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GROWING STRATEGY SETS AND NONSTATIONARY
BOUNDED RECALL IN REPEATED GAMES

ABRAHAM NEYMAN† AND DAIJIRO OKADA‡

Abstract. In the existing literature on bounded rationality in repeated games,

sets of feasible strategies are assumed to be independent of time (i.e. stage). In

this paper we consider a time-dependent description of strategy sets, growing

strategy sets. A growing strategy set is characterized by the way the set of

strategies available to a player at each stage expands, possibly without bound,

but not as fast as it would in the case of full rationality. Growing strategy

sets are defined without regard to any specific complexity measure such as the

number of states of automata or the length of recall. Rather, we focus on the

number of distinct strategies available to a player up to stage t and how this

number grows as a function of t.

We then study two-person zerosum games where one player’s feasible strat-

egy set grows slowly while playing against a fully rational player. We charac-

terize the value of such games as a function of the growth rate of the strategy

set. This function is related to the one that gives the minimax value of the

stage game under the constraint that the payoff maximizing player chooses a

mixed action with a given upper bound on entropy.

As an application of growing strategy set to strategic complexity, we also

study repeated games with non-stationary bounded recall strategies where the

length of recall is allowed to grow as the game progresses. We will show that

a player with bounded recall can guarantee the value of the stage game even

against a player with full recall so long as he can remember, at stage t, at least

K log t stages back for some constant K > 0. Thus, in order to guarantee the

value, it suffices to remember only a vanishing fraction of the past.
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1. Introduction

Many social (economic, political etc.) interactions have been modeled as formal

games. Such a game consists of players, strategies and their preferences. The idea

that players in a game are rational is reflected in several aspects of the model as

well as in the analysis performed (optimization, equilibrium). In this paper we take

issues in specification of feasible, or implementable, strategies.

When a game theorist employs a particular solution concept, there is an implicit

understanding that players optimize or find a best response to others’ actions from

the specified set of strategies. Aside from the assumption that the players can

perform computations necessary for such tasks, it is also assumed that players can

carry out (implement) any strategy in the specified strategy set should he choose

to play it. While this latter assumption may seem innocuous in a model where a

few strategies are available to each player1, e.g. prisoner’s dilemma and the battle

of the sexes, it may be criticized as being unrealistically rational in more complex

models where theoretical definition of strategy leads to a strategy set that contains

a large number of choices, many of which are impractically complex.

The case in point is models of dynamic interaction including repeated games

in its most basic formulation. In repeated games, a strategy is a set of history-

contingent plan of actions. Even when the underlying stage game contains only a

few possible actions, the number and complexity of histories quickly grows as time

passes. Consequently, the set of strategies contains a large number of elements, and

many of them requires capability to process arbitrarily complex history for their

implementation.

The idea that the assumption of fully, or unbounded, rational players is unreal-

istic is not new (see, e.g. Aumann (1981), Aumann (1997)). There have been many

attempts to model feasible (implementable) set of strategies that reflects bounded

rationality of players. Finite automata, bounded recall and Turing machines are a

few of the approaches taken. These models are useful because they provide us with

quantitative measures of complexity of strategies: number of states of automata,

1See however Anderlini (1990).
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the length of recall and the number of bits needed to implement a strategy by a

particular type of Turing machine. 2

Existing literature on bounded complexity in repeated games considers models

where the complexity of strategies is fixed in the course of a long interaction. In

other words, bounded rationality of players is expressed by a stationary (time-

independent) description of their feasible strategies. In the case of finite automata

and bounded recall (e.g. Ben-Porath (1993), Lehrer (1988)), a single integer -

the number of states or the length of recall - fully describes the set of feasible

strategies. While this literature has supplied significant insights and formal answers

to questions such as “when is having a higher complexity advantageous?” (op. cit.)

or “when does bounded complexity facilitate cooperation?” (e.g. Neyman (1985),

Neyman (1997)), we argue below that it would be fruitful to extend the analysis

to include the salient feature of dynamic decision making, i.e. time-dependent

description of feasible strategies, that are not captured by the existing approaches.

Practically any economic decision maker, consumers, firms, government, trade

and labor unions etc., is characterized by its set of feasible decision rules. These

rules, strategies or policies, are neither unimaginably complex or mindlessly simple.

Nor is the set of feasible decision rules fixed over time. Technological progresses

inevitably influence the sophistication and efficiency of handling information nec-

essary to determine the behavior of these agents. Firms make investments in order

to update technology and change organizational structure in an effort to improve

their abilities to process information and arrive at better decisions, e.g. efficient

allocation of resources within firms or streamlining of decision making in an uncer-

tain, often strategic, environment. Such changes bring about the transformation of

the set of possible decision rules over time.

A decision rule, in its abstract formulation, is a rule, or a function, that trans-

forms information into actions. Information has to be, first of all, translated into a

form (language) that can be communicated (in case of an organization or a team)

and then interpreted by the decision maker. In this view, the improvements of the

sort alluded to above would enlarge the set of feasible decision rules. In economic

applications, information relevant to decision making is often some data, signal,

2For example, Stearns (1997) employs linear bounded automata, Turing machines with

bounded amount of tape.
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message and history etc., that modifies the decision maker’s perception about the

environment including other decision makers’ actions and information they them-

selves possess. As the ability to process such information improves (thereby mak-

ing the agent capable of recognizing her environment in finer details), the decision

maker would become able to implement more flexible and versatile decision rules.

Internet commerce offers one of many cases that are pertinent to this argument.

