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Abstract

This paper provides sufficient conditions for ex-post implementa-

tion of social choice rules. The main feature of our approach is that

the set of outcomes of the social choice function include randomization

of alternatives and attention is restrict attention to smooth, regular

social choice functions.

1 Introduction

We provide sufficient conditions for ex-post implementation of so-

cial choice rules. The set of outcomes of the social choice function

include randomization of alternatives and we restrict attention to

smooth, regular social choice functions. This allows us to use the

differential approach of Laffont and Maskin [3,4], which, for instance,

allows an elementary proof of [2]’s impossibility result for the class of

social choice rules we consider.

The work closest to our is McAfee and McMillan, [7] who study

one-agent, multi-dimensional, incentive-compatible mechanisms. For

one-agent mechanisms, interim-incentive compatibility is equivalent to

ex-post incentive compatibility. Their work also characterizes trans-

fers as a solution of a system of partial differential equations PDEs,

however conditions for the existence of the solution of the system are

not provided.conditions.

Another related paper is Manelli and Vicent, [5]. They focus on

mechanisms where, given the report of the agents, the probability

that any alternative is chosen is either zero or one. In contrast, we

restrict attention to social choice functions where the probability of

an alternative being chosen is positive for almost all reports.
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2 The Model

There are N agents and each agent i receives a private signal si ∈

Si where,

Assumption 1 The set Si ⊂ R
di is a compact, convex, di-dimensional

manifold with boundary. The interior of Si is denoted by S◦
i .

There are K + 1 social alternatives. A social choice rule, ψ :
∏N
k=0 Si −→ △K , maps the agents’ signals into outcomes, which are

probability distributions over alternatives, △K =
{
ψ ∈ R

K : ψk ≥ 0,
∑K

k=1 ψ
k ≤ 1

}
.

Agents preferences, U i(s, τ, ξ), over outcomes ξ ∈ △K , and trans-

fers τ ∈ R, may depend on the profile of signals, s.

Assumption 2 Quasi-linear preferences: U i :
∏N
i=1 Si×R×△K −→

R is given by U i(s, τ, ξ) = ui(s, ξ) − τ .

Assumption 3 Von-Neuman–Morgenstern preferences:

ui(s, ξ) = ξ⊤V i(s) =
∑K

k=1 ξk V
i
k (s),

where V i(s) =
(
V i

1 (s), ..., V i
k (s)

)
, V i

k (s) is the utility agent i gets when

alternative k is chosen, and ξk is the probability of k. The utility of

alternative zero, the status-quo,, is normalized to zero without any

loss of generality, V i
0 (s) for all i and s.

In a single-object auction without externalities: If i 6= k, V i
k (s) is

zero since the object is not allocated to agent i, while V i
i (s) is the

agent’s valuation for the object.

Taxation Principle. Transfers in a ex-post incentive compati-

ble direct revelation mechanism do not depend directly on the agent’s

report. They only depend on the agent’s report throughout the de-

cision rule; that is ψ: ψ(si, s−i) = ψ(ŝi, s−i) implies ti(si, s−i) =

ti(ŝi, s−i). Therefore, we write to transfer ti as a function of the others’

agents reports s−i, and the outcome induced by truthful reporting, ψ:

ti(ψ, s−i).
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Definition 4 The choice rule ψ is ex-post incentive compatible (EPIC)

if for any agent i there is a transfer function ti : △K ×
∏
j 6=i S

j −→ R

such that ∀ŝi ∈ Si:

ψ(si, s−i)
⊤ V i(si, s−i) − ti (ψ(si, s−i), s−i) ≥

≥ ψ(ŝi, s−i)
⊤ V i(si, s−i) − ti(ψ(ŝi, s−i), s−i) (1)

Remark 5 Without any loss of generality, alternative zero is the

status-quo: all agents utility for at status-quo is zero regardless of

their signals.

This paper restricts attention to smooth environments.

Assumption 6 The social choice rule, utilities and transfers are in-

finitely differentiable: ψ(·, s−i) ∈ C∞(Si), V
i(·, s−i) ∈ C∞(Si) and

ti(·, s−i) ∈ C∞(△K) for all i and s−i.

Any piecewise constant function, for instance the efficient rule, can be

approximated by smooth functions. Consequently, the restriction to

smooth rules still allows for virtually efficient rules.

