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Abstract

Speculation in asset market is modeled as a stochastic betting game of incomplete

information played by finite players and repeated infinite times. With stochastic asset

return and unkown quality of public signal, a generic adaptive learning rule and the

corresponding evolutionary dynamics is analyzed. In the learning rule, the impact of

historical events on players’ belief decays over time. It is proved to be a robust approach

to adapt to stochastic regime shifts in the market over time. The market dynamics has

characteristics commonly observed in financial market, i.e. endogenous boom-bust cycle,

positive correlation in return and volume series, and negative first order autocorrelation

in return series, but inexplicable by conventional rational expectations theory.

Keywords: evolutionary games, adaptive learning, bounded rationality, behavioral fi-

nance.
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1 Introduction

Financial market is at the center stage of profit-seeking and risk-taking in an ever changing

environment. Economic condition is volatile and volume of information is enormous. Specu-

lators come to the market with various presumptions and idiosyncratic characteristics. Only

the fittest, with the acumen to discover changes in underlying rules and adapt, can endure

the market. Unlike traditional approach, which focuses on analyzing strategic behaviors of

market participants and finding equilibrium condition, this paper explores a new avenue and

shows how adaptive learning and evolution principle explains market dynamics.

Everybody wants to make money when come to trade in a financial market. It is tru-

ely a zero-sum game: One’s gain is another’s loss. What makes a great investor, knowledge,

experience, skill, rationality, or something else? The famed speculator, George Soros, wrote

the following in Alchemy of Finance, a book summarizing essence of his life-long success in

trading and investment management.

As a money manager I was emotionally engaged in managing my fund. I managed

it as if my existence depended on it, as indeed it did. I relied on my instincts and

intuition as well as my conceptual framework to guide me through uncertainty.

. . . . . . I was not well positioned to perform better than others if I had tried to

play the market by a particular set of rules: my competitive advantage lays in

recognizing changes in the rules of the game.

His fund delivered supernormal growth consistently, 3000 times the initial investment over a

twenty-eight year horizon. It is not likely to be a rare chance outcome. Soros identified his

investment decisions as emotional and instinctive. This account is rather to the contrary of

most literatures on financial market.

Traditional rational expectations literature assumes that economic agents are fully

rational and derives equilibrium conditions to describe the market. In equilibrium market

price is efficient in the sense that it aggregate all public and private information. However,

what drives market participants to seek costly information and how their speculation de-

pletes arbitrage opportunities is left untouched. Market microstructure literature emerged to

bridge this gap. It analyzes how agents with superior insider information will behave to profit

from it at the cost of liquidity traders. It did not suppass rational expectations framework.

The concept of “insiders” and “liquidity traders” are introduced. Insiders are assumed to
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have superior information source and trade for profit. Liquidity traders enter the market for

liquidity reasons. But it is not plausible to rely on liquidity reasons as a sufficient driver for

people to enter the market and perpetually take the wrong side of the trade.

After Internet bubble bursted, there is a growing volume of literature collecting evi-

dence of market anomalies such as bubbles and crashes. Findings in double auction theory

and the fact that more and more stock exchanges adopt electronic clearing system, it is

clear that pricing anomalies do not root in the market clearing mechanism itself. Besides

traditional reasons such as liquidity need, asset allocation, or trasaction cost, explanations

of those “abnormal” phenomena are offered from new perspectives. It fuels a new wave of

investigation to challenge and re-examine assumptions in rational expectation models. These

research offers an alternative explanation of market behaviors.

Many scholars try to explore possible leaks in information structure and rational-

ity assumptions. Bounded rationality approach relaxes the common knowledge assumption.

When the chain of infinite depth of knowledge breaks in any link, there is possibility that the

entire empire may collapse and follow an entirely new path. Abreu and Brunnermier (2003)

shows that speculators cannot promptly coordinate private information and this delay in co-

ordination leads to a market bubble. Heterogenous belief approach explores trading behavior

induced from heterogenous prior belief. Harris and Arthur (1993) shows how trading volume

and change in price can result from different opinion about economic fundamentals. David

(2005) explains equity premium by heterogenous belief among traders.

Psychological findings, especially Prospect Theory, opens the burgeoning field of be-

havioral finance and offers an alternative explaination of market anormalies. Barberis and

Thaler (2003) has a thorough review. Decision bias such as framing, mental accounting,

risk-seeking in loss and risk-averse in gain are applied to analyze financial decision making.

The conventional symmetric concave utility function applied to aggregate wealth is being

challenged in this case.

