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Abstract

We study the implications of reduction-consistency and the Condorcet
principle in the context of choosing alternatives from a set of feasible al-
ternatives over which each agent has a strict preference. We show that
reduction-consistency is incompatible with a weaker version of the Con-
dorcet principle. On the domain for which majority rule is always non-
empty and agents’ preferences are strict, we provide two characteriza-
tions of majority rule: (1) it is the only efficient rule satisfying reduction-
consistency and (2) it is the only single-valued and efficient rule satisfying
the converse of reduction-consistency. Journal of Economic Literature
Classification Numbers: D63; D70; D71.

Keywords: consistency; converse consistency; the Condorcet principle;
Arrovian abstract choice problems; majority rule.
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1 Introduction

We consider the problem of selecting alternatives from a set of feasible

alternatives over which each agent has a strict preference (no indifference

between any two alternatives). Such a problem is called a “collective

choice problem” and arises naturally in a committee election: members

of a committee have to elect new members from a slate of candidates.

How should the choice(s) be made? A rule is a correspondence that asso-

ciates with each such problem a non-empty subset of the feasible set. The

literature devoted to the mathematical analysis of the problem is traced

to Borda (1781) and Condorcet (1785). Substantial contributions to the

early development of the literature are due to Arrow (1950; 1951).

The goal of this paper is to explore the implications of an invariance

property of rules proposed by Yeh (2004). The property is motivated

by the following observation. In real life, we often observe that once

a collective choice is made, then by law, it must be implemented and

independent of certain changes in the number of agents and in the number

of alternatives. Namely, the stability of a collective choice is guaranteed

by law. Thus, searching for rules that generate such stability turns out to

be very appealing. The invariance property serves for this purpose.

Consider a problem and an alternative x chosen by a rule for it. Imag-

ine now that some agents leave the scene and reassess the situation from

the viewpoint of the remaining agents. Since the departing agents left with

the understanding that x would be chosen, a condition for an alternative

to be acceptable as a choice by the remaining agents is that each of the

departing agents be indeed guaranteed a certain welfare level that is at

least as well off as what he was initially promised. The revised preferences

of the remaining agents are then obtained by restricting their original pref-

erences to those acceptable alternatives. The new problem so obtained is

called the associated reduced problem. The invariance property, reduction-

consistency, requires that in the reduced problem, x should still be chosen.

In this paper, we also consider the converse of reduction-consistency pro-
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posed by Hwang and Yeh (2004a), converse reduction-consistency, which

says that if x is chosen for all of its associated reduced problems, x should

be chosen for the original problem.

We first investigate the “Copeland rule” (Copeland, 1951), the “Simp-

son rule” (Moulin, 1988b), and the “uncovered set” (Miller, 1980; Fish-

burn, 1977; McKelvey, 1986) in light of reduction-consistency. As we show,

unfortunately, they are not reduction-consistent (Examples 1, 2, and 3).

Note that these rules are members of a family of rules that satisfy the so-

called Condorcet principle (Condorcet, 1785): if an alternative “majority-

dominates” any other alternative, then it should be chosen. One may

wonder whether no rule satisfies the Condorcet principle and reduction-

consistency. The answer is yes. In fact, a more general impossibility result

can be proved: reduction-consistency is incompatible with a weaker ver-

sion of the Condorcet principle, the q Condorcet principle (Moulin, 1988a):

given a real number q between 1
2

and 1, if an alternative is preferred over

any other alternative by more than the fraction q of the population, then

it should be chosen (Theorem 1).

The Condorcet principle is an appealing property and has been re-

ceived much attention from many authors. For instance, Moulin (1988a)

shows that the principle implies an incentive compatibility property, no-

show paradox : agents can be better off by abstaining from voting. Camp-

bell and Kelly (1998) show that the Condorcet principle is incompati-

ble with another incentive compatibility property, strategy-proofness : no

agent can be better off by misrepresenting his preference. Theorem 1 of-

fers another Condorcet incompatibility result from the aspect of a general

notion of consistency rather than from incentive compatibility viewpoints.

Our Condorcet incompatibility result is valid under the assumption

that rules are always non-empty on the domain for which agents have

strict preferences. This restriction excludes a well-known rule that satisfies

the Condorcet principle from consideration. It is majority rule (Campbell

and Kelly, 2003), which chooses the alternative, if it exists, that majority-
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dominates any other alternative. We then switch attention to majority

rule and check whether it is reduction-consistent. Since majority rule may

be empty on the present domain, we focus on a smaller domain for which

the rule is always non-empty and agents have strict preferences.