The first-order condition for truth-telling of an interior type si ∈ S◦
i

is,

∇si
ψ(s)

[
V i(s) −∇ψt

i(ψ, s−i)
]

= 0. (2)

Later, we analyze

Definition 7 We say that ψ is full-rank at s if, for every agent i, the

matrix ∇si
ψ(s) has full rank. The rule ψ is full-rank if it is full-rank

in an open and dense subset of S.

In this paper, we restrict our attention to social choice functions

which are full-ranked. Unless stated, any social choice function is

full-rank.
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When ψ is regular (full-rank and the dimension of the agent’s signal

space is greater than or equal to the dimension of the set of alterna-

tives), di ≥ K, (2) is equivalent to:

V i(s) = ∇ψ t
i(ψ, s−i). (3)

In the case where ψ is not full-rank or the dimension of the agent’s

signal space is smaller than the dimension of the set of alternatives,

di < K, (3) is sufficient for the first-order conditions (2) to hold.

Lemma 8 The sufficient condition (3) for the first-order conditions

(2) implies that

ψ(si, s−i) = ψ(ŝi, s−i) ⇒ V i(si, s−i) = V i(ŝi, s−i). (4)

Proof. By the Taxation Principle, two signals that induce the same

choice over alternatives must be associated to the same transfer, ti(ψ(si, s−i), s−i) =

ti(ψ(ŝi, s−i), s−i). Therefore ∇ψ t
i(ψ(si, s−i), s−i) = ∇ψ t

i(ψ(si, ŝ−i), s−i)

and the result follows immediately from (3)

3 Ex-Post Implementation

3.1 Transfers

Lemma 9 If, for all i and s−i, the diagram (5) commutes, that is,

there exists H i, continuous on Si and smooth on S◦
i , such that H i(ψ(s), s−i) =

V i(s) and the integrability condition, ∇ψH
i is symmetric, is satisfied,

then ψ satisfies the first-order condition for EPIC.
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V i(Si, s−i) ⊂ R
K

Si ⊂ R
di ψ(Si, s−i) ⊂ △K

V i(·, s−i)

ψ(·, s−i)

H i(·, s−i)

(5)

Proof. Since ψ is continuous and Si is compact, ψ(Si, s−i) is compact.

Moreover, since H i is continuous and ψ(Si, s−i) is compact and the

integrability restrictions are satisfied, by Frobënius Theorem [1], the

system of partial differential equations ∇ψt
i = H i(ψ) has a unique lo-

cal solution for any arbitrary initial condition. Finally, since ψ(Si, s−i)

is compact, the solution can be extended to a global solution.

In order to prove that the mapping HI is well-defined and smooth,

we consider two cases: The first case, when di ≤ K is covered by

Lemma 10. The second case, when di ≥ K is covered by Lemma 11.

Lemma 10 If ψ(·, s−i) is one-to-one then there exists smooth H i sat-

isfying (5).

Proof. When ψ(·, s−i) is one-to-one, it is possible to define H i :

ψ(Si, s−i) −→ V i(Si, s−i) such that H i(ψ(s)) = V i(s). Moreover, if

ψ(·, s−i) is one-to-one then di ≤ K and in this case, ψ(·, s−i) is an

immersion. Moreover, since Si is compact, ψ(·, s−i) is an embedding

and so its image, ψ(Si, s−i), is a manifold.

By the local form of immersions, for any si ∈ S◦
i there are open

neighborhoods: X ∋ si; Y ∋ ψ(s); Rdi ⊃ W ∋ 0; RK ⊃ Z ∋ 0; and

parameterizations α and β such that α(0) = si, β(0) = ψ(s) and the
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diagram below, where π(w1, ..., wdi
) = (w1, ..., wdi

, 0, ..., 0), commutes:

V i(Si, s−i) ⊂ R
K

X ⊂ Si Y ⊂ ψ(Si, s−i)

W Z

α β

π

V i(·, s−i)

ψ(·, s−i)

H i(·, s−i)

(6)

Notice that H i|Y = V i(·, s−i) ◦ α ◦ π−1 ◦ β−1. The function V i is

smooth by assumption; β−1 and α are smooth by definition; π−1 is

a projection and hence also smooth. Consequently, H i is smooth as

composition of smooth functions.

The next lemma takes care of the case when di > K which was

not covered by the previous Lemma.