This paper explores the territory of dynamic learning and adaption in financial mar-

ket. The market is modeled under the dynamic learning and adjustment framework of Kan-

dori, Mailath and Rob (1993) and Young (1993). It relates to both bounded rationality

models and behavioral finance. We do not assume infinite memory and boundless knowl-

edge so that strategic behaviors are present but limited. Similar to ficticious play, market

participants apply a simple and intuitive strategy as a best response to the past when spec-
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ulating but not necessarily exploit all possible arbitrage opportunities. Based on research

findings in cognitive science, people overweight recent events and ignore distant events. A

simple adaptive learning rule encompassing this feature is proposed for speculators. Market

dynamics derived in this model resembles Best-Reponse Dynamics but is much less volatile.

In a stochasitc environment, pure strategy Nash equilibria does not exist and market evolves

with approximate probability distribution around intertemperal mixed strategy steady state.

In the next section, the model of a asset market with a single risky asset is presented.

It is simple enough to be tractable and rich enough to show the impact of adaptive learn-

ing and the role of evolution on market dynamics. Section 3 defines and discusses adaptive

learning rule. Section 4 introduces several evolutionary concepts and analyzes the consequent

market dynamics. Section 5 concludes with future extentions.

2 The Model

There are N potential speculators participating in the market with a single risky asset.

Trading of the risky asset occurs among speculators and a market maker at time t = 1, 2, ...

with equal time interval. In each round of trading, a public signal about the asset return is

announced to all market participants. Speculators then submit bids of the asset. The orders

are cleared by the market maker at a single clearing price. The realized risky asset value

becomes known and gains and losses are settled between parties taking opposite side of a

trade. The market advances to the next round of trading.

We assume that value of the risky asset changes at time t by,

Dt =

 z, with probability 0.5,

−z, with probability 0.5,

where z > 0 and Dt is identical and independently distributed at different time period.

The sequence (D1, D2, ..., Dt, ...) is thus a simple random walk. This feature simplifies the

determination of market clearing price and dramatically reduces the number of states in the

market dynamics. The partial sum of the incremental change series is the value of the asset

at time t,

Vt = V0 +
t∑

t=1

Dt.
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If asset value hits zero, the asset will not be traded in the future. We assume that the

magnitude of increment z is very small compared with the initial asset value V0 so that zero

asset value is not likely to happen. Our analysis will focus on the change instead of the value

series.

Before bidding, speculators all observe a public signal ζt ∈ {−z, z}. It is common

knowledge. Denote the probability that the public signal is correct by,

φt = P (ζt = Rt).

We can easily verify that the public signal is either high or low with equal probability,

P (ζt = z) = P (Dt = z)P (ζt = Dt) + P (Dt = −z)P (ζt 6= Dt)

= 0.5φt + 0.5(1− φt) = 0.5.

The correlation between the true asset value and the public signal at time t is,

Corr(ζt, Dt) = 2φt − 1.

If φt > 1/2, the public signal is of high quality and it is positively correlated with the real

asset return. The expected return of the asset at time t is,

E(Dt|ζt) = (2φt − 1)ζt.

The quality of public signal, φt, is neither publicly known or privately observed by any

market participants. There is an underlying Possion process N(t) with rate λ that reflects

the time when a change in the quality of public signal occurs. If N(tn) > N(tn−1), a change

happens between time tn−1 and tn and a new φt is randomly drawn from interval [0, 1]. The

uncertainty in quality of public signal represents changes in public consensus due to changes

in fundamental economic structure. At the beginning of Internet era, new technology brought

new channels to disseminate information and new opportunities and there was less consensus

as to how much value the new technology would add to the economy.

Based on public signal, potential speculators decide whether to bid or not and if

to bid whether to take a long or short position. There is no short-selling constraint so

that speculators can take any position as they desire. For simplicity, it is assumed that

each speculator is allowed to buy or sell only one unit of the asset. There assures that

speculators have equal market influence. Buy or sell orders are all market orders, meaning
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that speculators are not allowed to condition their orders on a preset price threshold. After

bidding, the market marker clears all orders at price Pt given that there are xt buy orders

and yt sell orders,

Pt = Pt−1 + z
xt − yt

xt + yt
.

Denote the change in price by Rt,

Rt = Pt − Pt−1 = z
xt − yt

xt + yt
.

Change in asset price is proportional to the imbalance in buy and sell orders. When there are

more buy orders, the price at time t will be higher than the previous period. When there are

more sell orders, the price will be driven down. This pricing rule is similar in spirit to that

in Kyle (1985) except that the underlying return series is assumed to follow a random walk.