On this smaller domain, we find that majority rule satisfies reduction-

consistency (Proposition 1). Clearly, the rule also satisfies a basic re-

quirement, efficiency : if an alternative is chosen, there is no other al-

ternative that all agents strictly prefer. Is there any efficient rule other

than majority rule that satisfies reduction-consistency? Surprisingly, as

we show, the answer is no (Theorem 2). We next check whether major-

ity rule is conversely reduction-consistent. As we show, the answer is yes

(Proposition 2). Is there any efficient rule other than majority rule that

satisfies converse reduction-consistency? The answer is yes. The Pareto

rule, which chooses all “Pareto-efficient” alternatives, is another exam-

ple. However, it is not “single-valued:” only one alternative should be

chosen. Of course, when majority rule is non-empty, it is single-valued.

We ask whether majority rule is the only single-valued and efficient rule

satisfying converse reduction-consistency. We show that the answer is yes

(Theorem 3).

Several characterizations of majority rule has been established by many

authors. For example, May (1952) characterizes majority rule on the basis

of an invariance property, positive responsiveness : if an alternative is cho-

sen and some agent changes his preference by ranking the alternative first

and all other agents’ preferences remain unchanged, then the alternative

should still be chosen. Campbell and Kelly (2003) base a characterization

of the rule on strategy-proofness. Our characterizations of majority rule

provide axiomatic arguments in favor of majority rule on the basis of a

general notion of consistency.

The rest of the paper is organized as follows. Section 2 introduces

the model and the main properties. Section 3 introduces the central rules

and presents the Condorcet incompatibility result. Section 4 introduces
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majority rule, provides reduction-consistency characterizations of majority

rule, and shows the independence of the properties listed in each of the

characterizations.

2 The model and the main properties

There is an infinite set of “potential” agents, indexed by the natural num-

bers N. Let N denote the class of non-empty and finite subsets of N.

Let X be a countably infinite set of potential alternatives. Let X denote

the class of non-empty and finite subsets of X. We use ⊂ for strict set

inclusion and ⊆ for weak set inclusion.

Given N ∈ N , X ∈ X , and i ∈ N , agent i’s preference relation

on X, denoted by Ri, is a binary relation on X. We assume that Ri

satisfies the following two conditions. We say that Ri is complete if for

each {x, y} ⊆ X, we have either x Ri y or y Ri x. Thus, completeness

implies that for each x ∈ X, x Ri x. Also, Ri is transitive if for each

{x, y, z} ⊆ X, x Ri y and y Ri z together imply x Ri z. Throughout

our presentation, we restrict attention to preference relations for which

distinct alternatives are never indifferent. Namely, Ri is strict if for each

{x, y} ⊆ X, x Ri y and y Ri x together imply x = y. Let Pi denote

the strict preference relation derived from Ri. Let Rst(X) denote the

class of strict preference relations on X. A preference profile on X

is a list P ≡ (Pi)i∈N such that for each i ∈ N , Pi ∈ Rst(X). A choice

problem for N or simply a problem for N is a pair (X, P ) such that

X ∈ X and P ∈ RN
st(X).1 Let DN

st denote the class of problems for N with

strict preference relations and Dst ≡
⋃

N∈N DN
st . Given a class of problems

D ⊆ Dst, a choice rule on D or simply a rule on D is a correspondence

that associates with each N ∈ N and each (X, P ) ∈ DN a non-empty

subset of X. Our generic notation for rules is ϕ.

1By RN
st(X), we mean the Cartesian product of |N | copies of Rst(X), indexed by

the elements of N . Similar expressions in the rest of the paper should be interpreted
in the same manner.
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We now introduce the central properties. Our first requirement is that

if an alternative is chosen, there is no other alternative that all agents

strictly prefer.

Efficiency: For each N ∈ N , each (X, P ) ∈ DN , and each x ∈ ϕ(X,P ),

there is no y ∈ X\ {x} such that for each i ∈ N , y Pi x.

Next is the invariance property proposed by Yeh (2004). Consider a

problem and an alternative x chosen by a rule for it. Imagine now that

some agents leave with the understanding that x would be chosen. The

remaining agents face a new problem in which the options open to them

are specified in such a way that the departing agents are made at least

as good as they are at x. Thus, an alternative is acceptable as a choice

in the new problem if each of the departing agents finds it at least as

desirable as x. The preferences of the remaining agents in the new problem

are obtained by restricting their original preferences to those acceptable

alternatives. The new problem is called the reduced problem with respect

to the remaining agents and x. We say that a rule is “reduction-consistent”

if x is still chosen by the rule in this reduced problem.

