Some Results on Adjusted Winner

Samer Salame
Eric Pacuit
Rohit Parikh*

June 27, 2005

1 Introduction

Abstract

We study the Adjusted Winner procedure of Brams and Taylor for dividing goods fairly between two individuals, and prove several results. In particular we show rigorously that as the differences between the two individuals become more acute they both benefit. We study some rather odd knowledge-theoretic properties of strategizing. We introduce a geometic approach which allows us to give alternate proofs of some of the Brams-Taylor results and which gives some hope for understanding the many-agent case also. We also point out that while honesty may not always be the best policy, it is as Parikh and Pacuit [PPsv] point out in the context of voting, the only safe one. Finally, we also show that provided that the assignments of valuation points are allowed to be real numbers, the final result is a continuous function of the valuations given by the two agents.

In this paper we study one particular algorithm, or procedure, for settling a dispute between two players over a finite set of goods. The algorithm we are interested in is called Adjusted Winner ($A W$) and due to Steven Brams and Alan Taylor [BT1]. Suppose there are two players, called Ann (A) and Bob (B), and n (divisible ${ }^{1}$) goods $\left(G_{1}, \ldots, G_{n}\right)$ which must be distributed to Ann and Bob. The goal of the Adjusted Winner algorithm is to fairly distribute the n goods between Ann and Bob. We begin by discussing an example which illustrates the Adjusted Winner algorithm.

Suppose Ann and Bob are dividing three goods: G_{1}, G_{2}, and G_{3}. Adjusted Winner begins

[^0]by giving both Ann and Bob 100 points to divide among the three goods. Suppose that Ann and Bob assign these points according to the following table.

Item	Ann	Bob
G_{1}	$\underline{10}$	7
G_{2}	$\underline{65}$	43
G_{3}	25	$\underline{50}$
Total	100	100

The first step of the procedure is to give G_{1} and G_{2} to Ann since she assigned more points to those items, and item G_{3} to Bob. However this is not an equitable outcome since Ann has received 75 points while Bob only received 50 points (each according to their personal valuation). We must now transfer some of Ann's goods to Bob. In order to determine which goods should be transfered from Ann to Bob, we look at the ratios of Ann's valuations to Bob's valuations. For G_{1} the ratio is $10 / 7 \approx 1.43$ and for G_{2} the ratio is $65 / 43 \approx 1.51$. Since 1.43 is less than 1.51 , we transfer as much of G_{1} as needed from Ann to Bob^{2} to achieve equitability.

However, even giving all of item G_{1} to Bob will not create an equitable division since Ann still has 65 points, while Bob has only 57 points. In order to create equitability, we must transfer part of item G_{2} from Ann to Bob. Let p be the proportion of item G_{2} that Ann will keep. p should then satisfy

$$
65 p=100-43 p
$$

yielding $p=100 / 108=0.9259$, so Ann will keep 92.59% of item G_{2} and Bob will get 7.41% of item G_{2}. Thus both Ann and Bob receive 60.185 points. It turns out that this allocation (Ann receives 92.59% of item G_{2} and Bob receives all of item G_{1} and item G_{3} plus 7.41% of item G_{2}) is envy-free, equitable and efficient, or Pareto optimal. In fact, Brams and Taylor show that Adjusted Winner always produces such an allocation [BT1]. We will discuss these properties in more detail below.

2 The Adjusted Winner Procedure

Suppose that G_{1}, \ldots, G_{n} is a fixed set of goods, or items. A valuation of these goods is a vector of natural numbers $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ whose sum is 100 . Let $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots$ denote possible

[^1]valuations for Ann and $\beta, \beta^{\prime}, \beta^{\prime \prime}, \ldots$ denote possible valuations for Bob. An allocation is a vector of n real numbers where each component is between 0 and 1 (inclusive). An allocation $\sigma=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is interpreted as follows. For each $i=1, \ldots, n, s_{i}$ is the proportion of G_{i} given to Ann. Thus if there are three goods, then $\langle 1,0.5,0\rangle$ means, "Give all of item 1 and half of item 2 to Ann and all of item 3 and half of item 2 to Bob." Thus $A W$ can be viewed as a function that accepts Ann's valuation α and Bob's valuation β and returns an allocation σ. It is not hard to see that every allocation produced by $A W$ will have a special form: all components except one will be either 1 or 0 .

