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University of Göteborg, Department of Economics, P.O.Box 640, 405 30 Göteborg, Sweden.
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Abstract

We introduce the mixed quantal response equilibrium as an alternative statistical approach
to normal form games with random utility function and prove its existence. Then we extend
the quantal response equilibrium to payoff functions with disturbances outside the family of
admissible distributions. Finally, we define the mixed logit quantal response equilibrium, we
draw the correspondence between it and the multinomial mixed logit model and prove that any
random utility game has a quantal response equilibrium, which additionally is the limit of a
parametric mixed logit quantal response equilibrium.
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1 Introduction

In the seminal paper written by McKelvey and Palfrey (henceforth McKP; 1995), normal form
games with random utility functions are being examined. Given that each player cannot predeter-
mine with certainty the exact payoff that a strategy profile will entail, the best response function
becomes stochastic. Hence, tools outside Nash’s classical game-theoretic framework have to be
used.

The problem of random utility functions was introduced by Luce (1959) and was later extensively
studied by McFadden (1973) in his breakthrough work. Each of the finitely many choices gives some
utility level consisting of two components, a deterministic and a random one. Under this framework,
individuals, instead of maximizing utilities, they randomize between choices in a way such that
higher probabilities to be assigned to choices that are more likely to entail greater utility level.
This kind of models are called quantal choice models. McFadden (1973) imposes the assumption
of iid Gumbel (extreme value type I) distributed random components, creating thus the famous
Multinomial Logit model which became cornerstone in modern econometrics, mainly due to its
tractability (closed form choice probabilities).

McKP study normal form games from this perspective by assuming that for each strategy
profile the expected payoff vector is not deterministic, but a disturbance vector is also added. They
follow McFadden’s line by assuming that each player would behave according to a quantal response
function, rather than a best response correspondence, and given some mild assumptions about the
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joint error distribution, they prove existence of Quantal Response Equilibria (QRE). Similarly to
McFadden, they also introduce the Logit QRE as a special case with iid Gumbel distributed errors
and examine its properties.

In practice, even though the logit model has been widely used, different extensions and gen-
eralizations (McFadden, Train; 2000, Chesher, Santos Silva; 2002) have appeared, basing their
argument on its weakness to capture random taste variation and non-proportional substitution
patterns between choices. In order to cover these cases, the Mixed Multinomial Logit model was
introduced, which can model preferences with these characteristics. In order to do this, it is as-
sumed that some of the parameters of the utility function (without specifying if they belong to the
deterministic or the stochastic part) come from a different distribution. Then the choice probabili-
ties are transformed into expected choice probabilities of ordinary logit models, under the measure
of this superposed distribution.

In this paper we apply this idea to McKP’s normal form games, by assuming existence of a
random vector of parameters in each player’s utility function (still without specifying if they belong
to the deterministic or the stochastic part), which represents various characteristics of the players
or the game. More precisely, it would be very relevant to assume that rationality is described by
an unknown parameter drawn randomly from some population. Following McKP, we could model
such a situation with a mixed logit model, where the parameter λ denotes the degree of rationality,
which we assume that comes from some other distribution, f . In this case, we have to estimate the
parameters of f rather than λ itself.

Notice that utilities can be affected by both the own and the opponents’ characteristics, with-
out this being necessary. An interesting point is that this specification allows for non-proportional
substitution patterns between different choices, which implies relaxation of the assumption of In-
dependence of Irrelevant Alternatives (IIA), which is the one among the VNM axioms that has
mostly been attacked.

We define the Mixed Quantal Response Equilibrium (MQRE) as a fixed point of weighted
quantal response vector, under the joint type distribution and we prove its existence. Notice that by
using the law of total probability, it is straightforward to show that in equilibrium the probability
assigned by each player to each pure strategy is equal to the total probability this strategy to
best response. Hence the MQRE is not conceptually different to the ordinary QRE, but it refers
to models with different informational background. Similarly to the case of deterministic utility
functions, the Bayesian approach lays between the two cases. McKelvey and Palfrey (1996) combine
the classical Bayesian approach with quantal responses, introducing thus incomplete information
to random utility games. Even though they do not explicitly call it that, in order to be consistent
with the terminology used throughout this paper, we use the concept of Bayesian Quantal Response
(BQR) to describe the behavioral structure in this class of games. In the following sections there
is a discussion about the relation between the BQR and the MQR.