Formally, let N ∈ N , (X, P ) ∈ DN , x ∈ X, and N ′ ∈ N with N ′ ⊂ N .

Let X ′ ≡ {y ∈ X | for each i ∈ N\N ′, y Pi x }⋃ {x}. For each i ∈ N ′,

let Pi|X′ denote the restriction of Pi to X ′. That is, Pi|X′ is a preference

relation on X ′ and the ranking of each {y, z} ⊆ X ′ by Pi|X′ is identical to

the ranking of y and z by Pi. Then, the reduced problem of (X, P )

relative to N ′ and x, denoted rx
N ′ (X,P ), is defined by

rx
N ′ (X, P ) ≡ (

X ′, (Pi|X′)i∈N ′
)
.

Reduction-consistency: For each N ∈ N , each (X,P ) ∈ DN , each

x ∈ ϕ (X, P ), and each N ′ ∈ N with N ′ ⊂ N , we have rx
N ′ (X, P ) ∈ DN ′

and x ∈ ϕ(rx
N ′(X, P )).

The next property is the converse of reduction-consistency proposed

by Hwang and Yeh (2004). It says that if an alternative is chosen for all of

7



its associated reduced problems, then it should be chosen for the original

problem.

Converse reduction-consistency: For each N ∈ N , each (X, P ) ∈ DN ,

and each x ∈ X, if for each N ′ ∈ N with N ′ ⊂ N , rx
N ′(X, P ) ∈ DN ′

and

x ∈ ϕ(rx
N ′(X,P )), then x ∈ ϕ (X,P ).

The last property is proposed by Condorcet (1785) and says that if an

alternative is preferred over any other alternative by more than half of the

population, then the alternative should be chosen.

Condorcet principle: For each N ∈ N and each (X, P ) ∈ DN , if there

is x ∈ X such that for each y ∈ X\{x}, |{i ∈ N | x Pi y}| > |N |
2

, then

{x} = ϕ (X, R).

3 Impossibility of reduction-consistency and

the Condorcet pricinple

We first investigate whether on the domain, Dst, there exist rules satis-

fying the Condorcet principle and reduction-consistency. We consider the

following rules that obviously satisfy the Condorcet principle, and exam-

ine them in light of reduction-consistency. The first rule is the “Copeland

rule” (Copeland, 1951; Moulin, 1988b). To define it, we introduce the

following binary relation. Given N ∈ N , (X, P ) ∈ DN
st , and {x, y} ⊆ X,

we say that x majority-dominates y, written x PMD y, if the number

of agents who strictly prefer x to y is more than half of the population,

namely, |{i ∈ N |x Pi y}| > |N |
2

.

For each x ∈ X, the Copeland rule counts the number of alternatives

that x majority-dominates, and the number of alternatives that majority-

dominate x. The Copeland score of x is defined as the difference between

these numbers. The Copeland rule then chooses the alternative(s) with

the highest Copeland score. Formally, for each N ∈ N , each (X, P ) ∈ DN
st ,
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and each {x, y} ⊆ X, the Copeland score of x with respect to y is

defined by

c(x, y, P ) ≡




1 if x PMD y,
−1 if y PMD x,
0 otherwise.

Copeland rule, Cope: For each N ∈ N and each (X, P ) ∈ DN
st ,

Cope(X, P ) ≡
{

x ∈ X

∣∣∣∣
for each y ∈ X \ {x},∑

z∈X\{x} c(x, z, P ) ≥ ∑
z∈X\{y} c(y, z, P )

}
.

The second rule first counts for each x ∈ X, the number of agents who

prefer x to another alternative y ∈ X. Thus for each alternative, there

are |X| − 1 corresponding numbers. The lowest number is interpreted

as a measure of “minimal support for x.” The Simpson rule (Moulin,

1988b) then chooses the alternative(s) with the highest minimal support.

Formally, for each N ∈ N , each (X, P ) ∈ DN
st , and each {x, y} ⊆ X, the

Simpson score of x is defined by

s(x, P ) ≡ min
y∈X\{x}

∣∣{i ∈ N | x Pi y}
∣∣.

Simpson rule, Simp: For each N ∈ N and each (X, P ) ∈ DN
st ,

Simp(X, P ) ≡ {
x ∈ X

∣∣ for each y ∈ X \ {x}, s(x, P ) ≥ s(y, P )
}
.