We now give the details of the procedure. Suppose that Ann and Bob are each given 100 points to distribute among n goods as he/she sees fit. In other words, Ann and Bob each select a valuation, $\alpha=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $\beta=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ respectively. For convenience rename the goods so that

$$
a_{1} / b_{1} \geq a_{2} / b_{2} \geq \cdots a_{r} / b_{r} \geq 1>a_{r+1} / b_{r+1} \geq \cdots a_{n} / b_{n}
$$

Let α / β be the above vector of real numbers (after renaming of the goods). Notice that this renaming of the goods ensures that Ann, based on her valuation α, values the goods G_{1}, \ldots, G_{r} at least as much as Bob; and Bob, based on his valuation β, values the goods G_{r+1}, \ldots, G_{n} more than Ann does. Then the $A W$ algorithm proceeds as follows:

1. Give all the goods G_{1}, \ldots, G_{r} to Ann and G_{r+1}, \ldots, G_{n} to Bob. Let X, Y be the number of points received by Ann and Bob respectively. Assume for simplicity that $X \geq Y$.
2. If $X=Y$, then stop. Otherwise, transfer a portion of G_{r} from Ann to Bob which makes $X=Y$. If equitability is not achieved even with all of G_{r} going to Bob, transfer $G_{r-1}, G_{r-2}, \ldots, G_{1}$ in that order to Bob until equitability is achieved.

Thus the $A W$ procedure is a function from pairs of valuations to allocations. Let $\mathrm{AW}(\alpha, \beta)=$ σ mean that σ is the allocation given by the procedure $A W$ when Ann announces valuation α and Bob announces valuation et $t a$. In [BT1, BT2], it is argued that $A W$ is a "fair" procedure, where fairness is judged according to the following properties.

Let $\alpha=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $\beta=\left\langle b_{1}, \ldots b_{n}\right\rangle$ be valuations for Ann and Bob respectively. An allocation $\sigma=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is

- Proportional if both Ann and Bob receive at least 50% of their valuation. That is, $\sum_{i=1}^{n} s_{i} a_{i} \geq 50$ and $\sum_{i=1}^{n}\left(1-s_{i}\right) b_{i} \geq 50$
- Envy-Free if no party is willing to give up its allocation in exchange for the other player's allocation. That is, $\sum_{i=1}^{n} s_{1} a_{i} \geq \sum_{i=1}^{n}\left(1-s_{i}\right) a_{i}$ and $\sum_{i=1}^{n}\left(1-s_{i}\right) b_{i} \geq \sum_{i=1}^{n} s_{i} b_{i}$.
- Equitable if both players receive the same total number of points. That is $\sum_{i=1}^{n} s_{i} a_{i}=$ $\sum_{i=1}^{n}\left(1-s_{i}\right) b_{i}$
- Efficient if there is no other allocation that is strictly better for one party without being worse for another party. That is for each allocation $\sigma^{\prime}=\left\langle s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle$ if $\sum_{i=1}^{n} a_{i} s_{i}^{\prime}>\sum_{i=1}^{n} a_{i} s_{i}$, then $\sum_{i=1}^{n}\left(1-s_{i}^{\prime}\right) b_{i}<\sum_{i=1}^{n}\left(1-s_{i}\right) b_{i}$. (Similarly for Bob).

In order to simplify notation, let $V_{A}(\alpha, \sigma)$ be the total number of points Ann receives according to valuation α and allocation σ and $V_{B}(\beta, \sigma)$ the total number of points Bob receives according to valuation β and allocation σ.

It is not hard to see that for two-party disputes, proportionality and envy-freeness are equivalent. For a proof, notice that

$$
\sum_{i=1}^{n} a_{i} s_{i}+\sum_{i=1}^{n} a_{i}\left(1-s_{i}\right)=\sum_{i=1}^{n} a_{i} s_{i}+\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} a_{i} s_{i}=100
$$

