2, and C; the last seven
rows give the estimates of the expected revenue of the mech-
anisms, found by the different algorithms.

The second experiment tested scalability (thus we omit
the details of the prior distributions due to lack of space).
AMA∗ and V V CA∗ are obviously not scalable because
the grid search suffers from a total combinatorial explosion.
We thus conducted the scalability experiment with the other
strategies only, Figure 4.1. All of the techniques yield signif-
icantly higher revenue than the VCG. As expected, the eco-
nomically motivated methods are significantly faster (both
in terms of absolute run-time and anytime performance) than
the basic hill-climbing procedure. BBBVVCA is the fastest
because it has fewest parameters, and does not require ex-
haustive allocation enumeration at each iteration (for winner
determination).



Figure 4.1: Top: Run-time as the number of bidders grows (3
items). (Note that the ABAMAa and ABAMAb curves over-
lap). Middle: Run-time as the number of items grows (3 bid-
ders). Bottom: Anytime performance (7 items, 7 bidders).

5 Conclusions
The design of optimal (i.e., revenue-maximizing) combina-
torial auctions (CAs) is a recognized open research prob-
lem. The characterization is open even for two items and
two bidders. Our work was motivated by the desire to con-
struct high-revenue CAs in problems beyond that tiny size.
We designed randomized virtual valuations CAs (VVCAs)
that yield a logarithmic worst-case approximation and de-
terministic VVCAs that yield a logarithmic average case
bound from optimal revenue, for the basic settings of 1)
items in limited supply and additive valuations, and 2) un-
limited supply. We also presented increasingly sophisticated

algorithms for automatically designing high-revenue CAs
for the general CA setting. The algorithms use economic
insights to navigate the search space efficiently in order to
enhance computational speed. The experiments showed that
they yield significantly higher revenue than the VCG, that
they scale much better than the previous automated design
algorithms for this problem, and that the more sophisticated
methods indeed drastically outperform the more obvious
ones in both absolute run-time and anytime performance.
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