To define the next rule, we introduce another binary relation de-

rived from the majority-domination relation. Given N ∈ N , (X, P ) ∈
DN

st , and {x, y} ⊆ X, x covers y in X with respect to PMD if

(i) x majority-dominates y, and (ii) x majority-dominates each alterna-

tive that is majority-dominated by y. In other words, x PMD y and

{z ∈ X\ {x, y} | y PMD z} ⊆ {z ∈ X\ {x, y} | x PMD z}.

The uncovered set (Miller, 1980; Fishburn, 1977) chooses the alterna-

tives which are not covered by any other alternative.
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Uncovered set, UC: For each N ∈ N and each (X, P ) ∈ DN
st ,

UC(X, P ) ≡
{

x ∈ X

∣∣∣∣
there is no y ∈ X such that

y covers x in X with respect to PMD

}
.

As the next three examples show, the Copeland rule, the Simpson rule,

and the uncovered set violate reduction-consistency.

Example 1 On the domain, Dst, the Copeland rule is not reduction consis-

tent. Let N ≡ {1, 2, 3, 4} and X ≡ {u,w, x, y, z}. Consider the following

preference profile:

P1 P2 P3 P4

x z w y
z w y x
u u u u
w y x z
y x z w

u w x y z Cope #
u 0 0 0 0 0
w 0 0 1 -1 0
x 0 0 -1 1 0
y 0 -1 1 0 0
z 0 1 -1 0 0

Clearly, Cope(X, P ) = {u,w, x, y, z}. In particular, x ∈ Cope(X,P ). Let

N ′ ≡ {1, 2, 3}.
P1|X′ P2|X′ P3|X′

x y y
y x x

x y Cope #
x -1 -1
y 1 1

Then rx
N ′(X, P ) ∈ DN ′

st and the feasible set of rx
N ′(X, P ) is X ′ ≡ {x, y}.

Note that Cope(rx
N ′(X, P )) = {y}. Thus, x /∈ Cope(rx

N ′(X, P )). Q .E .D .

Example 2 On the domain, Dst, the Simpson rule is not reduction con-

sistent. Let N ≡ {1, 2, . . . , 8} and X ≡ {x, y, z}. Consider the following

preference profile:

P1 P2 P3 P4 P5 P6 P7 P8

z y y z x x z y
y x x y z z x x
x z z x y y y z

x y z Simp #
x 3 5 3
y 5 3 3
z 3 5 3
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Clearly, Simp(X, P ) = {x, y, z}. In particular, x ∈ Simp(X, P ). Let

N ′ ≡ {1, 2, . . . , 7}.

P{1,2,3,4}|X′ P{5,6,7}|X′

y x
x y

x y Simp #
x 3 3
y 4 4

Then rx
N ′(X, P ) ∈ DN ′

st and the feasible set of rx
N ′(X, P ) is X ′ ≡ {x, y}.

Note that Simp(rx
N ′(X, P )) = {y}. Thus, x /∈ Simp(rx

N ′(X,P )). Q .E .D .

Example 3 On the domain, Dst, the uncovered set is not reduction-

consistent. Let N ≡ {1, 2, . . . , 10} and X ≡ {w, x, y, z}. Consider the

following preference profile:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

y z z y x w w w w w
x y y x y z x y z x
z x x z z x z x y z
w w w w w y y z x y

rx

¢
¢

¢¢® r z-

ry

r w

A
A

AAK

Each arrow in the graph indicates the majority-domination relation. For

instance, y majority-dominates x with respect to PMD. It can be checked

that UC(X,P ) = {w, x, y, z}. In particular, x ∈ UC(X,P ). Let N ′ ≡
{2, 3, . . . , 10}.

P{2,3,4}|X′ P{5,6,7}|X′ P{8,9}|X′ P10|X′

y x y x
x y x y rx

¢
¢

¢¢®

ry

Then rx
N ′(X, P ) ∈ DN ′

st and the feasible set of rx
N ′(X, P ) is X ′ ≡ {x, y}.

Note that

|{i ∈ N ′ |y Pi x}| = 5 >
|N ′|
2

.
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It follows that UC(rx
N ′(X,P )) = {y}. Thus, x /∈ UC(rx

N ′(X,P )). Q .E .D .

Since the Copeland rule, the Simpson rule, and the uncovered set vi-

olate reduction-consistency and they are members of the family of rules

that satisfy the Condorcet priniciple, one may wonder whether on the do-

main, Dst, no rule satisfies the two properties. The answer is yes. In fact,

a more general impossibility result can be proved: reduction-consistency is

incompatible with a weaker version of the Condorcet principle, the q Con-

dorcet principle (Moulin, 1988a): given q ∈ R+ be such that 1
2
≤ q < 1,

if an alternative is preferred over any other alternative by more than the

fraction q of the population, then it should be chosen.2

q Condorcet principle: For each N ∈ N and each (X, P ) ∈ DN , if

there is x ∈ X such that for each y ∈ X\{x}, |{i ∈ N | x Pi y}| > q |N |,
then {x} = ϕ (X,R).