Then if σ is envy free for Ann, then $\sum_{i=1}^{n} a_{i} s_{i} \geq \sum_{i=1}^{n} a_{i}\left(1-s_{i}\right)$. Hence, $2 \sum_{i=1}^{n} a_{i} s_{i} \geq$ $\sum_{i=1}^{n} a_{i}=100$. And so, $\sum_{i=1}^{n} a_{i} s_{i} \geq 50$. The argument is similar for Bob. Conversely, suppose that σ is proportional. Then since $\sum_{i=1}^{n} a_{i} s_{i} \geq 50, \sum_{i=1}^{n} a_{i} s_{i}+\sum_{i=1}^{n} a_{i} s_{i} \geq$ $100=\sum_{i=1}^{n} a_{i}$. Then $\sum_{i=1}^{n} a_{i} s_{i}+\sum_{i=1}^{n} a_{i} s_{i}-\sum_{i=1}^{n} a_{i} \geq 0$. Hence, $\sum_{i=1}^{n} a_{i} s_{i}-\sum_{i=1}^{n} a_{i}\left(1-s_{i}\right) \geq$ 0 . And so, $\sum_{i=1}^{n} a_{i} s_{i} \geq \sum_{i=1}^{n} a_{i}\left(1-s_{i}\right)$. The proof is similar for Bob.

Returning to $A W$, it is easy to see the $A W$ only produces equitable allocations (equitability is essentially built in to the procedure). Brams and Taylor go on to show that $A W$, in fact, satisfies all of the above properties.

Theorem 1 (Brams and Taylor [BT1]) AW produces an allocation of the goods based on the announced valuations that is efficient, equitable and envy-free.

A formal proof of this Theorem is provided in [BT1].

2.1 The Proportional-Allocation Procedure

In this section we briefly discuss a procedure related to AW called Proportional-Allocation $(P A) . P A$, as the name implies, allocates goods proportionally. As before, assume there are n goods G_{1}, \ldots, G_{n} and assume that Ann announces a valuation $\alpha=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and Bob announces a valuation $\beta=\left\langle b_{1}, \ldots, b_{n}\right\rangle$. For simplicity suppose that for each i, either $a_{i} \neq 0$ or $b_{i} \neq 0$. Then under $P A$ Ann is allocated the fraction $a_{i} /\left(a_{i}+b_{i}\right)$ of G_{i}, and Bob the fraction $b_{i} /\left(a_{i}+b_{i}\right)$.

For an example, consider the distribution of points from the introduction:

Item	Ann	Bob
G_{1}	$\underline{10}$	7
G_{2}	$\underline{65}$	43
G_{3}	25	$\underline{50}$
Total	100	100

Under $P A$, Ann is awarded $10 / 17$ of $G_{1}, 65 / 108$ of G_{2}, and $25 / 75$ of G_{3} giving her a total of 53.33 points. Bob also receives 53.33 points. Recall that under $A W$ both Ann and Bob would be awarded 60.185 points. Thus, $P A$ is not efficient but it is equitable and envy-free.

Theorem 2 (Brams and Taylor [BT1]) PA produces an allocation of the goods based on the announced values that is equitable and envy-free.

The principal advantage of $P A$ over $A W$ is that it discourages (unilateral) departures from truthfulness. Refer to [BT1] for an extended discussion. Note that the effect of AW could be achieved by PA if Ann and Bob co-operate. Suppose Bob 'cedes' r items to Ann, allocating 0 points to these, Ann 'cedes' $n-r-1$ items to Bob, again allocating 0 points to these, and they both lay claim to the one remaining item in appropriate proportions. In that case PA will give the same result as AW does.

3 A Geometrical Interpretation of $A W$

In this section and the one on continuity, it will be useful to think of both valuations and allocations as vectors in n-space, and to use vector notation where such notation will assist
our geometric intuition.

Notice that the $A W$ procedure only produces allocations in which all components, except possibly one, are either 1 or 0 . In this section, we show that this is not an accident. We will be working in \mathbb{R}^{k} for $k \geq 1$. An allocation is a vector $\vec{x} \in \mathbb{R}^{k}$ where each component is a non-negative real less than or equal to 1 . Thus the set of all possible allocations is a hypercube in \mathbb{R}^{k}. Let $\mathcal{C}_{k}=\left\{\vec{x} \mid \forall i \quad 0 \leq x_{i} \leq 1\right\}$ be this hypercube of dimension k (we will leave out the k when possible).