Then, we define the concept of Mixed Logit Quantal Response Equilibrium and using the
techniques applied by McFadden and Train (2000) to prove that every random utility model can
be approximated as closely as desired by a mixed logit model, we show that every normal form
game with random utility functions has a QRE. In addition this QRE is the limit of a parametric
MLQRE. This last result generalizes McKP’s theorem, since it holds for almost every distribution
function for the error components. That is, we extend their result to a class of disturbances outside
the admissible ones that are originally assumed. No matter how complex the joint error distribution
is, the QR function can be found by just calculating the limit of the parametric MLQR function.
Finally, we discuss two specific mixing distribution families, Gamma and Triangular. We close this
discussion by showing that the limiting behavior of the single parameter of the standard Gamma
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in a mixed logit QRE is almost surely identical to the limiting behavior of the single parameter of
an ordinary logit QRE.

The paper has the following structure: in section 2 we present a quick description of normal
form games with random utility functions, as they were introduced by McKP. We also present the
notation style used throughout the whole paper. In section 3 we define the mixed quantal response
equilibria, prove their existence and connect them to the the ordinary QRE and the BQRE. We also
extend the equilibrium concept to utility functions with non-admissible error vectors. In section
4 the mixed logit quantal response equilibrium is introduced as a special case of the MQRE and
we prove that every random utility normal form game possesses a QRE, which additionally is the
limit of a parametric MLQRE. Section 5 concludes.

2 Normal Form Games with Random Payoff Functions

We consider a normal form game, consisting of a set of n players N = {1, ..., n}. Each one of them
has a set of pure strategies Si = {s1

i , ..., s
Ji
i } and a payoff function defined on the product of the

pure strategy spaces, ui : S = S1 × ... × Sn → R. We denote this game by Γ = (N,S, u). Let
∆(Si) = {(m1

i , ...,m
Ji
i ) ∈ [0, 1]Ji :

∑Ji
j=1 mj

i = 1} denote the set of player i’s mixed strategies and
∆(S) = ∆(S1)× ...×∆(Sn) the set of mixed strategy profiles.

We assume, similarly to McKP, that each player’s payoff function has two components: a
deterministic and a random one. Therefore we can rewrite it as follows

ui(s
j
i , s−i) = ûi(s

j
i , s−i) + εj

i (2.1)

where εi = (ε1i , ..., ε
Ji
i ) follows some joint distribution, with density function fi(εi), with expected

value E[εi] = 0 and such that all marginal distributions to exist. Every vector ε = (ε1, ..., εn)
that satisfies all these properties for every player is called admissible. The behavioral assumption
that McKP are introducing, is that players substitute the Best Response (BR) correspondence
with a Quantal Response (QR) function, according to which for every strategy profile played by
the opponents, player i responds with a completely mixed strategy, which assigns to each pure
strategy the probability to be the Best Response. Hence, player i’s QR function, σi = (σ1

i , ..., σ
Ji
i ) :

∆(S−i) → ∆(Si) is defined as

σj
i (m−i) = P

[
ui(s

j
i ,m−i) ≥ ui(sk

i ,m−i),∀k = 1, ..., Ji

]
= P

[
εk
i − εj

i ≤ ûi(s
j
i ,m−i)− ûi(sk

i ,m−i),∀k = 1, ..., Ji

]
(2.2)

A Quantal Response Equilibrium (QRE) is a fixed point of σ = (σ1, ..., σn). More precisely, it is a
mixed strategy profile m = (m1, ...,mn) ∈ ∆(S), such that σi(m−i) = mi, for every i. McKP prove
the existence of QRE for every game with the structure described above.