Internet vendors collect detailed information on buying habits of consumers. An

investment in technologies to collect such information, or expenditures on purchas-

ing such information from a third party, enables the sellers to devise more flexible -

customer specific - marketing strategies that would otherwise not be feasible. Since

competing companies are likely to utilize similar information, this type of invest-

ment would also give the company an ability to gauge its rivals’ strategic capabil-

ities. Thus we need a model of an agent, or a player, whose strategic capabilities

(set of feasible strategies) change over time.

As argued in the beginning, complexity of repeated games as a model of in-

teractive decision making stems, in part, from the richness of strategies that the

theory allows players to choose from. The number of theoretically possible strate-

gies is double-exponential in number of repetitions. (See Section 2.) This is due

to the fact that the number of histories grows exponentially with the number of

repetitions and also that we count strategies that map histories into actions in

all possible ways. Some, in fact most,3 strategies are too complicated to admit a

short and practically implementable description: a short description of a strategy

requires an efficient encoding of histories, but some histories may have no shorter

descriptions than simply writing them out in their entirety. These considerations

motivate research on various measures of complexity of implementing strategies and

long-term interaction among players with bounded strategic complexity.

Our aim in this paper is to take a first step into formalizing the idea of gradual

relaxation of bounded rationality and examining its consequences in long-term in-

teractions. Thus, at the conceptual level, our motivation may be paraphrased as

follows. Players with bounded rationality are limited by the set of available (im-

plementable) strategies, but computational resource available to the players may

3For instance, if a feasible set of strategies contains K distinct strategies, then one needs log K

bits to encode all of them.
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expand, e.g., by adding more memory over time or by learning. As a consequence,

the limitation may ease over time and there may not be a finite upper bound on

complexity of strategies for the entire horizon of the game. We attempt to capture

perhaps a broadest implication of such reasoning by characterizing the feasible set

of strategies by the way it expands over time, possibly without bound, but not as

fast as it would in the case of full rationality.4 To be more precise, we imagine

player i with a feasible strategy set Ψi in a repeated game. Nature of the set Ψi

is arbitrary. In particular, Ψi may contain infinite number of strategies some of

which are very complex according to some measure. For each t, let Ψi(t) be the

projection of Ψi to the t-stage game and let ψi(t) be the number of distinct strate-

gies in Ψi(t). If Ψi contains all theoretically possible strategies, then, as mentioned

in the beginning, ψi(t) is double-exponential in t. Thus it is of interest to study

how outcomes of repeated games are affected by various conditions on the rate of

growth of ψi(t).

Since no structure is imposed on the strategies that belong to Ψi, it appears

to be difficult, if not impossible, to derive results purely on the basis of how ψi(t)

grows. For this reason, and as a first undertaking in this line of research, we will

study a simplest model: repeated two-person zero-sum games in which player 1, the

maximizer, has a set of feasible strategies growing in the manner mentioned above

while all theoretically conceivable strategies are available to player 2. The payoff

in the repeated games is the long-run average of the stage payoffs. In this setup

we will in fact show that there is a continuous function, written cav U , such that

player 1 cannot guarantee more than (cav U)(γ) whenever ψ1(t) grows at most as

fast as 2γt. Moreover, for any γ > 0, we will explicitly construct a strategy set Ψ1

for which ψ1(t) ≤ 2γt and player 1 can guarantee (cav U)(γ) using a mixture of

strategies in Ψ1. It will be seen that the function cav U is defined using the concept

of entropy and has the property that (cav U)(0) is the maximin value of the stage

game in pure actions and (cav U)(γ) is the value for sufficiently large γ.

4In this paper, we consider players whose strategy sets expand over time at an exogenously

given rate. We recognize the importance of studying models where players may invest in order

to expand their strategic possibilities thereby endogenizing the growth rate of their strategy sets.

This certainly deserves further research.
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As a concrete case of growing strategy set arising from a complexity considera-

tion, we will study nonstationary bounded recall strategies. This is a model of a

player whose memory of the past varies over time and hence it is an extension of

classical stationary bounded recall strategies. As a direct consequence of a theorem

mentioned above, we will show that a player with nonstationary bounded recall can

only guarantee the maximin payoff in pure actions of the stage game if the size of

his recall is less than K0 log t at stage t for some constant K0. In addition, we will

show that there is a constant K1 > 0 such that, so long as his recall is at least

K1 log t at stage t, the minimax value of the stage game can be guaranteed. Hence,

in order to secure the value of the stage game even against a player with full recall,

one needs to remember a long enough yet still only a vanishing fraction of the past

history.

In order to avoid possible confusion, we point out that, as is standard in the

literature, we consider mixed strategies so long as its support lies in the set of

feasible pure strategies. The idea is that there is a population of players whose

bounded rationality is expressed in terms of complexity of implementing strategies.

Each player employs a pure strategy that is feasible. A mixed strategy is then

viewed as a distribution of feasible pure strategies among the population. In the

context of games we analyze in this paper, a fully rational player faces one of

the players randomly drawn from this population. Thus a mixed strategy of her

opponent reflects the uncertainty that she faces as to which feasible pure strategy

is employed by this particular opponent. A behavioral strategies should be viewed

in this spirit. Because there is uncertainty about the type of her opponent, she also

faces uncertainty about her opponent’s action after each history.

We will set the notation used throughout the paper and formalize the idea of

growing strategy sets in Section 2. Some examples of growing strategy sets, includ-

ing nonstationary bounded recall strategies, will also be discussed in this section.