The market maker operates more like a automated clearing system than a profit maximizer.

We assume that the market maker has no liquidity constraint. Since he does not need to

be compensated for liquidity risk, and there is no bid and ask spread nor strategic price

setting behavior. We further assume that positions are terminated at the end of each trading

round and profit and loss from are accounted for among parties. If a speculator enters a long

position at time t, her payoff at the end of this trading round will be −Pt +ζt. If a speculator

enters a short position at time t, her payoff at the end of the trading round will be Pt − ζt.

There are two possible pure strategies that speculators can adopt, either to follow the

public signal or bet against it. We call the first strategy “trend-following”, denoted by s1,

and the latter “contrarian”, s2, and denote the strategy set by S = {s1, s2}. When there

is a high signal, i.e. ζt = z, trend-followers will take a long position and contrarian will

take a short position in the risky asset. When there is a low public signal, i.e. ζt = −z,

trend-followers will take a short position and contrarian will take a long position in the risky

asset.

Letmt be the number of speculators adopting s1 at time t, mt ∈ {0, 1, 2, ..., N}. Given

the realization of ζt, Dt, and mt in each round of trading, the market price and realized payoff

of trend-followers and contrarians are shown in Table 1.

The market price is Pt = Pt−1 + z(2mt

N − 1) when ζt = z and Pt = Pt−1 − z(2mt

N − 1) when

ζt = −z. It can be expressed in a concise way as

Pt = Pt−1 + z(2
mt

N
− 1)(2χ{ζt=z} − 1). (1)
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Rt Πs1(mt) Πs2(mt)

ζt = z, Dt = z z(2mt

N − 1) 2z(1− mt

N ) −2z(1− mt

N )

ζt = −z, Dt = −z −z(2mt

N − 1) 2z(1− mt

N ) −2z(1− mt

N )

ζt = z, Dt = −z z(2mt

N − 1) −2zmt

N 2zmt

N

ζt = −z, Dt = z −z(2mt

N − 1) −2zmt

N 2zmt

N

Table 1: Price and Payoff

Since outcome of Dt and public signal are both known after price is released, the proportion

of the population adopting each strategy is fully revealed and the number of trend-followers

mt is thus public information.

Trend-followers make a profit if and only if public signal is correct. Contrarians are

the opposite. The magnitude of profit or loss depends on the distribution in the current

population adopting each stategies. In the extreme, if the public signal is correct and all

speculators are trend-followers, they will earn zero profit. If the public signal is correct and

there is only one trend-follower, his gain will be the largest ever, close to 2z. The outsized

gain is attributed to his correct judgement and the rest of the speculators’ wrong judgement.

Speculators face two uncertainties, the true quality of the public signal and distribution of

the current population adopting each strategies. The first dictates the chance of winning and

the second determines the size of the reward. The expected payoff of a trend-follower is,

E[Πs1(mt)] = 2z(1− mt

N
)P (ζt = Dt) + (−2z

mt

N
)P (ζt 6= Dt)

= 2z(φt −
mt

N
) (2)

The expected payoff of a contrarian is,

E[Πs2(mt)] = 2z(
mt

N
− φt)

= −E[Π1(mt)] (3)

When the portion of trend-followers in the population is higher than the probability that the

public signal is correct, the trend-followers will take a loss and the contrarians will make a

profit on average. It then follows.

Proposition 1 (Symmetric Baysian Nash Equilibrium): The symmetric Baysian
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Nash equilibrium in the speculation game is when speculators play strategy s1 with probability

φt and strategy s2 with probability 1− φt.

The symmetric Baysian Nash equilibrium is satisfactory in projecting limiting be-

havior of speculators. However, it is unclear how such an equibrium can be acheived. When

the quality of the public signal φt is unkown and possibly change over time, it is not clear

how individual speculators can play exactly according to an unknown odd. The market will

be more often in a disequilibrium than in an equilibrium. In order to gain full perspective of

the market dynamics, it is therefore necessary to analyze how individual speculators learn of

the quality of public signal and how the market behaves as a result of this learning process.

As shown in Equation (2) and (3), a speculator’s expected payoff from taking each

strategy dependes very much on the relationship between the true quality of public signal

and the behavior of the population. Since the true quality φt is unknown to the specula-

tor, she has to rely on her own belief to make a decision. Without further complication of

strategic behavior, we assume that speculators treat mt as the best prediction of number of

trend-followers at time t+1. Let θi
t denote speculator i’s belief of the public signal at time t.