3 Mixed Quantal Response Equilibrium

Up to this point we assume that every player has perfect knowledge about everybody’s payoff
function. That is they have complete information about the deterministic part, ûj , for every j
and the value of the parameters of the error distributions. Additionally, even though players do
not know the realization of the payoff vector for every strategy profile, they do know the decision
mechanisms that both their opponents and themselves use, in order to determine their responses
to any given strategy played by the others. Namely they are aware of the fact that everybody is
playing according to their QR function, which is commonly known.
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Consider now a parameter vector, ti for each player which denotes personal characteristics that
enter the utility function. From this point and on we will refer to ti as player i’s type. The elements
of ti are included in (both or one of) the deterministic and the random component of the utility
function, which takes the following general form

ui(s) = βi(t)ûi(s) + εj
i (λi(t)) (3.1)

where ûi is a deterministic function and λi is the parameter of the error terms, which are assumed
to be admissible for every given t = (ti, t−i). If both βi and λi are constant for every t, then
we are back to equation (2.1) which can be considered as a special case. The implication behind
equation (3.1) is that utility can still be decomposed into an observed (deterministic) part and an
unobserved (stochastic) one. It is straightforward that βi(t)ûi(s) = ũi(s) + β̃i(s, t). Hence, we can
rewrite equation (3.1) as

ui(s) = ũi(s) + ηi(s, t) (3.2)

where ũi is a deterministic function and ηi(s, t) = εj
i (t)+β̃i(s, t) are the correlated and dependent on

every player’s strategy error terms. If βi(t)ûi(s) are additively separable, implying that β̃i depends
only on the type profile, then ηi is not a function of the opponents’ strategy.

Assume now that the decision makers ignore the realizations of both their and their opponents’
types. This could be justified in situations, where for instance the player is not a single individual,
but represents a group of people. In such a case only one would make the choice about the
strategy they would follow, say the leader, without having complete information about the ”player’s
own type”, since not all the members of the group are identical. However, she knows the type
distribution of both her own and the opponent’s group. From this point and on we will refer to the
team as a single player. All players know the joint density function, fT (t1, ..., tn), of the private
characteristics. Notice that the model allows for any kind of distribution (discrete or continuous).
If all the probability mass is accumulated at one single type profile, then again we are back to
McKP’s model. That is, if everybody could observe the realization of every single ti almost surely,
then they would be answering to the opponent’s actions according to the QR function.

Let us describe the structure of the random sources of the game with more details. Nature
picks a type profile which remains unrevealed. The only available information is the joint type
distribution. One could ask here why it is important to separate the two sources of uncertainty,
error term and type profile, instead of taking into account a single joint distribution. The answer
is quite straightforward and lays on the dependence among the error terms. Namely, as we are
going to see later, it is quite often assumed that the initial error terms (εj

i ) are independent. On
the other hand, if we merge the two random components (εj

i and t) into one joint random variable,
ηj

i s will not be independent any more, which will not allow us to calculate the choice probabilities
using the same techniques. Additionally, and more importantly, η may not admissible for every
joint type distribution (fT ), which is a necessary condition for the existence of QRE. We denote
this game by ΓM = (N,S, u, fT ) and we call it Γ’s corresponding mixed normal form game. The
normal form game that arises if we mix the disturbance and the type distribution into one joint
random term, we call it McKP representation of ΓM and technically it is equivalent to ΓM .

Then we define the Mixed Quantal Response (MQR) function, which is a mixture of Quantal
Responses. Obviously, the MQR function assigns a QR to every type profile.

σj
i (m−i) =

∫
T

σj
i (m−i|t)fT (t)dt (3.3)

where T is the type profile support and σj
i (m−i|t) is the QR given some type profile, i.e. the QR

in the degenerated case of error terms coming from a known distribution, as in equation (2.2).
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Definition 3.1 (Mixed Quantal Response Equilibrium). Consider a mixed normal form game
ΓM = (N,S, u, fT ). We define MQRE to be a fixed point of the function σ = (σ1, ..., σn), where σi

is given by equation (3.3).