Section 3 contains some results on the values of two-person repeated games where

a player with bounded rationality plays against fully rational player. As mentioned

above these results are based purely on the rate of growth of strategy sets regard-

less of which strategies they contain. In Section 4, nonstationary bounded recall

strategies are examined.
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2. Growth of Strategy Sets

Let G =
(
Ai, gi

)
i∈I

be a finite game in strategic form. The set of player i’s

mixed actions is denoted by ∆(Ai). Henceforth we refer to G as a stage game.

In the repeated version5 of G, written G∗, a pure strategy of a player is a rule

that assigns an action to each history. A history by definition is a finite string of

action profiles. Thus the set of all histories is A∗ =
∞∪

t=1
At where A = "

i∈I
Ai, and a

pure strategy of player i is a mapping

σi : A∗ → Ai.

Let Σi be the set of all pure strategies of player i. The set of mixed strategies of

player i is denoted by ∆(Σi).

We say that two pure strategies of a player i, σi and σ′i, are equivalent up to the

t-th stage if, for every (n− 1)-tuple of other players’ strategies σ−i, the profiles of

actions induced by (σi, σ−i) and (σ′i, σ−i) are identical up to, and including, stage t.

If two strategies are equivalent up to the t-th stage for every t, then we simply say

they are equivalent. Equivalence between two mixed strategies is defined similarly

by comparing the induced distributions over sequence of action profiles.

Let us denote by mi the number of actions available to player i, i.e., mi = |Ai|,
and m = m1×· · ·×mn = |A|. We note first that the number of strategies available

to player i in the first t stages of a repeated game is6

mm0

i × · · · ×mmt−1

i = m
mt−1
m−1

i .

This number is double exponential in t.

Suppose that player i has access to a set of strategies, Ψi ⊂ Σi. This would

be the case, for example, when there is limitations on some aspects of complexity

of his strategies. For each positive integer t, let Ψi(t) be formed by identifying

strategies in Ψi that are equivalent up to the t-th stage.7 Let ψi(t) be the number

5In this paper we consider the most basic model of repeated games, i.e., ones with complete

information, perfect monitoring and standard signaling.

6The number of reduced strategies available to player i in the first t stages is m

mt
−i−1

m−i−1

i where

m−i = ×j 6=imj .
7If two strategies in Ψi are equivalent, then they are never distinguished in Ψi(t) for any t. So

the reader may consider Ψi to be the set of equivalence classes of strategies.
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of elements in Ψi(t). Any consideration on strategic complexity gives rise to some

strategy set Ψi and thus limitation on the rate of growth of ψi(t). For example, if

player i’s feasible strategies are described by finite automata with a fixed number

of states, then Ψi is a finite set and Ψi(t) = Ψi for all sufficiently large8 t. In this

case ψi(t) = O(1). Below we illustrate some examples of feasible strategy sets with

various rate of growth of ψi(t).

Example 1. In this example we provide a framework for nonstationary, or time-

dependent, bounded recall strategies that we will examine in detail in Section 4.

Recall that a (stationary) bounded recall strategy of size k is a strategy that depends

only on at most the last k-terms of the history. More precisely, for each pure strategy

σi ∈ Σi, define a strategy σi Z k : A∗ → Ai by

(σi Z k)(a1, · · · , at) =





σi(a1, · · · , at) if t ≤ k,

σi(at−k+1, · · · , at) if t > k.

The set of stationary bounded recall strategies of size k is denoted by B̄i(k), i.e.

B̄i(k) = {σi Z k : σi ∈ Σi} .

It is clear that the number of distinct strategies, i.e. the number of equivalence

classes, in B̄i(k) is at most the number of distinct functions from Ak to Ai which

is mmk

i .

Now consider a function κ : N → N ∪ {0}. For each t ∈ N, the value κ(t)

represents the length of recall at stage t. If κ(t) ≥ t − 1, then we have the case

of full recall. So we will assume w.l.o.g. κ(t) ≤ t − 1. In particular, κ(1) = 0. A

κ-recall strategy of player i is a pure strategy that plays like a stationary bounded

recall strategy of size k whenever κ(t) = k regardless of the time index t. Formally,

for each σi ∈ Σi define a strategy σi ∧ κ : A∗ → Ai by

(σi ∧ κ)(a1, · · · , at) = σi(at−κ(t)+1, · · · , at).

Observe that in this definition player i must take the same action at stage t and t′

where κ(t) = κ(t′) = k so long as he observes the same sequence of action profiles

8In fact, this holds for all t ≥ k2 and |Ψi| ≈ 2ck log k where k is the bound on the number of

states of automata.
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in the last k stages. The set of κ-recall strategies is

Bi(κ) = {σi ∧ κ : σi ∈ Σi} .

From its definition it is easily seen that the number of equivalence classes of strate-

gies in Bi(κ) is that of "
k∈κ(N)

B̄(k) which is
∏

k∈κ(N)

mmk

i . Here, for any D ⊂ N,

κ(D) = {κ(t) : t ∈ D}. So if Ψi = Bi(κ), then

(1) ψi(t) =
∏

k∈κ({1,··· ,t})
mmk

i =
κ(t)∏

k=1

mmk

i ≤ m
O
(
mκ(t)

)
i .

This fact will be used later in Section 4

Example 2. A strategy of player i is said to be oblivious (Gossner and Hernandez

(200?)) if it depends only on the history of his own actions. That is, σi : A∗ → Ai

is oblivious if

σi

(
(ai1, a−i1), · · · , (ait, a−it)

)
= σi

(
(bi1, b−i1), · · · , (bit, b−it)

)

whenever (ai1, · · · , ait) = (bi1, · · · , bit). The set of oblivious strategies of player i is

denoted by Oi. Every oblivious strategy induces a sequences of player i’s actions.

