
extended abstract
Calibrated Forecasts: Efficiency versus Universality
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1 Overview

One approach to learning/adaptation in repeated matrix games is to have each player compute some sort of forecast of opponent
actions and play a best response to this forecast. Accordingly, the limiting behavior of player actions strongly depends on the
specific method for forecasting.

For example in fictitious play, as well as smooth fictitious play, forecasts are simply the empirical frequencies of opponents’
actions. In special classes of games, player strategies converge to a Nash equilibrium, but in general, the limiting behavior need
not exhibit convergence (e.g., [FL98]).

Placing more stringent requirements on the forecasts can result in stronger convergence properties for general games. In
particular, if players use “calibrated” forecasts [FV97], then player strategies asymptotically converge to the set of correlated
equilibria. When players use calibrated forecasts ofjoint actions, then player strategies converge to the convex hull of Nash
equilibria [KF04]. See [SSV03] and references therein for further discussion on calibrated forecasting as well as its generaliza-
tions.

A drawback of calibrated forecasts is the computational requirement. In particular, existing methods of computing calibrated
forecasts require a state space that evolves over a discretized grid of points extracted from a probability simplex of appropriate
dimension. Furthermore, the asymptotic convergence results cited earlier require a progressive refinement of this grid. As a
result, calibration for a multi-move opponent can be a considerable computational burden.

This talk presents some work in progress that explores the possibility of calibration without discretization. We introduce
a “tracking forecast” that sacrifices universality in favor of a significantly reduced computational burden. Specifically, the
tracking forecast has the same computational requirement as computing empirical frequencies. We show that the tracking
forecast is calibrated for special classes of sequences, and we discuss possible consequences of tracking forecasts in repeated
matrix games.

2 Set-Up

The analysis presented here is motivated by stochastic discrete-time iterations but will be entirely for deterministic continuous-
time systems. The Ordinary Differential Equation (ODE) method of stochastic approximation establishes a connection between
the discrete-time and continuous-time settings. At this point, we only make formal connections between the two. Incorporating
methods from [BHS03, Bor97] would provide an analytical basis.

At each stage,n = 0, 1, 2, ..., there is a finite-alphabet outcome,x(n), represented as a simplex vertex. There is also a
forecast,f(n) ∈ ∆, where∆ is the probability simplex. The information available to make the forecastf(n) includes the
outcomes{x(0), x(1), ..., x(n− 1)}, but does not includex(n).

Following [KF04], letw : ∆ → R+ be Lipschitz continuous. Define the calibration error with respect tow as

ew(N) =
1
N

N∑
n=1

w(f(n))(x(n)− f(n)).

A forecast is “weakly calibrated” if for all sequences,x(·), and all test functions,w(·),

lim
N→∞

ew(N) = 0.

Reference [KF04] presents a universal algorithm that constructs a weakly calibrated forecast for arbitrary sequences.
For a given test function,w(t), we can write the calibration error recursively as the running average

ew(n + 1) = ew(n) +
1

n + 1

(
w(f(n))(x(n)− f(n))− ew(n)

)
.

The continuous-time calibration error differential equation suggested by the ODE methods of stochastic approximation is

ėw(t) = −ew(t) + w(f(t))(p(t)− f(t)).

Here,p(t) ∈ ∆ may be identified with the underlying probability density function behind the outcomex(t). As before, it is
desired that

lim
t→∞

ew(t) = 0



for all p(·). The information restriction in continuous time is that the forecast,f(·), at timet, cannot depend on the value of the
input,p(·), at timet. The main concern is that any candidate continuous time forecasting algorithm must allow a discrete-time
“translation” of the continuous-time forecast. This will be made clear in the coming definition of the forecast.

3 Tracking Forecast

Typically, universally calibrated forecasts depend explicitly on the calibration errors associated with a collection of test func-
tions. This collection of test functions constitutes the discretization typically used in calibration.

We now present a forecast that does not depend on any specificew. Consider the following “tracking forecast”,

ḟ(t) = λ(p(t)− f(t)),

whereλ � 1. The terminology is due to the following property. If|ṗ| is uniformly bounded, i.e.,

|ṗ(t)| ≤ ṗmax,

thenf(t) “tracks” p(t) in the sense that the tracking error,p(t)− f(t), asymptotically satisfies

|p(t)− f(t)| ≤ 1
λ
|ṗmax|.

A discrete-time implementation is

f(n + 1) = f(n) +
λ

n + 1

(
x(n)− f(n)

)
.

One issue is quantifying how largeλ � 1 should be. A conjecture is that this may be sidestepped via the implementation1

f(n + 1) = f(n) +
(

1
n + 1

)ρ (
x(n)− f(n)

)
where0 < ρ < 1.