Speculator i’s expected payoff to be a trend-follower at time t+1 is,

E[Πs1(mt+1)|(θi
t,mt)] = 2z(θi

t −
mt

N
)

and expected payoff to be a contrarian is

E[Πs2(mt+1)|(θi
t,mt)] = −E[Πs1(mt+1)|(θi

t,mt)].

The decision rule is to optimize the expected payoffs conditional on speculator’s individual

information set at time t. Call mt

N the population belief of public signal quality at time t.

Speculators always compare their own belief with the population belief to determine their

strategy in the next period. If θi
t > mt/N , speculator i will be better off being a trend

follower in the next round of trading. If θi
t < mt/N , she will be better off being a contrarian.

If the equality holds, it is assumed that speculator chooses the two strategies with equal

probability. Since belief space is a continuum, this assumption does not have much influence

on the market dynamics.

Before we move on to the discussion of learning and evolutionary dynamics, we will

prove efficiency of the pricing mechanism.
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Proposition 2 (Efficiency):

(1) The market price is informationally efficient.

(2) Market maker adopting the above pricing mechanism expects zero profit.

Proof of Proposition 2: Given xt buy orders and yt sell orders, the population belief of

the quality of the public signal is

ψt =
xt

xt + yt
=
xt

N
.

The market clearing price changes by,

Pt − Pt−1 = z
xt − yt

xt + yt
= z(2ψt − 1),

which equals the expected asset value change given all public information,

E[Dt|θt = ψt] = z(2ψt − 1).

Therefore, the market price is weak form informationally efficient. It can also be easily

checked that the expected profit of the market maker is

E[Πt|θt = ψt] = (xt − yt)[ψt(−z + Pt) + (1− ψt)(z + Pt)] = (xt − yt)((1− 2ψt)z + Pt) = 0.

Q.E.D.

3 Adaptive Learning

Speculators’ action depends very much on their belief. Initially, they have a rough opinion

about the market. As they participate in trading, their belief are impacted by outcomes

of trading activities. In this section, we will propose and discuss the adaptive learning rule

based on findings in cognitive science. Compared with empirical mean widely adopted in

economic literature, adaptive learning rule emphasizes recent outcomes and overlooks distant

outcomes.

In general, learning can be represented by a belief updating process. speculator i

starts with an initial belief of the public signal quality, θi
0, i = 1, 2, ...N . She updates her

belief after observing the true value of the asset at the end of each round of trading according

to,

θi
t = ai

0(t)θ
i
0 + (1− ai

0)
t∑

l=1

ai
l(t)χ{Vl=ζl}. (4)
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where χ{Vt=ζt} is an indicator function, 0 ≤ ai
l(t) ≤ 1 for l = 0, 1, 2, ...,, t = 0, 1, 2, ...,, and∑t

l=1 a
i
l(t) = 1. This representation is generic. It does not make assumptions about the value

of the coefficients except that current belief at time t is a weighted average of initial belief

and past outcomes. The weights at different time on the same previous outcome or initial

belief could be different, e.g ai
0(1) 6= ai

0(2). It only requires that weights are nonnegative

and sum to one at any time period. If the public signal is correct at time t, it will increase

speculator’s belief at time t and onwards. For simplilcity, denote χ{Vt=ζt} by χt.

If speculator i with initial belief θi
0 updates belief according to empirical mean, then

ai
t = 1

t ,

θi
t =

1
t+ 1

θi
0 +

1
t+ 1

t∑
l=1

χl. (5)

It assumes that all outcomes have equal influence on belief no matter when they occur. This

belief updating rule is used in most evolutionary game literature. Foster and Young (1990)

adopted a variant of this rule by assuming that players randomly select m out of n previous

outcomes and take the average as their belief. The randomness helps to prevent the game to

be locked into certain evolutionary unstable equilibrium without mutation.

Despite its popularity in game theory liturature, there are two major reasons to reject

the belief updating rule based on empirical mean. First, innovation and scientific discovery

bring structural changes to the economy from time to time. It is not reasonable to assume

that the underlying factors are homogenous across time and expect the future to follow the

pattern of long-dated outcomes to the same extent as near-dated outcomes. Rail road used

to be high growth sectors in 1900’s. It fueled the economy with cheaper means of mass

transportation and generated supernormal returns to equity investors. But as the expansion

reached boundary and new ways of transportation emgerged, the high return can no longer be

sustained. Automobile industry in the 1940’s, telephone in the 1960’s, and semiconductor in

the 1980’s all follow similar development pattern but their growth fell off the radar later on as

the industries mature. Recent data is thus more relevant to predict the near future. Second,

empirical studies in cognitive science have shown that first impression and recent experience

has bigger mental impact and thus bigger influence on people’s belief than things happen in

the middle. This phenomenon was initially studied by Miller and Campbell in psychology

literature and fully researched in Shiffrin (1973). The bigger impact of first impression is

termed “primacy effect” and the discriminate emphasize on recent events is termed “recency
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effect”.