Theorem 1 On the domain, Dst, no rule satisfies the q Condorcet principle

and reduction-consistency.

Proof. Let q ∈ R+ be such that 1
2
≤ q < 1. Let ϕ be a rule on Dst that

satisfies the q Condorcet principle. We show that ϕ violates reduction-

consistency.

Since q ∈ R+ and q ≤ 1, there is a rational number q′ such that

q < q′ < 1. Let q′ ≡ t
v

where v ∈ N, t ∈ N, and t ≤ v − 1. Let

N ≡ {1, 2, . . . , v + 1} and X ≡ {x1, x2, . . . , xv+1}. Consider the following

preference profile.

P1 P2 · · · Pv+1

x1 x2 · · · xv+1

x2 x3 · · · x1
...

... · · · ...
xv+1 x1 · · · xv

Suppose that x1 ∈ ϕ(X, P ). Let N ′ ≡ {1, 2, . . . , v}.
2By R+, we denote the set of positive real numbers, R+ ≡ {x ∈ R | x ≥ 0}.
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P1|X′ P2|X′ P3|X′ · · · Pv|X′

x1 xv+1 xv+1 · · · xv+1

xv+1 x1 x1 · · · x1

Then rx1

N ′ (X, P ) ∈ DN ′
st and the feasible set of rx1

N ′ (X,P ) is X ′ ≡ {x1, xv+1}.
Note that

|{i ∈ N ′ | xv+1 Pi x1}|
|N ′| =

v − 1

v
≥ q′ > q.

By the q Condorcet principle, {xv+1} = ϕ(rx1

N ′(X,P )). It follows that

x1 /∈ ϕ(rx1

N ′(X, P )). Thus, ϕ violates reduction-consistency. By a similar

argument, it can also be shown that ϕ violates reduction-consistency if

x1 ∈ ϕ(X, P ), x2 ∈ ϕ(X,P ), · · · , or xv+1 ∈ ϕ(X, P ). Q .E .D .

4 Reduction-consistency characterizations of

majority rule

Theorem 1 is valid under the assumption that rules are always non-

empty on Dst. This restriction excludes a well-known rule that satisfy

the Condorcet principle from consideration. It is the so-called majority

rule (Campbell and Kelly, 2003), which chooses the alternative, if it ex-

ists, that majority-dominates any other alternative.3 Since the rule may

be empty on Dst, we then restrict attention to a smaller domain, denoted

by Dst∩Cm 6=∅, for which agents have strict preferences and majority rule is

always non-empty.

Majority rule, Cm: For each N ∈ N and each (X, P ) ∈ DN
st∩Cm 6=∅,

Cm(X, P ) ≡ {x ∈ X | for each y ∈ X\ {x} , x PMD y} .

3We can define a weaker version of majority rule, weak majority rule, which choose
the alternatives, if they exist, that are not majority-dominated by any other alternative
(McKelvey, 1986; Austen-Smith and Banks, 1999). Hwang and Yeh (2004b) provide a
characterization of weak majority rule on the basis of a stronger version of reduction-
consistency and a weaker version of converse reduction-consistency.
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We now check whether on Dst∩Cm 6=∅, majority rule satisfies reduction-

consistency. As the next result shows, the answer is yes.

Proposition 1 On the domain, Dst∩Cm 6=∅, majority rule is reduction-

consistent.

Proof. Let N ∈ N , (X, P ) ∈ DN
st∩Cm 6=∅, x ∈ Cm (X,P ), and N ′ ∈ N with

N ′ ⊂ N . We show that rx
N ′ (X, P ) ∈ DN ′

st∩Cm 6=∅ and x ∈ ϕ(rx
N ′(X,P )). The

proof is in two steps.

Step 1: rx
N ′ (X, P ) ∈ DN ′

st∩Cm 6=∅. Since agents’ preferences are strict,

it follows that rx
N ′ (X, P ) ∈ DN ′

st . We now show that Cm(rx
N ′(X, P )) 6= ∅.