A valuation is a vector $\vec{P} \in \mathbb{R}^{k}$ where $\sum_{i=1}^{k} P_{i}=100$. Let \cdot denote the dot product, that is $\vec{x} \cdot \vec{P}=\sum_{i=1}^{k} x_{i} P_{i}$. Now, let \vec{P} and \vec{Q} be two fixed vectors (Ann's valuation and Bob's valuation). As we want to ensure that Ann and Bob both receive the same valuation, we are interested in the hyperplane $\mathcal{H}_{\vec{P}, \vec{Q}}$ generated by the following equation

$$
\vec{x} \cdot \vec{P}=(\overrightarrow{1}-\vec{x}) \cdot \vec{Q}
$$

Since $\overrightarrow{1} \cdot \vec{Q}=100$, we have

$$
\vec{x} \cdot(\vec{P}+\vec{Q})=\vec{x} \cdot(\vec{Q}+\vec{P})=\vec{x} \cdot \vec{Q}+(\overrightarrow{1}-\vec{x}) \cdot \vec{Q}=\overrightarrow{1} \cdot \vec{Q}=100
$$

Thus $\mathcal{H}_{\vec{P}, \vec{Q}}=\{\vec{x} \mid \vec{x} \cdot(\vec{P}+\vec{Q})=100\}$. Again we will leave out the subscripts when possible.
For a fixed \vec{P} and \vec{Q}, wanting efficency, we can ask for the allocations \vec{x} that maximize $\vec{x} \cdot \vec{P}$ (subject to the above constraints): Let $\mathcal{I}=\mathcal{C}_{k} \cap \mathcal{H}_{\vec{P}, \vec{Q}}$. Define the function $f: \mathcal{I} \rightarrow \mathbb{R}$ by $f(\vec{x})=\vec{x} \cdot \vec{P}$. Then, since \mathcal{I} is a closed and bounded subset of \mathbb{R}^{k} (hence compact by the Heine-Borel Theorem), f has a maximum value on $\mathcal{I}=\mathcal{C}_{k} \cap \mathcal{H}_{\vec{P}, \vec{Q}}$. Let m be this maximum value, so that for each $\vec{x} \in \mathcal{I}, f(\vec{x}) \leq m$ and the set $\mathcal{M}=\{\vec{x} \mid f(\vec{x})=m\} \neq \emptyset$.

We claim that there is a point of \mathcal{M} which lies on an edge of the hypercube \mathcal{C}_{k}. More formally,

Theorem 3 There is a point $\vec{x} \in \mathcal{M}$ with all components either 1 or 0 except possibly one. I.e., $\exists j$ such that $\forall i$, if $i \neq j$ then $x_{i}=1$ or $x_{i}=0$.

Proof We will show that
$(*)$ if $\vec{x} \in \mathcal{M}$ with $0<x_{i}<1$ and $0<x_{j}<1$ for $i \neq j$, then there is a point $\vec{x}^{\prime} \in \mathcal{M}$ with $x_{l}=x_{l}^{\prime}$ for all $l \neq i, j$ and either $x_{i}^{\prime}=1$ or $x_{j}^{\prime}=1$.

To see that this statement implies the theorem, take an arbitrary element $\vec{x} \in \mathcal{M}$ (such an element exists since \mathcal{M} is nonempty). Now, each time that $(*)$ is used, the number of strictly fractional components (not 0 or 1) decreases by one. Thus when we are finished there will be at most one fractional component left.

To prove ($*$) WLOG we may assume that $i=1$ and $j=2$. Thus we have

$$
x_{1} P_{1}+x_{2} P_{2}+\sum_{i=3}^{k} x_{i} P_{i}=m
$$

where m is the maximum of the function f. Now we must show that either there is $0 \leq x_{1}^{\prime} \leq 1$

$$
x_{1}^{\prime} P_{1}+P_{2}+\sum_{i=3}^{k} x_{i} P_{i}=m
$$

or there is $0 \leq x_{2}^{\prime} \leq 1$ such that

$$
P_{1}+x_{2}^{\prime} P_{2}+\sum_{i=3}^{k} x_{i} P_{i}=m
$$

Now if we set $x_{1}^{\prime}=\frac{x_{1} P_{1}+x_{2} P_{2}-P_{2}}{P_{1}}$, and $x_{2}^{\prime}=1$ then it is not hard to see that $x_{1}^{\prime} P_{1}+P_{2}+$ $\sum_{i=3}^{k} x_{i} P_{i}=m$. Similarly, if we set $x_{2}^{\prime \prime}=\frac{x_{1} P_{1}+x_{2} P_{2}-P_{1}}{P_{2}}$ and $x_{1}^{\prime \prime}=1$. But to show that one of the other of these assignments work, we still need to show that either $0 \leq x_{1}^{\prime} \leq 1$ or $0 \leq x_{2}^{\prime \prime} \leq 1$.