Lemma 11 If ψ satisfies (4) and di > K then there exists smooth H i

satisfying (5).

Proof. Clearly, since ψ satisfies (4), it is possible to define H i :

ψ(Si, s−i) −→ V i(Si, s−i) such that H i(ψ(s)) = V i(s). Moreover,

since di > K, ψ is a submersion. Any submersion is an open mapping

and so ψ(Si, s−i) is an open set in △K , which implies that ψ(Si, s−i)

is a manifold.

By the local form of submersions, for any si ∈ S◦
i there are open

neighborhoods: X ∋ si; Y ∋ ψ(s); Rdi ⊃ W ∋ 0; RK ⊃ Z ∋ 0; and

parameterizations α and β such that α(0) = si, β(0) = ψ(s) and the
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diagram below, where π(w1, ..., wdi
) = (w1, ..., wK), commutes:

V i(Si, s−i) ⊂ R
K

X ⊂ Si Y ⊂ ψ(Si, s−i)

W Z

α β

π

V i(·, s−i)

ψ(·, s−i)

H i(·, s−i)

(7)

Notice thatH i|Y = V i(·, s−i) ◦ α ◦ (β−1(·), 0, ..., 0). The function V i is

smooth by assumption; β−1 and α are also smooth by definition; π−1

is a projection and hence also smooth. Consequently, H i is smooth as

composition of smooth functions.

3.2 Boundary and Critical Points

Observe that all the above arguments used in defining H i are local.

Therefore, since for a given s−i, ψ(·, s−i) is full-rank for almost all

si, the H i(·, s−i) function is well-defined and smooth for almost all

interior points.

If si is a boundary point or if ψ(·, s−i) is not full-rank at si, the

function H i(·, s−i) can be defined at ψ(si, s−i) by continuity. Clearly,

the extension of H i also satisfies H i(ψ(s), s−i) = V i(s).

3.3 Second-Order Conditions

Lemma 12 Let V i = H i ◦ψ and ti as in lemma (9), the second-order

condition for truth telling is satisfied, if the matrix ∇ψH
i is positive

semi-definite for every ψ.

8



Proof. The second-order condition for truth telling is that the matrix,

∇2
si
U i(si|s) =

K∑

k=1

∇2
si
ψk

[
V i
k −

∂

∂ψk
ti

]
−∇si

ψ∇2
ψt
i∇si

ψ⊤ = (8)

= −∇si
ψ∇2

ψt
i∇si

ψ⊤, (9)

be negative semi-definite. Moreover, from the first-order condition it

follows that,

∇ψt
i = V i ⇒ ∇si

ψ∇2
ψt
i = ∇si

V i, (10)

and from Lemma 9,

∇si
V i = ∇si

ψ∇ψH
i ⇒ ∇si

ψ = ∇si
V i

(
∇ψH

i
)−1

.

Combining these results,

∇si
ψ∇2

ψt
i∇si

ψ⊤ = ∇si
V i

[(
∇ψH

i
)−1

]⊤
∇si

V i⊤ (11)

3.4 The Integrability Constraints

The integrability constraints required that DψH
i is symmetric.

Lemma 13 If ni ≥ K and Dsi
V i(s)Dsi

ψ(s)⊤ is a symmetric matrix

then DψH
i is symmetric.

H i(ψ(s), s−i) = V i(s)

DψH
i(ψ(s), s−i)Dsi

ψ(s) = Dsi
V i(s)

Since ni ≥ K,

DψH
i(ψ(s), s−i)Dsi

ψ(s)Dsi
ψ(s)⊤ = Dsi

V i(s)Dsi
ψ(s)⊤

DψH
i(ψ(s), s−i) = Dsi

V i(s)Dsi
ψ(s)⊤

(
Dsi

ψ(s)Dsi
ψ(s)⊤

)−1

Moreover since Dsi
ψ(s)Dsi

ψ(s)⊤ is symmetric, DψH
i(ψ(s), s−i) is

symmetric if Dsi
V i(s)Dsi

ψ(s)⊤ is symmetric.
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Theorem 14 If, for every agent, ψ satisfies (4) and ∇si
V i∇si

ψ⊤ is

everywhere positive semi-definite then ψ is EPIC.