Suppose, by contradiction, that Cm(rx
N ′(X, P )) = ∅. Note that x is a

feasible alternative in rx
N ′ (X, P ). It follows that there exists y ∈ X \ {x}

such that (i)
∣∣{i ∈ N ′ ∣∣ y Pi x

}∣∣ > |N ′|
2

and (ii) for each j ∈ N\N ′, y Pj x.

Thus,

∣∣{i ∈ N
∣∣ y Pi x

}∣∣ > |N | − |N ′|+ |N ′|
2

=
|N |+ |N | − |N ′|

2

>
|N |
2

.

It follows that x /∈ Cm(X, P ), in violation of x ∈ Cm(X, P ).

Step 2: x ∈ Cm(rx
N ′(X, P )). Suppose that x /∈ Cm(rx

N ′(X,P )). By

Step 1, there exists y ∈ X\ {x} such that y ∈ Cm(rx
N ′(X,P )). Thus,∣∣{i ∈ N ′ ∣∣ y Pi x

}∣∣ > |N ′|
2

. Note that for each i ∈ N\N ′, y Pi x. It follows

that

∣∣{i ∈ N
∣∣ y Pi x

}∣∣ > |N | − |N ′|+ |N ′|
2

=
|N |+ |N | − |N ′|

2

>
|N |
2

.

Thus, x /∈ Cm(X, P ), in violation of x ∈ Cm (X,P ). Q .E .D .
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Clearly, majority rule satisfies efficiency. Is there any efficient rule

other than majority rule that satisfies reduction-consistency? Surprisingly,

we show that the answer is no. To prove this assertion, we make use of

the next two facts. The first one indicates that majority rule satisfies the

following property, which says that only one alternative should be chosen.

Single-valuedness: For each N ∈ N and each (X,P ) ∈ DN , we have

|ϕ (X,P ) | = 1.

The second fact indicates that majority rule satisfies the converse of

reduction-consistency.

Proposition 2 On the domain, Dst∩Cm 6=∅, majority rule satisfies converse

reduction-consistency.

Proof. Let N ∈ N , (X,P ) ∈ DN
st∩Cm 6=∅, and x ∈ X. For each N ′ ∈ N

with N ′ ⊂ N , let rx
N ′(X,P ) ∈ DN ′

st∩Cm 6=∅ and x ∈ Cm (rx
N ′(X, P )). We show

that x ∈ Cm(X,P ). Suppose, by contradiction, that x /∈ Cm(X, P ). Since

(X,P ) ∈ DN
st∩Cm 6=∅, there exists y ∈ X\ {x} such that y ∈ Cm (X,P ). It

follows that
∣∣{i ∈ N

∣∣ y Pi x
}∣∣ > |N |

2
. Let j ∈ {

i ∈ N
∣∣ y Pi x

}
. Note that

y is a feasible alternative in rx
N\{j}(X,P )., and that agents’ preferences are

strict. Thus, we have either

(i)
∣∣{i ∈ N\ {j}

∣∣ y Pi x
}∣∣ >

|N\ {j} |
2

or

(ii)
∣∣{i ∈ N\ {j}

∣∣ y Pi x
}∣∣ =

|N\ {j} |
2

=
∣∣{i ∈ N\ {j}

∣∣ x Pi y
}∣∣ .

In both cases, we have x /∈ Cm

(
rx
N\{j}(X,P )

)
, which contradicts x ∈

Cm

(
rx
N\{j}(X, P )

)
. Q .E .D .

Thanks to Propositions 1 and 2, we are now ready to prove the an-

nounced characterization of majority rule.
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Theorem 2 On the domain, Dst∩Cm 6=∅, majority rule is the only rule

satisfying efficiency and reduction-consistency.

Proof. Clearly, majority rule is efficient. As shown in Proposition 1, it is

reduction-consistent. Conversely, let ϕ be a rule satisfying the properties.

Let N ∈ N and (X,P ) ∈ DN
st∩Cm 6=∅. We show that ϕ (X, P ) = Cm (X,P ).

The proof is by induction on |N |.

Case 1: |N | = 1. Since agents’ preferences are strict, by efficiency,

ϕ (X,P ) = Cm (X,P ).

Case 2: |N | > 1. Let k ∈ N. The induction hypothesis is that for each

N ∈ N with 1 ≤ |N | ≤ k and (X,P ) ∈ DN
st∩Cm 6=∅, ϕ (X,P ) = Cm (X,P ).