Since x_{1} and x_{2} are both between 0 and $1, x_{1} P_{1}+x_{2} P_{2}<P_{1}+P_{2}$. Thus using basic algebra, $x_{1}^{\prime}<1$ and $x_{2}^{\prime \prime}<1$.

Suppose that $x_{1}^{\prime}<0$ and $x_{2}^{\prime \prime}<0$. Then since P_{1} and P_{2} are both positive real numbers, $x_{1} P_{1}+x_{2} P_{2}-P_{2}<0$ and $x_{1} P_{1}+x_{2} P_{2}-P_{1}<0$. Therefore, $x_{1} P_{1}+x_{2} P_{2}<P_{2}$ and $x_{1} P_{1}+x_{2} P_{x}<P_{1}$ and so $x_{1} P_{1}+x_{2} P_{2}<\frac{1}{2} P_{1}+\frac{1}{2} P_{2}$. Thus

$$
\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+\sum_{i=3}^{k} x_{i} P_{i}>x_{1} P_{1}+x_{2} P_{2}+\sum_{i=3}^{k} x_{i} P_{i}=m
$$

which is a contradiction since we could clearly have used $\frac{1}{2}, \frac{1}{2}$ as our values, and m is the maximum.

4 Continuity

In this section we will think of the AW as a function that takes two vectors of real numbers and returns a real number. Our goal is to show that AW is continuous in both vectors.

Assume there are k goods. Suppose that α is Ann's valuation, β is Bob's valuation and σ is the allocation produced by $A W$ (that is $\operatorname{AW}(\alpha, \beta)=\sigma$). Let r be the ratio a_{i} / b_{i} where G_{i} is the item that is divided by the procedure. Define $I=\left\{l \mid a_{l} / b_{l}=r\right\}$, i.e., I is the set of indices of the goods that have the same ratio as the item which is divided by the procedure.

Lemma 4 Suppose that α, β, σ and I are defined as above. Suppose that y_{1}, y_{2}, y_{3} where y_{2} is Ann's value of the item being split and y_{1}, y_{3} are the totals of Ann's values of all other items in I. Suppose that we choose another item from I to split, call this allocation σ^{\prime}. Say z_{1}, z_{2}, z_{3} are integers where z_{2} is Ann's value of the (new) item being split and z_{1}, z_{3} are the totals of Ann's values for all other items in I. Then $V_{A}(\alpha, \sigma)=V_{A}\left(\alpha, \sigma^{\prime}\right)$, i.e., Ann (and hence Bob) receives the same number of points.

Proof Let X be the value of allocation out side I that will be allocated to Bob by his valuation. Let Y be the value of allocation out side I that will be allocated to Ann by her valuation. Then

$$
V_{A}(\alpha, \sigma)=X+r y_{1}+p r y_{2}=Y+y_{3}+(1-p) y_{2}
$$

where p is the percentage that Bob will get from the item that correspond to y_{2}. On the other hand

$$
V_{A}\left(\alpha, \sigma^{\prime}\right)=X+r z_{1}+q r z_{2}=Y+z_{3}+(1-q) z_{2}
$$

where q is the percentage that Bob will get from the item that correspond to z_{2}. Also note that $y_{1}+y_{2}+y_{3}=z_{1}+z_{2}+z_{3}$. Let $S=y_{1}+y_{2}+y_{3}$.

Let $A=r y_{1}+p r y_{2}$ and let $B=y_{3}+(1-p) y_{2}$ then $A / r+B=S$ and that gives us $A=r(S-B)$. Substitute in the above equation we get $V_{A}(\alpha, \sigma)=X+r(S-B)=Y+B$ then $(Y+B)(1+r)=X+r S+r Y$ and that give us $V_{A}(\alpha, \sigma)=Y+B=(X+r S+r Y) /(1+r)$.

In a similar argument, Let $A^{\prime}=r y_{1}+p r y_{2}$ and let $B^{\prime}=y_{3}+(1-p) y_{2}$ then $A^{\prime} / r+B^{\prime}=S$ and that gives us $A^{\prime}=r\left(S-B^{\prime}\right)$. Substitute in the above equation we get $V_{A}\left(\alpha, \sigma^{\prime}\right)=$ $X+r\left(S-B^{\prime}\right)=Y+B^{\prime}$ then $\left(Y+B^{\prime}\right)(1+r)=X+r S+r Y$ and that give us $V_{A}(\alpha, \sigma)=$ $Y+B^{\prime}=(X+r S+r Y) /(1+r)$. Thus we $V_{A}(\alpha, \sigma)=V_{A}\left(\alpha, \sigma^{\prime}\right)$.