In this paper, we will focus our attention on the “recency effect” and formulate a

learning rule reflectng this property. The primacy effect can be readily included in the

learning rule by adding another parameter on impact from initial periods. Since we are more

interested in adaptive behavior in a changing environment, we will use a simpler learning

rule without “primacy effect”.

The model in Foster and Young (1990) has “recency effect” feature, too. At the end of

each period, the oldest outcome is droped and the recent outcome is added to the state of the

dynamics so that there are only a fixed number n of outcomes in the history of events. Then

m out of the n outcomes in the history queue will be picked randomly for each agent. The

length of the history queue is a crucial assumption, which determines the number of states of

the game and the dynamics over time. However, both n and m have to be arbitrarily chosen

in order for the game to have a clear definition of states. The following specification is not

restrictive in that sense and allows individuality in cognitive process and assumes only the

general functional form.

Definition: Speculator i updates her belief according to an adaptive learning rule if the

new belief is a weighted average of previous belief and current outcome with constant αi as

weight on previous belief, i.e.

θi
t = (1− αi)χt−1 + αiθi

t−1 (6)

= (1− αi)
t−1∑
l=0

(αi)lχt−l + (αi)tθi
0. (7)

The weight αi in an adaptive learning rule represents speculator i’s responsiveness

to new information. Like gene of a species in ecological evolution, a speculator’s responsive-

ness is an inherited characteristic. It is type of speculator i and does not vary over time

or depends on outcomes of the game. If αi = 1, speculator i is absolutely strong in initial

belief and totally ignores subsequent signal outcomes. If αi = 0, speculator i’s belief depends

solely on the previous round’s signal accuracy. If 0 < αi < 1, the influence of initial be-

lief and outcomes in earlier rounds of trading will gradually phase out over time and recent

outcomes have bigger impact on speculator i’s current belief. It is the “recency effect” feature.

Proposition 3 (Biasedness and Nonconvergence in Static Environment): If quality

of public signal φt stays at a constant φ over time and given 0 < αi, the belief series derived
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from the adaptive learning rule

(1) is a biased estimate of the true quality of public signal and;

(2) will not converge to the true quality of public signal when t goes to infinity.

Proof of Proposition 3: Notice that the coefficient sequence in Equation (7) satisfies,

(1− αi)
t−1∑
l=0

(αi)l = 1− (αi)t (8)

Taking expectation of Equation (7),

E(θi
t) = (1− αi)

t−1∑
l=0

(αi)lE(χt−l) + (αi)tθi
0

= φ(1− αi)
t−1∑
l=0

(αi)l + (αi)tθi
0

= (1− (αi)t)φ+ (αi)tθi
0

Speculator i’s belief at time t, θi
t, is thus a biased estimate of φ. It is unbiased only if θi

0 = φ.

The estimation bias at time t is (αi)t(θi
0 − φ). It decreases over time. In the limit as t goes

to infinity, the impact of initial belief approaches zero and E(θi
t) converges to φ,

lim
t→∞

E(θi
t) = lim

t→∞
(1− (αi)t)φ+ lim

t→∞
(αi)tθi

0 = φ.

It can be shown that the variance of the adaptive learning belief at time t is

V ar(θi
t) = V ar((1− αi)

t−1∑
l=0

(αi)lχt−l)

= (1− αi)2
t−1∑
l=0

(αi)2lφ(1− φ)

= φ(1− φ)
1− αi

1 + αi
(1− (αi)2t).

The variance of the adaptive learning belief series converges to a constant as time approaches

infinity,

lim
t→∞

V ar(θi
t) = φ(1− φ)

1− αi

1 + αi
,

therefore the adaptive learning belief series does not converge in probability to φ.

Q.E.D.

The empirical mean is also biased. Its estimation bias at time t is 1
1+t (θ

i
0 − φ). The bias

reduces over time. Empirical mean does not converge to the true quality of public signal in
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the limit unless ai(0) = 0. The variance of belief based on empirical mean at time t is

V ar(θi
t) = φ(1− φ)(1− αi

0)
2 1
t
.

The empirical mean belief series converges to 0 as time approaches infinity. By Strong Law

of Large Numbers, the empirical mean belief series converges to φ in probability.