We show that for each N ∈ N with |N | = k + 1 and each (X, P ) ∈
DN

st∩Cm 6=∅, ϕ (X,P ) = Cm (X,P ). Since majority rule is single-valued,

it suffices to show that ϕ (X,P ) ⊆ Cm (X,P ). Let x ∈ ϕ (X, P ). By

reduction-consistency, x ∈ ϕ (rx
N ′ (X, P )). Note that |N ′| < k + 1. By

the induction hypothesis, ϕ (rx
N ′ (X,P )) = Cm (rx

N ′ (X,P )). Thus, x ∈
Cm (rx

N ′ (X,P )). As shown in Proposition 2, majority rule is conversely

reduction-consistent. Thus, x ∈ Cm (X, P ). Q .E .D .

In the proof of Theorem 2, we make use of the fact that majority

rule is converse reduction-consistency. One may wonder whether another

characterization of majority rule can be obtained by replacing reduction-

consistency with converse reduction-consistency in Theorem 2. The an-

swer is no. The Pareto rule, which chooses all “Pareto-efficient” alterna-

tives, also satisfies efficiency and converse reduction-consistency. How-

ever, the Pareto rule is not single-valued. Is there any single-valued rule

other than majority rule satisfying efficiency and converse reduction-

consistency? The answer is no. To prove this assertion, we introduce

a lemma that indicates a logical relation between single-valuedness, con-

verse reduction-consistency, and reduction-consistency.

Lemma 1 On the domain, Dst∩Cm 6=∅, if a rule satisfies single-valuedness

16



and converse reduction-consistency, then it satisfies reduction-consistency.

Proof. Let ϕ be a rule satisfying single-valuedness and converse reduction-

consistency. We show that ϕ satisfies reduction-consistency. The proof is

in two steps. Step 1 shows that for each N ∈ N with |N | > 1 and

(X,P ) ∈ DN
st∩Cm 6=∅, majority rule is the only single-valued rule satisfying

converse reduction-consistency. Step 2 concludes by invoking that major-

ity rule is reduction-consistent.

Step 1: For each N ⊂ N with |N | > 1 and each (X, P ) ∈ DN
st∩Cm 6=∅,

ϕ (X, P ) = Cm (X, P ). Let N ∈ N with |N | ≥ 2 and (X,P ) ∈ DN
st∩Cm 6=∅.

Let {x} = Cm (X, P ). We show that {x} = ϕ (X,P ). The proof is by in-

duction on |N |.
Substep 1.1: |N | = 2. Note that {x} = Cm (X, P ) and agents’ prefer-

ences are strict. If |X| = 1, then we are done. Suppose that |X| > 1.

It follows that for each i ∈ N and y ∈ X\ {x}, x Pi y. Thus, for each

N ′ ⊂ N , x is the only feasible alternative in rx
N ′ (X, P ). It follows that

{x} = ϕ (rx
N ′ (X,P )). By converse reduction-consistency, {x} = ϕ (X,P ).

Substep 1.2: |N | > 2. Let k ∈ N. The induction hypothesis is that

for each N ∈ N with 2 ≤ |N | ≤ k and (X, P ) ∈ DN
st∩Cm 6=∅, ϕ (X,P ) =

Cm (X, P ). We show that for each N ∈ N with |N | = k + 1 and each

(X,P ) ∈ DN
st∩Cm 6=∅, ϕ (X,P ) = Cm (X,P ). As shown in Proposition 1,

majority rule is reduction-consistent. It follows that for each N ′ ⊂ N

with |N ′| ≥ 2, {x} = Cm (rx
N ′ (X,P )). Note that |N ′| < k + 1. By

the induction hypothesis, Cm (rx
N ′ (X, P )) = ϕ (rx

N ′ (X,P )). It follows

that {x} = ϕ (rx
N ′ (X,P )). By converse reduction-consistency and single-

valuedness, {x} = ϕ (X, P ).

Step 2: Completion of the proof. Let N ∈ N and (X, P ) ∈ DN
st∩Cm 6=∅.

By single-valuedness, let {x} = ϕ (X,P ). Let N ′ ⊂ N . We show that

rx
N ′ (X, P ) ∈ DN ′

st∩Cm 6=∅ and {x} = ϕ (rx
N ′ (X, P )). Suppose that |N ′| ≥ 2.

By Step 1, ϕ (rx
N ′ (X,P )) = Cm (rx

N ′ (X, P )). Note that {x} = ϕ (X,P ) =

Cm (X, P ) and majority rule is reduction-consistent. It follows that {x} =
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ϕ (rx
N ′ (X, P )) and rx

N ′ (X, P ) ∈ DN ′
st∩Cm 6=∅. We now consider |N ′| = 1. We

first show that if {x} = Cm (X, P ), then for each N ′ ⊂ N with |N ′| = 1,

x is the only feasible alternative in rx
N ′ (X, P ). Suppose, by contradiction,

that there is another feasible alternative y. Since for each i ∈ N\N ′,

y Pi x, it follows that {x} 6= Cm (X, P ), in violation of {x} = Cm (X,P ).