5 The Distance Between Announced Allocations

In this section we formalize the intuition that the more the valuations differ, the more points each agent will receive. Since $A W$ only produces equitable allocations, we can think of the function AW as a function from pairs of valuations to real numbers. Let $V_{A W}(\alpha, \beta)$ denote the total points that $A W$ allocates to each agent - say Ann, (according to the announced valuations α and β). Formally, $V_{A W}(\alpha, \beta)$ is defined to be $V_{A}(\alpha, \operatorname{AW}(\alpha, \beta))$. Of course, we coild define it in terms of Bob's valuation, but they are equal so it does not matter which definition is used.

Given an allocation α for Ann, if Ann increases any component then she must decrease another component as the sum of the components must be 100 . Now if Ann wants to accentuate the difference between her allocation and Bob's allocation, then she will only increase points on goods that she values more than Bob. Let α, α^{\prime} and β, β^{\prime} be two valuations for Ann and Bob, respectively. We say that $(\alpha, \beta) \prec_{i j}^{A}\left(\alpha^{\prime}, \beta^{\prime}\right)$ if

1. $\beta=\beta^{\prime}$
2. $\alpha_{i}>\beta_{i}, \alpha_{j}<\beta_{j}, \alpha_{i}^{\prime}=\alpha_{i}+1$ and $\alpha_{j}^{\prime}=\alpha_{j}-1$.
3. for all $k \neq i, j, \alpha_{k}^{\prime}=\alpha_{k}$

Similarly, we define $\prec_{i j}^{B}$ with respect to Bob's valuation. The intuition is that if $(\alpha, \beta) \prec_{i j}^{A}$ ($\alpha^{\prime}, \beta^{\prime}$), then the pair ($\alpha^{\prime}, \beta^{\prime}$) represents a situation in which Ann has "increased" by 1 unit the difference between α and β. We say $(\alpha, \beta) \prec\left(\alpha^{\prime}, \beta^{\prime}\right)$ if there is a sequence of pairs of valuations linearly ordered by the $\prec_{i j}^{A}, \prec_{i j}^{B}$ relations (with varying i, j) that begins with (α, β) and ends with $\left(\alpha^{\prime}, \beta^{\prime}\right)$. Thus \prec is the transitive closure of the union of the relations $\prec_{i j}^{A}$ and $\prec_{i j}^{B}$. It is not hard to see that \prec is a (non-reflexive) partial order. The main theorem of this section is

Theorem 5 If $(\alpha, \beta) \prec\left(\alpha^{\prime}, \beta^{\prime}\right)$, then $V_{A W}(\alpha, \beta)<V_{A W}\left(\alpha^{\prime}, \beta^{\prime}\right)$.

Before proving this theorem we will prove a number of facts that will turn out to be useful throughout the paper.

Lemma 6 If $\alpha=\beta$ then $V_{A W}(\alpha, \beta)=50$

Proof Suppose that $\alpha=\beta$. Let G_{1}, G_{2}, \ldots be the order of goods induced by the $A W$ procedure. Now the $A W$ procedure will distribute the goods so that

$$
a_{1}+a_{2}+\cdots+p a_{r}=(1-p) b_{r}+b_{r+1}+\cdots b_{n}
$$

Since $\alpha=\beta$, for each $j=r, \ldots, n, b_{j}=a_{j}$. Hence, we have

$$
a_{1}+a_{2}+\cdots+p a_{r}=(1-p) a_{r}+a_{r+1}+\cdots a_{n}
$$

Now, since $\sum_{i=1}^{n} a_{i}=100$,

$$
a_{1}+a_{2}+\cdots+p a_{r}=(1-p) a_{r}+100-\left(a_{1}+\cdots+a_{r}\right)
$$

Thus $2\left(a_{1}+a_{2}+\cdots+p a_{r}\right)=100$ and so $a_{1}+\cdots+p a_{r}=50$. Hence, $V_{A W}(\alpha, \beta)=50$.

Lemma 7 If $V_{A W}(\alpha, \beta)=50$, then $\alpha=\beta$.