Also, any sequence of player i’s actions can be induced by an oblivious strategy. So

the set of equivalence classes of strategies in Oi can be identified with the set of

sequences of player i’s actions, A∞i . Hence if Ψi = Oi, then Ψi(t) is identified with

At
i and so

ψi(t) = mt
i.

For each sequence a = (ai1, ai2, · · · ) ∈ A∞i , we denote by σi〈a〉 the oblivious

strategy that takes action at at stage t regardless of the past history.

In all the examples that follow, consider a two person game in which each player

has two actions, A1 = A2 = {0, 1}.

Example 3. For each positive integer k, define a strategy σ
(k)
1 as follows. For each

history h, let N(1|h) be the number of times player 2 chose action 1 in h.

σ
(k)
1 (h) =





1 if N(1|h) ≥ k

0 otherwise.

Let Ψ1 = {σ(1)
1 , σ

(2)
1 , . . . }. Then Ψ1(t) = {σ(1)

1 , . . . , σ
(t)
1 } and ψi(t) = t.
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Example 4. A prefix of a history h = (h1, . . . , ht) is any of its initial segment

h′ = (h1, . . . , hs), s ≤ t. A set of histories L ⊂ ∪∞t=1Ht is said to be prefix-free

if no element of L is a prefix of another. Now, for each positive integer t, let

L(t) ⊂ H1 ∪ · · · ∪Ht be prefix-free and L(t) ⊂ L(t + 1). Write λ for the sequence

L(1), L(2), · · · , and define a strategy σλ
1 as follows.

σλ
1 (h1, . . . , ht) =





1 if (h1, . . . , hs) ∈ L(t) for some s ≤ t,

0 otherwise.

This is a generalization of the trigger strategy: σλ
1 takes action 1 forever as soon

as a history in some L(t) occurs. Let L be the set of all increasing9 sequences of

prefix-free sets of histories. Take a subset M of L and define Ψ1 to be the set of

player 1’s strategies σλ
1 with λ ∈M. Let us examine Ψ1(t) and ψ1(t).

It is easy to verify that, for any λ = (L(t))t and µ = (M(t))t in L, σλ
1 and σµ

1

are equivalent up to the t-th stage if, and only if, L(t) = M(t). We say that λ and

µ are equivalent up to the t-th stage if L(t) = M(t). This is an equivalence relation

on L, and hence on M. We denote by M(t) the set of the equivalence classes when

this relation is taken on M. For notational simplicity, the elements of M(t) will

be denoted by λ, µ and so on as for the elements of M themselves. Then we have

Ψ1(t) = {σλ
1 |λ ∈M(t)} and ψ1(t) = |M(t)|.

Examples ofM can be constructed as follows. Let f : N→ N be a nondecreasing

function and letM = {(L(t))t ∈ L | |L(t)| = O(f(t))}. It is not difficult to construct

examples of (L(t))t for which |L(t)| = O(t), O(tp) for each p > 1, and O(2αt) for

0 < α < 1.

3. Games Against a Fully Rational Player

We now derive a few consequences of bounded rationality expressed as a growth

rate of ψi(t) = |Ψi(t)|, which may be interpreted as the number of strategies avail-

able to player i up to the t-th stage. We emphasize that the nature of the feasible

strategy set Ψi is completely arbitrary. It may include infinitely many strategies

and also the strategies that cannot be represented by any finite state machines or

9In this paper, we use the terms “nondecreasing” and “increasing”, rather than “increasing”

and “strictly increasing”.
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finitely bounded recall. As such, it is quite difficult, if not impossible, to obtain

results on optimal strategies or equilibrium payoffs which require examination and

construction of specific strategies. In what follows we study what may appear to

be an extreme case: a two-person zero-sum repeated game where a player with

bounded rationality plays against a fully rational player. Although the repeated

game we study in this paper is rather special, our results apply to any measure of

strategic complexity that gives rise to a feasible strategy set satisfying our condition

on the rate of growth ψ1(t).

As we study two-person games in this section, we will follow the following no-

tational rule. Actions of player 1 and 2 are denoted by a and b, respectively, and

their strategies are denoted by σ and τ , respectively, with sub or superscripts and

other affixes added as necessary.

Let w be player 1’s maximin payoff in the stage game where max and min are

taken over the pure actions: w = max
a∈A1

min
b∈A2

g(a, b). This is the worst payoff that

player 1 can guarantee himself for sure in the stage game. For a pair of repeated

game strategies (σ, τ) ∈ Σ1×Σ2, we write gT (σ, τ) for the player 1’s average payoff

in the T -th stage.

3.1. Finite Strategy Set. If the feasible strategy set Ψ1 is a finite set, then it is

obvious that player 2, with entire strategy set Σ2 available to her, can construct

a strategy, say τ∗2 , which eventually identifies the strategy chosen by player 1 and

gives him at most w at each stage thereafter.10 Therefore gt(σ, τ∗) converges to w

for every σ ∈ Ψ1. The first proposition provides its speed of convergence. It has ap-

peared in Neyman and Okada (2000) in a study of nonzero-sum two person finitely

repeated games with finite automata. In order to make this paper self-contained,

and, since this proposition will be used in the proof of the second proposition, we

will give the proof.