Theorem 3.1. Every mixed normal form game ΓM has a MQRE.

Proof. See in the appendix.

Corollary 3.1. Every MQRE of a mixed normal form game ΓM is a QRE of its McKP represen-
tation.

Proof. See in the appendix.

We could have assumed that each player’s own type is private information possessed only by
themselves and have consequently formed the corresponding Bayesian game, similarly to McKelvey
and Palfrey (1996). In such a game players, with private information about their types, would be
still responding playing mixtures of their quantal responses (Bayesian Quantal Response; BQR).
Using the same underlying idea as Harsanyi (1973), one could easily see the correspondence between
the sequence Nash Equilibrium- Bayesian Nash Equilibrium- Quantal Reponse Equilibrium and the
sequence Quantal Response Equilibrium- Bayesian Quantal Response Equilibrium- Mixed Quantal
Equilibrium. The role of joint error term in the first sequence is played by the joint type distribution
in the second. Hence, while we move along the elements of the two sequences if we place them one
after the other, we only decrease the ammount of information possessed by the players as follows:

• complete information (NE)

• incomplete with private information about error terms and complete about types (BNE)

• incomplete with no private information about error terms and complete about types (QRE)

• incomplete with no private information about error terms and incomplete with private infor-
mation about types (BQRE)

• incomplete with no private information about error terms and incomplete with no private
information about types (MQRE)

The turning point of this sequence of equilibrium concepts, is the substitution of best with
quantal responses as a behavioral pattern applied by individuals. However, the existence of QRE
has been proven only for admissible joint error terms that do not depend on the strategies played
by the others, which although cover the huge majority of continuous density functions, they do not
exhaust them. The following lemma goes one step further by relaxing these two restrictions.

Lemma 3.1. Assume a normal form game with random utility functions, where the error term can
be written as ηi(s, t) = εj

i (t) + β̃i(s, t), where t is an arbitrary random variable, ε is admissible for
every value of t and β̃i is a deterministic function. Then this game has a QRE.

Proof. See in the appendix.

The implication of the previous lemma is that every normal form game with random utility
functions that can be written as McKP representation of some mixed normal form game ΓM has a
QRE. The utility functions with admissible disturbances form a subclass of these functions, since
they coincide when β̃(s, t) = β̃(s), for every t.
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4 Mixed Logit Quantal Response Equilibrium

In the Classical Logit QRE, studied by McKP, the Quantal Response function is

σj
i (m−i) =

eλûi(s
j
i ,m−i)∑Ji

k=1 eλûi(sk
i ,m−i)

This model is based on utility functions of the form of equation (2.1) with independent, extreme-
value distributed error terms εj

i ∼ F (x) = exp{−e−λx}. The parameter λ usually denotes the
degree of rationality. This is a quite common assumption, since for values close to infinity the QR
function converges to the Best Reply, while for λ = 0 players randomize blindly, using the uniform
distribution as a mixed strategy, regardless of the opponent’s move and the deterministic part of
the payoff function.

If we assume utility function of the form of equation (3.1) instead, then we can obtain the
parametric form of the choice probabilities by conditioning with the type profile, t.

σj
i (m−i|t) =

exp{λi(t)βi(t)ûi(s
j
i ,m−i)}∑Ji

k=1 exp{λi(t)βi(t)ûi(sk
i ,m−i)}

(4.1)

Taking expectations with respect to the type profile in the previous equation, we can define the
Mixed Logit Quantal Response (MLQR) function.

σj
i (m−i) =

∫
T

exp{λi(t)βi(t)ûi(s
j
i ,m−i)}∑Ji

k=1 exp{λi(t)βi(t)ûi(sk
i ,m−i)}

fT (t)dt (4.2)

This model is based on the Mixed Multinomial Logit model (McFadden, Train; 2000), which is
defined as a mixture of ordinary logit models. The main advantage of this approach is that,
unlike the ordinary logit model, since the ratio of two choice probabilities is not fixed, it does not
exhibit Independence of Irrelevant Alternatives (IIA). That is, we do not restrict our model to fixed
substitution patterns. In other words, changing the probability assigned by a mixed strategy to
some choice does not necessarily leave unaffected the ratio of probabilities assigned to two other
alternatives. Additionally, we allow for taste variation, implying that not only can changes in the
deterministic part of the utility function be observed, but random taste variation is possible too.