Proof Suppose that $V_{A W}(\alpha, \beta)=50$. Suppose that $\alpha \neq \beta$. Then there exist i and j such that $a_{i}>b_{i}$ and $a_{j}<b_{j}$. The $A W$ procedure produces an allocation where (after renaming the goods)

$$
a_{1}+\cdots+p a_{r}=(1-p) b_{r}+\cdots+b_{n}=50
$$

Furthermore, the procedure ensures that $i \leq r$. WLOG we can assume $i=1$ by simply choosing the i that maximizes the ratio a_{i} / b_{i}. Using basic algebra, we have

$$
a_{1}+a_{2}+\cdots+a_{r-1}+b_{r+1}+b_{r+2}+\cdots b_{n}=100-p a_{r}-(1-p) b_{r}
$$

Since $a_{1}>b_{1}$ and for each $k=2, \ldots, r-1, a_{k} \geq b_{k}$, we have
$100-p a_{r}-(1-p) b_{r}=a_{1}+a_{2}+\cdots+a_{r-1}+b_{r+1}+b_{r+2}+\cdots b_{n}>b_{1}+b_{2}+\cdots+b_{r-1}+b_{r+1}+\cdots+b_{n}$
Hence,

$$
100-p a_{r}-p b_{r}>b_{1}+b_{2}+\cdots b_{n}=100
$$

This is a contradiction since $p, a_{r}, b_{r}>0$.

Lemma 8 For all $\alpha, \beta, V_{A W}(\alpha, \beta) \geq 50$.

Proof Suppose not. That is suppose that $V_{A W}(\alpha, \beta)<50$. Then the goods can be reordered so that

$$
a_{1}+\cdots+p a_{r}=(1-p) b_{r}+\cdots+b_{n}<50
$$

Hence $a_{1}+\cdots+p a_{r}+(1-p) b_{r}+\cdots+b_{n}<100$. Now since for each $j=1, \ldots, r, a_{j} \geq b_{j}$, we have
$100>a_{1}+\cdots+p a_{r}+(1-p) b_{r}+\cdots+b_{n}+p a_{r}+(1-p) b_{r}+\cdots+b_{n} \geq b_{1}+\cdots+p b_{r}+(1-p) b_{r}+\cdots+b_{n}$
This is a contradiction since $b_{1}+\cdots+p b_{r}+(1-p) b_{r}+\cdots+b_{n}=100$.

These lemmas each show that the $A W$ procedure produces proportional and hence envy-free allocations.

We return to the proof of the main theorem of this section (Theorem 5). The proof of the theorem is an easy consequence of the following fact.

Lemma 9 Suppose that $(\alpha, \beta) \prec_{i j}^{A}\left(\alpha^{\prime}, \beta^{\prime}\right)$, then $V_{A}(\alpha, \operatorname{AW}(\alpha, \beta))<V_{A}\left(\alpha^{\prime}, \operatorname{AW}\left(\alpha^{\prime}, \beta^{\prime}\right)\right)$.

Proof To see this, note that when Ann increased some valuations by 1, where it already exceeded Bob's valuation for that item, then she gets that item in the initial allocation both before this change and after the change. Hence Ann receives more points in her first allocation, and Bob must be compensated for this fact in the final allocation. Thus Bob's final score will increase. But since both Ann and Bob receive the same final score, they will both benefit. We postpone the details and the arithmetic to the final version of the paper.

6 Strategizing

In this section we consider the question of whether Ann can improve her total allocation by misrepresenting her preferences. It turns out that she can improve her allocation. The following example from [BT1] illustrates how Ann can deceive Bob. Suppose that Ann and Bob are dividing two paintings: one by Matisse and one by Picasso. Suppose that Ann and Bob's actual valuations are given by the following table.

Item	Ann	Bob
Matisse	75	25
Picasso	25	75

Ann will get the Matisse and Bob will get the Picasso and each gets 75 of his or her points.

But now suppose Ann knows Bob's preferences, but Bob does not know Ann's. Can Ann benefit from being insincere? Suppose that Ann announces the following allocation:

Item	Ann	Bob
Matisse	26	25
Picasso	74	75

So Ann will get the Matisse, receiving 26 of her announced (and insincere) points and Bob gets 75 of his announced points. Let x be the fraction of the Picasso that Ann will get, then we want

$$
26+74 p=75-75 p
$$

Solving for p gives us $p=0.33$ and each gets 50 of his or her announced preference. In terms of Ann's true preference, however, the situation is very different. She is getting from her true preference $75+0.33 * 25=83.33$.