Theorem 1. For every finite subset Ψ1 of Σ1 there exists τ∗ ∈ Σ2 such that for

all σ ∈ Ψ1

gT (σ, τ∗) ≤ w + ‖g‖ log|Ψ1|
T

for all T = 1, 2, . . .

where ‖g‖ = max{g(a, b) | a ∈ A1, b ∈ A2}.
10Ben-Porath (1993)[Lemma 1, Theorem 1] provides an explicit construction of such strategy

when Ψ1 arises from complexity bound in terms of finite automata.
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Proof: For each history h = (h1, . . . , ht−1), where hs = (as, bs) ∈ A1 ×A2, let Ψh
1

be the set of strategies in Ψ1 that are compatible with h. That is,

Ψh
1 = {σ ∈ Ψ |σ(ε) = a1, and

σ(h1, . . . , hs−1) = as for all s = 2, . . . , t− 1.}

For each a ∈ A1 let Ψh,a
1 be the set of strategies in Ψh

1 that takes the action a

given the history h, i.e.,

Ψh,a
1 =

{
σ ∈ Ψh

1 |σ(h) = a
}
.

Let a(h) ∈ A1 be such that
∣∣Ψh,a(h)

1

∣∣ ≥ ∣∣Ψh,a
1

∣∣ for all a ∈ A1. Now define τ∗ by

τ∗(h) = argmin
b∈A2

g(a(h), b).

Clearly,
{
Ψh,a

1 | a ∈ A1

}
is a partition of Ψh

1 . If a 6= a(h), then
∣∣Ψh,a

1

∣∣ is at most

one half of
∣∣Ψh

1

∣∣. This implies that

(2)
∣∣Ψ(h1,...,ht−1,ht)

1

∣∣ ≤
∣∣Ψ(h1,...,ht−1)

1

∣∣
2

whenever ht 6= (a(h), · ).
Fix σ ∈ Ψ1 and let (h1, h2, . . . ), where ht = (at, bt), be the play generated by

(σ, τ∗). If we set

It =





1 if at 6= a(h1, . . . , ht−1)

0 otherwise,

then (2) implies that

∣∣Ψ1

∣∣2−
TP

t=1
It ≥

∣∣Ψ(h1,...,ht)
1

∣∣ ≥ 1.

Therefore
T∑

t=1

It ≤ log2

∣∣Ψ1

∣∣.

This means that the number of stages at which player 1’s action differs from

a(h1, . . . , ht−1) is at most log2

∣∣Ψ1

∣∣. Thus

gT (σ, τ∗) =
1
T

T∑
t=1

g(ht) ≤ 1
T

T∑
t=1

(
(1− It)w + ‖g‖It

) ≤ w + ‖g‖ log2

∣∣Ψ1

∣∣
T

.

This completes the proof. Q.E.D.
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3.2. Slowly Growing Strategy Set. Next we consider an infinite strategy set

Ψ1. Recall that Ψ1(t) is formed by identifying strategies in Ψ1 that are equivalent

up to the t-th stage and ψ1(t) =
∣∣Ψ1(t)

∣∣. The next theorem states that if the

growth rate of ψ1(t) is subexponential in t, then player 1 cannot guarantee more

than w in the long run. Note that whether player 1 can actually attain w or not

depends on what strategies are in Ψ1. For example, if a∗ = argmax
a∈A1

min
b∈A2

g(a, b),

and a strategy that takes a∗ in every stage is available, then w can be achieved by

using such strategy.

Theorem 2. Suppose that
log ψ1(t)

t

t→∞−−−→ 0. Then there is a strategy τ∗ ∈ Σ2

such that, for every σ ∈ Ψ1,

lim sup
T→∞

gT (σ, τ∗) ≤ w.

Proof: Let {tk}∞k=1 be a sequence satisfying the following properties

(A)
tk+1 − tk

tk

k→∞−−−−→ 0, and

(B)
log ψ1(tk+1)
tk+1 − tk

k→∞−−−−→ 0.

It is easy to verify that such sequence exists under the condition of the theorem.

Call a consecutive stages tk + 1, . . . , tk+1 of the repeated game the k-th block.

The construction of player 2’s strategy τ∗ is similar to the one in the proof of

Theorem 1. Given a history h = (h1, . . . , ht−1), there is a unique k with tk ≤
t < tk+1. Let Ψh

1 (tk+1) be the set of player 1’s strategies in Ψ1(tk+1) that are

compatible with h and, for each a ∈ A1, set

Ψh,a
1 (tk+1) = {σ ∈ Ψh

1 (tk+1) | σ(h) = a}.

Let a(h) = argmaxa∈A1

∣∣Ψh,a
1 (tk+1)

∣∣ and define

τ∗(h) = argmin
b∈A2

g(a(h), b).

In short, τ∗ plays the strategy constructed in the proof of Theorem 1 against

Ψh
1 (tk+1) during the k-th block.

Fix ε > 0 and let k0 be such that, for all k ≥ k0,

tk+1 − tk
tk

<
ε

4
.(3)

log2 ψ1(tk+1)
tk+1 − tk

<
ε

4
.(4)
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-
ttk0 tk̄ tk̄+1εt/4

-
ttk̄ tk̄+1 tk̄+2 tk̄+d· · ·

· · ·

Take t >
4tk0

ε
and let k̄ be the smallest index k for which tk >

εt

4
. Then, k̄ > k0

and tk̄−1 <
εt

4
< tk̄. See the figure above.