As shown before, the belief series generated from this rule does not converge to the

true quality of public signal and has a larger variance in the limit than the empirical mean.

But It has an advantage when the game is set with structural shifts.

Proposition 4: Assume that the change in quality of public signal φt occurs at time

(T1, T2, ..., Tn, ...) and the number of changes at time t, N(t), is a Poisson process with pa-

rameter λ. Given 0 < αi, there exists time T , such that for all t > T , the expected belief

series derived from the adaptive learning rule is closer to φt than that of the empirical mean

belief series, conditional on, FTn , the information set at Tn, where Tn is the last time before

T when a change happens and FTn
≡ (φT1 , φT2 , ..., φTm

)
⋃

(χl)Tn

l=1.

E[(1− αi)
t−1∑
l=0

(αi)lχt−l + (αi)tθi
0 − φt|FTn

]

< E[
1

t+ 1
θi
0 +

1
t+ 1

t∑
l=1

χl − φt|FTn
] (9)

Proof of Proposition 4: It is a property of Poisson process that the average time lapse

from a change in the quality of public signal to the next is 1/λ,

E[Tn+1 − Tn|Tn] = 1/λ.

Denote k ≡ b1/λc+ 1, the smallest integer greater than 1/λ. Let

T =
⌊

k + 1
1− αk+1

⌋
+ 1,

then for any t > T ,

1− αk+1 >
k + 1
t+ 1

. (10)

Notice that the left hand side of Condition (10) is sum of the k most recent belief weights in

adaptive learning rule and the right hand side is that in empirical mean. For any t > T , in

the adaptive learning rule total belief weight on outcomes happened after the recent change
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in quality of public signal is thus larger than that in empirical mean. Since E[χl] = φl = φTn

for any l > Tn,

E[(1− αi)
t−1∑
l=0

(αi)lχt−l + (αi)tθi
0 − φt|FTn ] = (1− αi)

t−1∑
l=t−Tn

(αi)l(χt−l − φt) + (αi)t(θi
0 − φt)

and,

E[
1

t+ 1
θi
0 +

1
t+ 1

t∑
l=1

χl − φt|FTn
] =

1
t+ 1

(θi
0 − φt) +

1
t+ 1

Tn∑
l=1

(χl − φt)

Condition (9) holds.

Q.E.D.

4 Evolutionary Dynamics

The model with adaptive learning feature distinguishes itself from Stochasitic Fictitious Play

and the Adaptive Play model of Young (1993). In this section, we will focus on implication

of adaptive learning on market dynamics.

Let θt denote the vector of speculators’ belief, (θ1t , θ
2
t , ..., θ

N
t ). As explained before,

the clearing price Pt and realized outcome of the public signal and asset value fully reveal

the proportion of population adopting each strategies at time t. In other words, mt is public

information before bidding begins at time t + 1. The state of the game at time t is a tuple

< θt,mt >. For speculator i, she knows only her own belief θi
t but not the others’. Also

speculators do not have perfect recall of past outcomes. The past impacts speculators’ fu-

ture actions only through belief. Therefore, speculator i’s information set at time t is (θi
t,mt).

Definition: Let S = {s1, s2, ..., sK} denote the set of pure strategies. Let δt be the popula-

tion distribution adopting each strategies at time t, δt = (δ(k)
t )K

k=1, where δ(k)
t ∈ {0, 1, ..., N}

and
∑K

k=1 δ
(k)
t = N . Let ∆ be the space of δt. Let Θ be the space of players’ belief

θt = (θ1t , θ
2
t , ..., θ

N
t ). The mapping b : (∆,Θ) → (∆,Θ) represents an evolutionary dy-

namic.

An evolutionary dynamic is composed of a belief updating rule and choice decision

of pure strategies based on belief at each point in time. The system evolves from one state
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to another according to the mapping b(.). If the transition probability is determined, the

evolutionary dynamics can be represented by a Markov chain. We have defined the belief up-

dating rule and strategy choice rule for this model, the dynamics are hence fully determined

given an initial state.

To show characteristics of the evolutionary dynamics in this model, we introduce the

concept of payoff monotonic evolutionary dynamic.

Definition: An evolutionary dynamic is payoff monotonic if in the next period the

proportion of population adopting a higher payoff strategy is at least as large as that adopting

a lower payoff strategy in the current period. Mathematically,

πk(δt) > πl(δt) ⇒ δ
(k)
t+1 − δ

(k)
t ≥ δ

(l)
t+1 − δ

(l)
t , ∀ k, l ∈ {1, 2, ...,K}

where δt+1 = b(δt).