Suppose both players know each other's preferences but neither knows that the other knows their own. Their announced point allocations might then be as follows:

Item	Ann	Bob
Matisse	26	74
Picasso	74	26

Each will get 74 of his or her announced points, but each one is really getting only 25 of his or her true points. The following theorem of Brams and Taylor describes the situation when agents divide two goods.

Theorem 10 (Brams and Taylor [BT1]) Assume there are two goods, G_{1} and G_{2}, all true and announced values are restricted to integers, and suppose Bob's announced valuation of G_{1} is x, where $x \geq 50$. Assume Ann true valuation of G_{1} is b. Then her optimal announced valuation of G_{1} is:

$$
\begin{cases}x+1 & \text { if } b>x \\ x & \text { if } b=x \\ x-1 & \text { if } b<x\end{cases}
$$

Corollary 11 Assume all true and announced valuations are restricted to the integers and suppose Bob's true valuation of G_{1} is b and Ann true valuation of G_{1} is a and $a>b$. Then a Nash equilibrium is the following ordered pairs of announced valuation for G_{1} by Bob and Ann:
$(x+1, x)$ if $b<x<a-1$
$(a, a) \quad$ if $a=b$

Suppose both players know each other's preferences. Moreover, Ann knows that Bob knows her preference and Bob doesn't know that Ann knows, then the announced allocation will be as follows:

Item	Ann	Bob
Matisse	73	74
Picasso	27	26

Now suppose they both know each other's preference and each know that the other person knows his or her preference. Then the announced valuations will be:

Item	Ann	Bob
Matisse	73	27
Picasso	27	73

What happens as the level of knowledge increases?

7 Honesty is Safety

In this section we point out that while honesty may not always be the best policy, it is the only safe one; i.e., it is the only one which will guarantee 50%.

For suppose that Ann's actual valuation is $\left(a_{1}, \ldots, a_{n}\right)$ but she reports $\left(c_{1}, \ldots, c_{n}\right)$. We show how she can end up with less than 50%. Suppose that Bob also reported $\left(c_{1}, \ldots, c_{n}\right)$. We know that in that case both Ann and Bob would get exactly 50% of their declared valuations. So Ann would receive 50% according to her declared valuation and this might be different from her actual valuation. To see how it might be less consider the eventuality that Bob reports slightly more than c_{i} when $c_{i}<a_{i}$ and slightly less than c_{i} when $c_{i}>a_{i}$. In the initial allocation then Bob will get all the pieces where Ann's declared valuation is less than her actual valuation, and Ann will get those where it is more. There will be adjustments of course, but Ann will still tend to get pieces where her declared valuation is more than her actual valuation. If she gets (approximately) 50% by her declared valuation, then it will be less than 50% by her actual valuation.

Thus she can lose out by being dishonest (unless of course she knows something about Bob's declared values).

8 More Than Two Players

In this section we discuss the situation when there are more than two players.

This example was given by two Dutch mathematicians J. H. Reijnierse and J. A. M. Potters.

Items	Ann	Bob	Nan
X	40	30	30
Y	50	40	30
Z	10	30	40

The only efficient and equitable allocation turns out to be give X to Ann, Y to Bob, and Z to Nan. Obviously, this 40-40-40 allocation is equitable; it can be shown to be efficient. But it is not envy-free. Obviously Ann prefers Y, which went to Bob, to X, which she herself got.

References

[BT1] Steven Brams and Alan Taylor, Fair Division, Cambridge University Press, 1996.
[BT2] Steven Brams and Alan Taylor, The Win-Win Solution: Guaranteeing Fair Shares to Everybody, W. W. Norton \& Company, New York, 1999.
[PPsv] Rohit Parikh and Eric Pacuit, "Safe votes, sincere votes, and strategizing", presented at the Workshop on Uncertainty in Economics, Singapore 2005.

[^0]: *rparikh@gc.cuny.edu
 ${ }^{1}$ Actually all we need to assume is that one good is divisible. However, since we do not know before the algorithm begins which good will be divided, we assume all goods are divisible. See [BT1, BT2] for a discussion of this fact.

[^1]: ${ }^{2}$ When the ratio is closer to 1 , a unit gain for Bob costs a smaller loss for Ann.