Fix σ ∈ Ψ1. Let h = (h1, h2, . . . ) be the play induced by (σ, τ∗). Note that

σ ∈ Ψ(h1,...,ht−1)
1 (tk+1) ⊂ Ψ1(tk+1) whenever tk + 1 ≤ t ≤ tk+1. The average payoff

to player 1 up to stage T is

gT (σ, τ∗) =
1
T

( tk̄∑
t=1

g(ht) +
T∑

t=tk̄+1

g(ht)
)

.

W.l.o.g, assume ‖g‖ ≤ 1. First, note that, by (3),

1
T

tk̄∑
t=1

g(ht) ≤ tk̄
T

=
1
T

(
tk̄ −

εT

4
+

εT

4

)
≤ tk̄ − tk̄−1

tk̄−1

+
ε

4
<

ε

2
.

Next suppose that there are d blocks between tk̄ + 1 and T . Then,

1
T

T∑
t=tk̄+1

g(ht) =
1
T

d∑

j=1

tk̄+j∑
t=tk̄+j−1+1

g(ht) +
1
T

T∑
t=tk̄+d+1

g(ht).

The definition of τ∗ and Theorem 1, together with (4) above, imply

1
T

tk̄+j∑
t=tk̄+j−1+1

g(ht) =
tk̄+j − tk̄+j−1

T
· 1
tk̄+j − tk̄+j−1

tk̄+j∑
t=tk̄+j−1+1

g(ht)

≤ tk̄+j − tk̄+j−1

T

(
w +

ε

4

)
,

and (3) implies that

1
T

T∑
t=tk̄+d+1

g(ht) ≤
tk̄+d+1 − tk̄+d

tk̄+d

<
ε

4
.
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Hence

1
T

T∑
t=tk̄+1

g(ht) <
1
T

(
w +

ε

4

) d∑

j=1

(tk̄+j − tk̄+j−1) +
ε

4

=
(
w +

ε

4

) tk̄+d − tk̄
T

+
ε

4

< w +
ε

2
.

Therefore, gT (σ, τ∗) < w + ε. Q.E.D.

When Ψ1 is a Cartesian product, as is essentially the case in Example 1, the

construction of τ∗ is easy. Let Ψ1 = Ψ11 ×Ψ12 × . . . . So Ψ1(t) = Ψ11 × · · · ×Ψ1t.

Hence ψ1(t) =
∣∣Ψ11

∣∣ × · · · ×
∣∣Ψ1t

∣∣. For each t, let n(t) =
∣∣{s | s ≤ t,

∣∣Ψ1s

∣∣ ≥ 2}
∣∣.

Then, ψ1(t) ≥ 2n(t). Thus
log ψi(t)

t

t→∞−−−→ 0 implies that
n(t)

t

t→∞−−−→ 0. For each

history h = (h1, . . . , ht−1), define τ∗(h) by

τ∗(h) =





argminb∈A2
g(σ1t(h), b) if Ψ1t = {σ1t}

arbitrary action if
∣∣Ψ1s

∣∣ ≥ 2

Then

gt(σ, τ∗) ≤ t− n(t)
t

w +
n(t)

t
‖g‖ → w as t →∞.

3.3. Growing Strategy Sets and Entropy. In this section we prove a general-

ization of Theorem 2 for the case when
log ψ1(t)

t
converges to an arbitrary positive

number. To do this we will use the concept of entropy and its properties which we

will now introduce.

Let X be a random variable that takes values in a finite set Ω and let p(x) denote

the probability that X = x for each x ∈ Ω. Then the entropy of X is defined as

the negative of the expected values of the logarithm of p, that is,

H(X) = −
∑

x∈Ω

p(x) log p(x).

The entropy of a vector of random variables, H(X1, · · · , Xn), is similarly defined.

The conditional entropy of a random variable X given another random variable

Y is defined as follows. Given the event Y = y, let H(X|y) be the entropy of X

with respect to the conditional distribution of X given y, that is,

H(X|y) = −
∑

x

p(x|y) log p(x|y).
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Then the conditional entropy of X given Y is the expected value of H(X|y) with

respect to the (marginal) distribution of Y :

H(X|Y ) = EY [H(X|y)] =
∑

y

p(y)H(X|y).

The following “chain rule” for entropy, which we will use in the proof of the next

theorem, is easy to verify. See Cover and Thomas (1991).

Lemma 1. H(X1, · · · , XT ) = H(X1) +
T∑

t=2
H(Xt|X1, · · · , Xt−1).

Let (Ω,F , µ) be a probability space and let P be a finite partition of Ω into sets

in F . Then the entropy of the partition P, with respect to µ is defined by

Hµ(P) = −
∑

F∈P
µ(F ) log µ(F ).

It is easy to see that if Q is a refinement of P, then Hµ(P) ≤ Hµ(Q).

Given a feasible strategy set of player 1, Ψ1 ⊂ Σ1, we have defined, for each t,

the set Ψ1(t) to be the partition of Ψ1 induced by an equivalence of pure strategies.

That is, we define an equivalence relation ∼
t

by

σ ∼
t

σ′ ⇐⇒ ∀τ ∈ Σ2, as(σ, τ) = as(σ, τ) for s = 1, . . . , t.

Then Ψ1(t) = Ψ1/∼
t
.

Now fix player 2’s strategy τ . Define an equivalence relation ∼
t,τ

by

σ ∼
t,τ

σ′ ⇐⇒ as(σ, τ) = as(σ, τ) for s = 1, . . . , t.

and let Ψ1(t, τ) = Ψ1/∼
t,τ

. Clearly Ψ1(t, τ) is a finite partition of Ψ1 and Ψ1(t) is its

refinement. Hence, by the property of the entropy of partitions mentioned above,

(5) Hσ(Ψ1(t, τ)) ≤ Hσ(Ψ1(t)) ≤ log|Ψ1(t)| = log ψ(t).