In the setting of this model, payoff monotone means that if strategy j generated

higher payoff in the previous round of trading then the proportion of speculators adopting

strategy j in the next round is non-decreasing.

Theorem 1 (Payoff Monotonicity): If ∃i ∈ {1, 2, ..., N}, s.t. αi > 0, the decision

rule in the speculating game is payoff monotone.

Proof of Theorem 1: We claim that if trend-following was the higher payoff strategy at

time t, then there will be at least as many trend-followers at time t+1 as before. To see this,

first note that for any speculator i with αi > 0,

θi
t+1 = αiχ{Vt=ζt} + (1− αi)θi

t > θi
t,

since χ{Vt=ζt} = 1. If trend-following generated higher payoff at time t, any speculator i

with αi > 0 have belief θi
t >

mt

N . They will either continue to be a trend-follower at time

t+1 or switch from a contrarian to a trend-follower. For any speculator j with αj = 0, his

belief θj
t+1 = θj

t . His strategy will not change. Therefore our claim is valid. It can be easily

proved that if contrarian is the higher payoff strategy at time t, there will be at least as many

contrarians at time t+1 as before. This completes the proof that the decision rule is payoff

monotone.
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Q.E.D.

When αi = 1 for all i = 1, 2, ...N , the above belief updating rule will generate the Best-

Response dynamics. If a speculator previously followed the public signal and it turned out to

be correct, she will be a trend-follower in the next round. Otherwise, they will be contrarians.

Similarly, contrarians will bid against the public signal in the next round if they won and

become trend-followers if they lost in the previous round.

Note that payoff monotone does not necessarily imply that the strategy distribution

with that property will converge to the symmetric Baysien Nash equilibrium. In this game,

due to speculators’ myopic emphasis of the most recent outcomes, their choice of strategies

will be myopic.

Definition: Given that the state of the game is (θt,mt),

a marginal contrarian is a speculator with belief, θi
t <

mt

N , whose belief updating weight αi

is such that

(1− αi)θt
i + αi ≥ mt

N
or equivalently, αi ≥ mt −Nθi

t

N(1− θi
t)

;

a marginal trend-follower is a speculator with belief, θi
t >

mt

N , whose belief updating weight

αi is such that

(1− αi)θt
i + αi ≤ mt

N
or equivalently, αi ≥ Nθi

t −mt

N(1 + θi
t)
.

A marginal contrarian will become a trend-follower at time t+1 if the public signal

is correct at time t. Any contrarian at time t with belief θi
t and a belief updating weight

less than the marginal contrarian with the same belief will still be a contrarian at time t+1

even if the signal is correct at time t. Similarly, a marginal trend-follower will become a

contrarian at time t+1 if the public signal is incorrect at time t. Any trend-follower at time

t with belief θi
t and a belief updating weight less than the marginal trend-follower with the

same belief will still be a trend-follower at time t+1 even if the signal is incorrect at time t.

For each value of the individual belief θ∗, there is a cutoff value of belief updating

weight, αC(θ∗), that solely determines whether a contrarian with this belief will possibly

change strategy in the next period,

αC(θ∗) =
mt −Nθ∗

N(1− θ∗)
.
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The cutoff value αC(θ∗) is a convex and increasing function of θ∗. It is also increasing in mt.

Similarly, there is a cutoff value of belief updating weight, αT (θ∗), that solely determines

whether a trend-follower with this belief will possibly change strategy in the next period,

αT (θ∗) =
Nθ∗ −mt

N(1 + θ∗)
.

The cutoff value αT (θ∗) is a convex and decreasing function of θ∗. It is a decreasing function

in mt. Figure (??)shows an example of αC(θ∗) and αT (θ∗).

Given state of the game < θt,mt >, denote the number of marginal contrarians at

time t by MCt and the number of marginal trend-followers by MTt. Since the game has

finite number of players, it is possible that either MCt or MTt is 0 from time to time. If at

time t, the public signal is correct, ζt = Dt, then speculator i’s belief will be updated, θi
t+1 =

αi + (1 − αi)θi
t. It also drives marginal contrarians to switch strategy, mt+1 = mt + MCt.