Note that |N | ≥ 2. By Step 1, {x} = Cm (X,P ). Thus, x is the only

feasible alternative in rx
N ′ (X, P ). It follows that {x} = ϕ (rx

N ′ (X,P )) and

rx
N ′ (X, P ) ∈ DN ′

st∩Cm 6=∅. Q .E .D .

Thanks to Theorem 2 and Lemma 1, we are now ready to prove the

announced characterization of majority rule.

Theorem 3 On the domain, Dst∩Cm 6=∅, majority rule is the only single-

valued rule satisfying efficiency and converse reduction-consistency.

Proof. Clearly, majority rule is single-valued and efficient. As shown in

Proposition 2, it is conversely reduction-consistent. Conversely, let ϕ be

a rule satisfying the properties. Let N ∈ N and (X,P ) ∈ DN
st∩Cm 6=∅. We

show that ϕ (X,P ) = Cm (X, P ). Suppose that |N | = 1. Since agents’

preferences are strict, by efficiency, ϕ (X, P ) = Cm (X,P ). By Lemma 1

and Theorem 2, we conclude that ϕ (X,P ) = Cm (X,P ) for |N | > 1.

Q .E .D .

As shown in Lemma 1, converse reduction-consistency together with

single-valuedness implies reduction-consistency. One may wonder whether

the converse is true. The answer is no. The following single-valued rule

satisfies reduction-consistency but violates converse reduction-consistency.

When there is an alternative Pareto-dominated by any other alternative,

the rule chooses the alternative; otherwise, the rule chooses the alternative

selected by majority rule.

We now show that the properties listed in Theorems 2 and 3 are log-

ically independent. For this purpose, we introduce additional rules. The

first rule chooses all “Pareto-efficient” alternatives.
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Pareto rule, PE: For each N ∈ N and each (X,P ) ∈ DN
st∩Cm 6=∅,

PE (X, P ) ≡ {
x ∈ X

∣∣ there is no y ∈ X such that for each i ∈ N , y Pi x
}

.

Next is a family of fixed-order rules proposed by Yeh (2004). This

family of rules is inspired by the family of “target rules” studied by Ching

and Thomson (1992) in the context of choosing a point in an interval over

which each agent is endowed with a single-peaked preference. Given a

point or a target in an interval, the associated target rule is described as

follows: if the target is “Pareto-efficient,” then the rule chooses this point;

otherwise, it chooses the point in the set of Pareto-efficient points that is

closest to the target.

The family of fixed-order rules is defined in a similar way as the target

rules, but in the context of collective choice problems. Formally, let P0 ∈
Rst(X) be a strict preference relation on X. We interpret P0 to be the

preference relation of an “arbitrator.” Then, the fixed-order rule chooses

the most preferred alternative according to P0 from those alternatives

chosen by the Pareto rule .

Fixed-order rule relative to P0, F P0 : For each N ∈ N and each

(X,P ) ∈ DN
st∩Cm 6=∅,

F P0(X, P ) ≡ {x ∈ PE(X, P ) | for each y ∈ PE (X,P ) \ {x} , x P0 y}.

The last rule is defined as follows. Let {x, y, z} ⊂ X. If there is only

one agent, the feasible set is {x, y, z}, and x is the “middle alternative” ac-

cording to the preference of that agent, then the rule chooses x; otherwise,

the rule chooses the alternative selected by majority rule.

Constant-Majority rule, CM : For each N ∈ N and each (X, P ) ∈
DN

st∩Cm 6=∅,

CM (X, P ) ≡
{ {x} if N ≡ {i} , X ≡ {x, y, z} , and y Pi x Pi z;

Cm (X,P ) otherwise
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Property / Rule PE F P0 CM
single-valuedness No Yes Yes
efficiency Yes Yes No
reduction-consistency No No Yes
converse reduction-consistency Yes No Yes

Table 1: Independence of the properties in Theorems 2 and 3.
The notation “Yes” (“No”) means that a certain rule satisfies (violates) a
certain property.

Table 1 shows that the properties listed in Theorems 2 and 3 are

logically independent. For example, the Pareto rule satisfies efficiency

but violates reduction-consistency. The constant-majority rule satisfies

reduction-consistency but violates efficiency. Thus, the properties listed

in Theorem 2 are independent.
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