By the definition of the equivalence relation defining Ψ1(t, τ), each equivalence

class S ∈ Ψ1(t, τ) is associated with a history of length t, h(S) ∈ Ht. More precisely,

h(S) is the history of length t which results when the strategy profile (s, τ) is played,

for any s ∈ S. Conversely, for any history h ∈ Ht, there is an equivalence class

S ∈ Ψ1(t, τ) such that h = h(S). Clearly, this correspondence between Ψ1(t, τ) and

Ht is one-to-one. Furthermore, the event “a strategy s ∈ S ⊂ Ψ1(t, τ) is selected
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by σ” is equivalent to the event “the history h(S) occurs when (σ, τ) is played”.

Therefore,

σ(S) = Pσ,τ (h(S)).

Let us write X1, . . . , Xt for the sequence of action profiles up to stage t when (σ, τ)

is played. So it is a random vector with distribution Pσ,τ . Then the observation in

this paragraph implies that

Hσ(Ψ1(t, τ)) = −
∑

S∈Ψ1(t,τ)

σ(S) log σ(S)

= −
∑

h∈Ht

Pσ,τ (h) log Pσ,τ (h)

= H(X1, . . . , Xt).

Combining this equality with (5) we have

Lemma 2. Let σ ∈ ∆(Ψ1) and τ ∈ Σ2 and (X1, . . . , Xt) be the random play up to

stage t induced by (σ, τ). Then, for every t,

H(X1, . . . , Xt) ≤ log ψ1(t).

For each mixed action α of player 1, let H(α) be its entropy, i.e.,

H(α) = −
∑

a∈A

α(a) log α(a).

Define a function U : R+ → R+ by

U(γ) = max
α∈∆(A1)
H(α)≤γ

min
b∈A2

r(α, b).

Thus U(γ) is what player 1 can secure in the stage game G using a mixed action

of entropy at most γ. Clearly, U(0) = w, the maximin value in pure actions. On

the other hand, if γ ≥ min
α

H(α) where α is taken over player 1’s optimal strategies

in G, then U(γ) = Val(G), the value of G. Let cav U be the concavification of U ,

i.e., the smallest concave function which is at least as large as U at every point of

its domain.

Theorem 3. Suppose that lim sup
t→∞

log ψ(t)
t

= γ. Then, for every σ ∈ ∆(Ψ1), there

is τ ∈ Σ2 such that

lim sup
T→∞

gT (σ, τ) ≤ (cav U)(γ).
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Proof: Fix player 1’s strategy σ ∈ ∆(Ψ1). For the purpose of the payoff calcula-

tion, identify σ with its equivalent behavioral strategy. Define player 2’s strategy

as follows. At each stage t, and at each history h ∈ Ht−1, τ(h) minimizes player

1’s stage payoff, that is,

Eσ,τ

[
g(at)

∣∣h]
= min

b∈B
Eσ(h)

[
g(a, b)

]
.

Let X1, X2, · · · be the sequence of random actions induced by (σ, τ). Let H(Xt|h)

be the entropy of Xt given that a history h is realized. Note that, conditional on

the history h, the entropy of player 1’s mixed action at stage t is H(Xt|h). Hence,

by the definitions of U , cav U , and τ , we have

Eσ,τ [g(Xt)|h] ≤ U(H(Xt|h)) ≤ (cav U)(H(Xt|h)).

Taking the expectation, we have

Eσ,τ [g(Xt)] ≤ Eσ,τ [(cav U)(H(Xt|h))] ≤ (cav U)(Eσ,τ [h(Xt|h)])

where the second inequality follows from the concavity of cav U and Jensen’s in-

equality. Summing over t = 1, · · · , T we have

gT (σ, τ) =
1
T

T∑
t=1

Eσ,τ [g(Xt)]

≤ 1
T

T∑
t=1

(cav U)(Eσ,τ [H(Xt|h)])

≤ (cav U)
(

1
T

T∑
t=1

Eσ,τ [H(Xt|h)]
)

= (cav U)
(

1
T

T∑
t=1

H(Xt|X1, · · · , Xt−1)
)

= (cav U)
(

1
T

H(X1, · · · , XT )
)

≤ (cav U)
(

log ψ1(T )
T

)
.

The second inequality follows from Jensen’s inequality. The second and the third

equalities follow from the definition of conditional entropy and Lemma 1, respec-

tively. The last inequality follows from Lemma 2. Since lim sup
t→∞

log ψ1(t)
t

= γ, we

have the desired result. Q.E.D.
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As in Theorem 2, whether player 1 can achieve (cav U)(x) or not depends on

what strategies are available to him.
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Theorem 4. For every γ ≥ 0 and a function f : N → N with
log f(t)

t

t→∞−−−→ γ,

there exists a set of oblivious strategies Ψ1 ⊂ Σ1 and a mixed strategy σ̂ ∈ ∆(Ψ1)

with the following properties.

(i) (a) ψ1(t) ≤ f(t) for every t ∈ N

(b)
log ψ1(t)

t

t→∞−−−→ γ

(ii) (a) lim
T→∞

(
inf

τ∈∆(Σ2)
gT (σ̂, τ)

)
≥ (cav U)(γ)

(b) inf
τ∈∆(Σ2)

Eσ̂,τ

[
lim

T→∞

1
T

T∑
t=1

g(at, bt)
]
≥ (cav U)(γ).