If at time t, the public signal is incorrect, i.e. ζt 6= Dt, then speculator i’s belief θt+1 will

be decreased to θi
t+1 = −αi + (1 − αi)θi

t. It also drives marginal trend-followers to switch

strategy, mt+1 = mt − MTt. The state of the game changes to < θt+1,mt+1 >, where

θt+1 = (θ1t+1, θ
2
t+1, ..., θ

N
t+1),

θi
t+1 = αi(2χ{ζt=z} − 1) + (1− αi)θi

t for i=1,2,...N (11)

mt+1 = mt + χ{ζt=z}MCt + (χ{ζt=z} − 1)MTt. (12)

Define ᾱ =
∑N

i=1 α
i to be the average belief updating weight. Since αi ≥ 0, for all

i, ᾱ ≥ 0. Whenever the public signal is correct, speculators’ belief of the quality of the

public signal increases by a fixed amount both at individual and population level. Likewise,

whenever the public signal is incorrect, speculators’ belief of the quality of the public signal

decreases by a fixed amount both at individual and population level.

When state of the game moves to < θt+1,mt+1 >, price at time t+1 will be affected

by change in belief as well. As shown in Equation (1), state of the dynamics affects price

Pt+1 through mt+1. The absolute belief updating impact on price is 2zMCt

N when the public

signal is correct and 2zMTt

N when the public signal is incorrect at time t. Because MCt and

MTt are both state dependent, the impact on price is state dependent.

Theorem 2 (Extreme Aversion): The evolutionary dynamics stays at extreme states

(with one strategy dominating the population) less often than moderate states.
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Proof of Theorem 2: The cutoff value of marginal contrarian’s belief updating weight,

αC(θi), is increasing in the difference between her own belief and the population belief,

|θi− mt

N |. The cutoff value of marginal trend-follower’s belief updating weight, αT (θj), is also

increasing in |θj − mt

N |. When the state is at mt, assume there is a marginal contrarian with

belief θi
C and belief updating weight αC(θi

C). Denote the distance between this marginal

contrarian’s belief and the population belief by d = |θi
C − mt

N |. A marginal trend-follower j

whose belief is as close to the population belief as that of the marginal contrarian will have

a belief updating weight αT (θj
T ), s.t. θj

T = mt

N + d.

When there are more trend-followers in the market, i.e. a higher mt > mt, belief

of the marginal contrarian with θi
C = mt + d and belief of the marginal trend-follower with

θj
T = mt − d with symmetric distance to the population belief are both higher. Notice that

αT (θj
T ) = d

1+θj
T

is increasing in θj
T and αC(θi

C) = d
1−θi

C

is decreasing in θi
C . Holding d

constant, at mt > mt,

αT (θj
T ) > αT (θj

T ) and αC(θi
C) < αC(θi

C).

It implies that when there are more existing trend-followers in the market, contrarians will

be less inclined to switch strategy than trend-followers. The reverse holds when there are

more contrarians. The evolutionary dynamic is therefore less likely to be at extreme states

when mt is either close to 0 or N.

Q.E.D.

Theorem 3 (Boom-Bust Cycle): The price series in this market exhibits boom-bust

cycle.

Proof of Theorem 3: As shown in the dynamics of Equation (eq:eq2) and (eq:eq3),

consecutive correct public signals increase price well as belief. The oppotimism as reflected

in belief elevates price increment further. When a incorrect public signal occurs afterwards,

the price down turn is bigger than if there are no previous favorable outcomes. The reverse is

true when there are consecutive incorrect public signals. Consequently, belief is endogeneous

force that generates boom-bust cycle in price.

Q.E.D.
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5 Conclusion and Further Extension

In this paper, we introduced a model of financial market with dynamic adaptive learning.

Speculators are inherited with idiosyncratic characters and learn of the stochastic quality of

public signal. They are passive in the sense that their reaction to market events are deter-

mined by heredity instead of personal will. They are active in the sense that they try to beat

the market and make a profit. It is a reflection of emotional behavior human beings instead of

fully rational optimizers. This is the first attempt to model these aspects of financial market.

From the modelling point of view, the simple market order trading mechanism cir-

cumvents the usual cumbersome assumptions. Speculation is driven by heterogenous belief

and dynamic learning. Nobody expects themselves to lose on average and still trade. At

the same time, speculators adopt all pure strategies and market maker sets market clearing

price without information scooping. The market clearing price is informationally efficient and

does not involve complication of strategic interactions. As we have seen that as a result of

adaptive learning price fluctuates irrespective economic fundamentals and boom-bust cycles

are endogenous.

There are several directions worth further exploration. In the current model, the only

information source is an exogenous public signal. It will be interesting to see how inclusion

of speculators with private information on asset value will impact the market dynamic. Also

current model has not touched elimination rule that represents the priciple of “survival of the

fittest.” To introduce wealth constraints to eliminate inept speculators and show the evolu-

tionary impact on public learning and market dynamics will be the next step. In that case,

public signal could be the public belief revealed by market clearing price and endogenized.
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