3.1 Bounded rate sequences

The tracking property of this forecast results in an “approximate” calibration property for bounded rate sequences, i.e., se-
quences that satisfy|ṗ(t)| ≤ ṗmax. One example of a bounded rate sequence is the actions of a player using smooth fictitious
play (cf., section 4.1). For a given test function,w(·), definewmax = maxf∈∆ w(f). Then for bounded rate sequences,

lim sup
t→∞

|ew(t)| ≤ 1
λ

ṗmaxwmax.

3.2 Binary Sequences

It is possible to remove the bounded rate condition for binary sequences. In the case of binary sequences, there is single degree
of freedom in thatf(t) =

(
f̃(t) 1− f̃(t)

)
andp(t) = ( p̃(t) 1− p̃(t) ).

Now consider the calibration error defined by

ėw(t) = −ew(t) + w(f̃(t))(p̃(t)− f̃(t)).

Let us assume for convenience that the test function,w(·), is differentiable and satisfiesw(f̃) = ∇v(f̃) for some differentiable
function,v(·), bounded byvmax. One can show that asymptotically,

lim sup |ew(t)| ≤ c

λ
vmax,

for some constant,c.

4 Application to Learning in Games

Now consider a continuous-time repeated two-player matrix game. The dynamics (e.g., [FL98]) are as follows:

q̇i = −qi + pi,

where theqi ∈ ∆ are identified with the empirical frequencies, and thepi ∈ ∆ are identified with the players’ current strategies.
These equations are coupled since each player’s strategy will be a function of the opponent’s actions.

Let the utility function of theith player be characterized by the matrixMi. Thesmoothedbest response function,βi : ∆ →
∆, is defined as

βi(q) = arg max
s∈∆

s>Miq − τs> log(s),

whereτ > 0 is a small coefficient andlog(·) is component-wise. Let the subscript “−i” denote the opponent of playeri. If
each player uses a smoothed best response to a forecast of the other player, then the above dynamics become

q̇i = −qi + βi(f−i).
1Suggested by Dean Foster (personal communication) as an approach to calibrate binary sequences.
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4.1 Tracking Forecast: Single Player

Suppose that player 2’s strategy is as in smooth fictitious play, i.e., a smoothed best response to empirical frequencies, whereas
player 1’s strategy is a best response to a tracking forecast. The resulting dynamics are

q̇1 = −q1 + β1(f2), ḟ2 = λ(p2 − f2)

q̇2 = −q2 + β2(q1),
wherep2 = β2(q1).

Note that for a fixed smoothing parameter,τ , the strategy of player 2 constitutes a bounded rate sequence, i.e.,ṗ2(t) is
bounded. Accordingly, for sufficiently largeλ, f2 ≈ p2, and so player 1 approximately plays the best response to player 2’s
strategy. In this case,

q̇1 ≈ −q1 + β1(β2(q1)).
These are the same dynamics that emerge in [LC03], where different players adapt at different time-scales. In the present case,
the two-time-scale behavior stems from one player using a more sophisticated forecast than the other.

4.2 Tracking Forecast: Both Players

In case both players use smoothed best responses to tracking forecasts, the resulting dynamics are

q̇i = −qi + βi(f−i), ḟi = λ(βi(f−i)− fi).

Note that theḟi dynamics are the usual smooth fictitious play. For largeλ, these equations exhibit two-time-scale behavior.
In particular, if theḟi dynamics are asymptotically oscillatory, the methods of [TMN03] show that the empirical frequencies
approach the running average of the best responses. More precisely, suppose that

f∗i = lim
T→∞

1
T

∫ T

0

βi(f−i(τ))dτ,

then for largeλ, qi(t) ≈ f∗i asymptotically.

4.3 Weighted Tracking Forecasts

Another possibility is where both players use smoothed best responses to a combination of empirical frequencies and tracking
forecasts, e.g.,

q̇i = −qi + βi(γq−i + (1− γ)f−i)

ḟi = λ(βi(f−i)− fi).
For γ = 1, this is standard smooth fictitious play, and forγ = 0, this is both players using a tracking forecast best response.
It is possible thatγ ∈ (0, 1) may result in completely different asymptotic behaviors. This set-up is reminiscent of “derivative
action” fictitious play, introduced in [SA03, SA05], where it was shown that for some games for which smooth fictitious
play does not converge, there exists a suitable modification such that playing the best response to an “anticipated” empirical
frequency can converge (locally) to a Nash equilibrium. It is likely that a similar stability analysis is applicable to the above
dynamics.

4.4 Illustrative Simulations

The talk will present several simulations that illustrate the construction of tracking forecasts and their effect in learning in
games.
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