An extremely interesting property possessed by Mixed Logit Models is that they can approxi-
mate as closely as desired any Random Utility Model (McFadden, Train; 2000). Using this idea we
prove the following theorem.

Theorem 4.1. Every n-player normal form game with random utility functions has a QRE almost
surely, which is always the limit of a parametric MLQRE.

Proof. See in the appendix.

This theorem allows us to calculate the QRE in cases where the only information that is available
is the joint probability of the error term, regardless of independency or admissibility.

After having described the structure and the properties of a MLQRE, it would be useful to
compare this specification with an ordinary QRE. That is, we would like to check whether the
introduction of a mixing distribution that determines the types of the players is necessary. Mc-
Fadden and Train (2000) introduce the Lagrange multiplier test that aims is testing the hypothesis
of fixed parameters. If this hypothesis is rejected, then a mixed logit specification would be more
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appropriate. Brownstone (2001) and Hensher and Greene (2003) also discuss this issue. It is quite
easy to see that this test applied to discrete choice models can be extended to normal form games
with random utility functions, since the likelihood function is constructed identically to the case
with only one decision maker.

The most convenient way to apply a mixed logit specification in a game with random utilities
would be to assume that the rationality level λ is coming from another distribution. There is a
number of mixing distributions that could be used in this case, as long as their support contains
only non-negative numbers. A very suitable distribution would be a standard Gamma, with density
function

fT (t) =
tγ−1e−t∫∞

0 uγ−1e−udu
(4.3)

where t ≥ 0 and γ > 0. In this case the only parameter that determines the type of the players is
the shape parameter γ. The larger it is the greater mass probability is accumulated in the tail of the
distribution, which results to higher probability of observing best replies. On the other hand, while
γ becomes lower and gets closer to 0, there is high probability of observing blind randomization
among the different choices. This implies that the limiting behavior of this parameter is similar to
the one possessed by the parameter λ used in the case of the ordinary logit QRE, with the difference
that in the case of the mixed logit model, perfect rationality (γ → ∞) and blind randomization
(γ → 0) occur almost surely rather than surely, since γ is the parameter of the density function of
the random rationality level.

Even though Gamma seems a reasonable choice (perhaps optimal among the commonly used dis-
tributions), its formula could cause various tractability problems. In this case we could consciously
skip some theoretical controversies and use the triangular distribution which is much easier to ma-
nipulate (Hensher, Greene; 2003). The main drawback of such a mixing distribution would be its
upper bound, which is finite, implying that we exclude the case of perfect rationality. However
data from empirical studies (Lieberman; 1960), show that people systematically diverge from their
best replies.

5 Concluding Discussion

In this paper we present an alternative theoretical model for normal form games with random
utility functions. Namely we substitute random payoff functions with mixtures of random utilities.
In this case we allow taste variation modelling and the participation of players who do not exhibit
independence of irrelevant alternatives. This idea that has already been widely discussed in the
framework of discrete choice models in statistics (McFadden, Train; 2000) and slightly mentioned
in the literature related to normal form games with random utility functions (McKelvey, Palfrey;
1996) is being further developed. The first part incorporates the ideas of incomplete information
to normal form games with random utilities and creates the framework that is used throughout the
whole paper. The setup does not object the classical incomplete information models. Using this
framework, combined with the concept of mixed models, we define the the Mixed Normal Form
Games and the Mixed Quantal Response Equilibrium as an alternative specification, which allows
for dependence of irrelevant alternatives and taste variation, as aimed. We also prove its existence.
Then we establish relationships QRE and MQRE.