Proof. First observe that ∇ψH
i is positive semi-definite, if and

only if, ∇si
V i∇si

ψ⊤ is positive semi-definite. Since ∇si
V i∇si

ψ⊤ =

∇si
ψ∇ψH

i∇si
ψ⊤ and ∇si

ψ⊤ has full-rank. From the previous lem-

mata, the first and second order conditions for EPIC are satisfied.

4 Auctions

This section considers the model without externalities.

Lemma 15 Any EPIC ψ satisfies:
[
V i(si, s−i) −

∂

∂ψi
ti

(
ψi(si, s−i), s−i

)]
∇si

ψi(si, s−i) = 0 =⇒

∇si
ψi(si, s−i) 6= 0 =⇒ V i(si, s−i) =

∂

∂ψi
ti

(
ψi(si, s−i), s−i

)
, (12)

(13)

Proposition 16 If ∀i, ∇si
ψi(si, s−i) = 0 then ψ is implementable

with transfers ti(s−i) ≤ inf{si :ψi(si,s−i)>0} ψ
i(si, s−i)V

i(si, s−i).

Example 1 [2]: signals are given by si =
(
pi, ci

)
∈ [0, 1]2 and utili-

ties are V i
(
pi, ci, c−i

)
= pi + ci c−i.

The allocations implementable accordingly to Proposition 16 are

uninteresting in the sense that the probability an agent gets the ob-

ject is not affect by his information. Nevertheless, the allocations are

not trivial (constant) since the winning probability of an agent may

depend on the other agents’ information. For instance, in example

3.2, the allocation,

ψ =
(
ψ1, ψ2

)
=

(
c2

1 + c2
1 + p2

1 + 2p2
,

c1

1 + c1
1 + p1

1 + 2p1

)
, (14)

is implementable with transfers t = (0, 0).
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Proposition 17 Consider gi : R −→ [0, 1] such that g′i > 0 and

ψi : S −→ [0, 1] defined by ψi(s) = gi(V
i(s)) satisfies

∑N
i=1 ψ

i <

1. Let ti : [0, 1] −→ R be a solution of the differential equation
∂

∂ψi
ti(ψi) = g−1

i (ψi) with initial condition ti(0) = 0. The allocation

ψ is implementable with transfers t = (t1, ..., tN ).

Proof Agent i’s utility of misreporting type ŝi when si is the true and

the other agents report truthfully s−i, as well as, the corresponding

Jacobian and Hessian are:

Πi(ŝi|s) = gi(V
i(ŝi, s−i))V

i(s) − ti(gi(V
i(ŝi, s−i))), (15)

∇bsi
Πi(ŝi|s) = g′i(V

i(ŝi, s−i))∇bsi
V i(ŝi, s−i)

[
V i(s) −

∂

∂ψi
ti(gi(V

i(ŝi, s−i)))

]
,

(16)

∇2bsi
Πi =

[
∇bsi

V i∇bsi
V i⊤g′′i + g′i∇

2bsi
V i

] [
V i(s) −

∂

∂ψi
ti

]
− g′i∇bsi

V i∇bsi
V i⊤,

(17)

therefore, ∇bsi
Πi(si|s) = 0 and ∀h, h⊤∇2bsi

Πi(si|s)h ≤ 0.

To illustrate Proposition 6, consider Example 1 again and let

ψi =
3

4

pi + cic−i

1 + pi + cic−i
(18)

then the required transfers are:

ti(ψi) = −
4

3
ψi + ln(1 −

4

3
ψi). (19)

Remark 18 Proposition 6 can easily be extended to cover the more

general case where ψi(s) = gi(V
i(s), s−i). Let gi : R × S−i −→ [0, 1]

be such that
∑
ψi ≤ 1 and D1gi > 0. Let the transfer ti satisfy

the following differential equation
∂

∂ψi
ti(ψi) = g−1

i (·, s−i)(ψ
i) initial

condition ti(V i(s−i), s−i) = ψi(V i(s−i), s−i))V
i(s−i) where V i(s−i) =

min si V
i(si, s−i).
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To illustrated Remark 7, once more consider Example 1 and let

ψi =
3

4

pi + cic−i

1 + pi + cic−i
+

1

2
−

3

4

p−i + c−i

1 + p−i + c−i
(20)

ti(ψi, s−i) =
2

3
−

4

3
ψi−

p−i + c−i

1 + p−i + c−i
+ln

(
5

3
−

4

3
ψi −

p−i + c−i

1 + p−i + c−i

)

(21)
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