In the second part of the paper, keeping track with the previous work that have been carried
out both in the field of statistics (McFadden; 1973, McFadden, Train; 2000) and of game theory
(McKelvey, Palfrey; 1995) we specify the Mixed Logit QRE as a special case of our model. The basic
result of the whole paper lays on a result that is strongly related to this special case. Namely, every
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normal form game has a QRE almost surely, which is always the limit of a parametric MLQRE.
This result (i) generalizes the class of utility functions that possess QRE and (ii) reveals that QRE
can also be seen as limits of sequences of equilibria in games with incomplete information, where
players may not satisfy the requirements of IIA and taste invariance.

Appendix

Proof of Theorem 3.1. Since σj
i (·|t) is continuous (McKP), σj

i (·), which is a convex combination,
will be continuous too. Therefore we apply Brouwer’s fixed point theorem on the function

σ = (σ1, ..., σn) : [0, 1]
∑n

i=1(Ji−1) → [0, 1]
∑n

i=1(Ji−1)

where σi = (σ1
i , ..., σ

Ji
i ), which proves the theorem. The reason for defining player i’s mixed strategy

space to be [0, 1]Ji−1 is that the probability assigned to the Jith choice is linearly dependent to the
other ones.

Proof of Corollary 3.1. If we substitute the QR with the probability the sj
i to be best response,

given the type profile in equation (3.3) and we apply the law of total probability, we obtain that
the MQR is equal to the probability ui(s

j
i ,m−i) to be maximal, which implies QR for the McKP

representation of the game.

Proof of Lemma 3.1. From theorem 3.1 we obtain that ΓM has a MQRE. Then what we would like
to show follows directly from the equivalence between the MQRE in ΓM and QRE in the game
with error terms ηj

i .

Proof of Theorem 4.1. Assume utilities given by

ui(s
j
i , s−i) = ûi(s

j
i , s−i) + ηj

i (5.1)

Apparently, since we do not have any information about the error term, the existence of QRE is
not ensured. However we know that η = (η1, ..., ηn) follows some joint distribution, g. If we knew
the realized value of this random variable, then the QR function would take values in the set {0, 1},
according to the 0-1 indicator function. Therefore, using the law of total probability we see that
the player i’s QR becomes

σj
i (m−i) =

∫
H

σj
i (m−i|η)dG(η)

=
∫

H
I{ui(s

j
i ,m−i)≥ui(sk

i ,m−i),∀k}dG(η) (5.2)

where H is η’s range.
Consider now the following utility functions

ũi(s
j
i , s−i;µ) = ui(s

j
i , s−i) + εj

i (µ) (5.3)

where εj
i iid Gumbel random variables with parameter µ > 0. Notice that when µ →∞, we obtain

εj
i = 0 almost surely and as a matter of fact we are back to the original game. If we rewrite it as

follows
ũi(s

j
i , s−i;µ) = ûi(s

j
i , s−i) + ηj

i + εj
i (µ) (5.4)
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and we apply lemma 3.1, we obtain that the McKP representation of this normal form game has a
QRE, which coincides with the MLQRE of the original mixed logit game. For some given µ > 0,
the choice probabilities in equilibrium are the ones that solve the system σi(m−i;µ) = mi, for every
i, where

σj
i (m−i;µ) =

∫
H

exp{µ(ûi(s
j
i ,m−i) + ηj

i )}∑
k exp{µ(ûi(sk

i ,m−i) + ηk
i )}

dG(η) (5.5)

If we take the limit µ →∞, we obtain that σj
i (m−i;µ) → σj

i (m−i) for every i = 1, ..., n and every
j = 1, ..., Ji.

We know that σi(m−i;µ) = mi(µ) is an identity for every µ > 0. Therefore, limµ→∞[σi(m−i;µ)−
mi(µ)] = 0. We have already proven that the limit of σi(m−i;µ) exists. Therefore, the limit of
mi(µ) will also exist. Hence,

σj
i (m−i) = lim

µ→∞
σi(m−i;µ) = lim

µ→∞
mi(µ)

which implies that limµ→∞m(µ) is a QRE of the original game almost surely.
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