Proof: Construction of Ψ1: Recall from Example 2 that, for each sequence

a = (a1, a2, · · · ) of player 1’s pure actions, σ〈a〉 denotes his oblivious strategy that

takes action at at stage t regardless of the past history. We will define a particular

class of sequences F ⊂ A∞1 and then set

(6) Ψ1 = {σ〈a〉 : a ∈ F} .

If γ = 0, then (cav U)(γ) is the maximin payoff in pure actions, w. In this

case the set F can be taken as a singleton {a = (a, a, a, · · · )} where a is any one of

player 1’s pure actions that guarantees him w.

Suppose that γ > 0. By modifying f(t) to f̂(t) = inf
s≥t

f(s)t/s if necessary, we will

assume that
log f(t)

t
is nondecreasing in t and, in particular, f(t) is nondecreasing

in t.

In order to construct the set F ⊂ A∞1 in this case, we first partition the stages

into blocks. Set t0 = 0. The n-th block (n = 1, 2, · · · ) consists of stages tn−1 + 1

to tn. We denote the length of the n-th block by dn, i.e., dn = tn − tn−1. Second,

we will define for each n a set Fn consisting of finite sequences of player 1’s actions

of length dn with certain properties. Then finally we set F to be those sequences

a = (a1, a2, · · · ) in A∞1 whose n-th segment a[n] = (atn−1+1, · · · , atn) belongs to

Fn:

(7) F =
{
a = (a1, a2, · · · ) ∈ A∞1 : a[n] = (atn−1+1, · · · , atn) ∈ Fn

}
.

Now we describe the detail.
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The blocks of stages are chosen so that11 dn is increasing, and
dn

tn

n→∞−−−−→ 0. Next,

we construct the sets F1, F2, · · · , Fn, · · · by means of two sequences of nonnegative

reals γ1, γ2, · · · , γn, · · · and η1, η2, · · · , ηn, · · · . For each n, choose player 1’s mixed

action αn so that H(αn) ≤ γn and min
b∈A2

g(αn, b) ≥ U(γn). Let Fn be the set of

all sequences (a1, . . . , adn) ∈ Adn
1 whose empirical distribution is within ηn of αn.

Formally,

(8) Fn =

{
(a1, . . . , adn) ∈ Adn

1 :
∑

a∈A1

∣∣∣∣
1
dn

dn∑

k=1

1(ak = a)− αn(a)
∣∣∣∣ ≤ ηn

}
.

The sequence (ηn)n is chosen to satisfy, ηn
n→∞−−−−→ 0 and, in addition, the following

property. Let x = (x1, x2, · · · ) be a sequence of independent A1-valued random

variables where xt is distributed according to αn whenever t is in the n-th block,

i.e. tn−1 + 1 ≤ t ≤ tn. Then we require12

(9)
∞∑

n=1

P
(
x[n] = (xtn−1+1, · · · , xtn) /∈ Fn

)
< ∞.

The sequence (γn)n depends on the function f and will be specified later. We

complete this part by defining F by (7) and then Ψ1 by (6).

Construction of σ̂ ∈ ∆(Ψ1): Fix a sequence ā = (ā1, ā2, · · · ) ∈ F . First, gener-

ate a sequence of independent actions a = (a1, a2, · · · ) of player 1 where actions in

the n-th block a[n] = (atn−1+1, · · · , atn) are drawn according to the identical mixed

action αn. In the n-th block, player 1 plays according to a[n] whenever a[n] ∈ Fn

while he plays ā[n] = (ātn−1+1, · · · , ātn) otherwise.

To formally define the mixed strategy σ̂, recall that x = (x1, x2, · · · ) is a sequence

of independent A1-valued random variables where xt is distributed according to αn

11For example, t1 = 1, t2 = 3, t3 = 6, · · · , tn =
n(n + 1)

2
, · · · . In this case dn = n.

12For example, take ηn = min

�
d−3

n , 1− max
a1∈A1

αn(a)

�
. Indeed, with this choice of ηn, we

have ηn
n→∞−−−−→ 0 and, in addition, an application of a large deviation inequality due to Hoeffding

(1963),

P
�
x[n] = (xtn−1+1, · · · , xtn ) /∈ Fn

� ≤ 2|A1| exp

�
2dnη2

n

|A1|2
�

,

ensures that (9) holds.
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whenever tn−1 + 1 ≤ t ≤ tn. Define a sequence of A1-valued random variables

x̂ = (x̂1, x̂2, · · · ) by

x̂[n] = (x̂tn−1+1, · · · , x̂tn
) =





x[n] if x[n] ∈ Fn,

ā[n] otherwise.

Then σ̂ = σ〈x̂〉. Note that σ̂ is indeed a mixture of strategies in Ψ1.

Verification of the theorem: From (7) it is clear that we can identify each

sequence in the set F with an element of
∞
"

n=1
Fn and each strategy in Ψ1(tN ) with

an element in
N

"
n=1

Fn, N = 1, 2, · · · . Hence ψ1(tN ) =
∣∣Ψ1(tN )

∣∣ =
N∏

n=1

∣∣Fn

∣∣ for each

N = 1, 2, · · · . Since both ψ1(t) and f(t) are nondecreasing, in order to verify that

Ψ1 has the property (i)-(a) of the theorem, it is enough to show that

(10)
N∑

n=1

log
∣∣Fn

∣∣ ≤ log f(tN ) for each N = 1, 2, · · ·

We estimate
∣∣Fn

∣∣ as follows. By its definition (8), each element an = (a1, · · · , adn)

in Fn has an empirical distribution ρ(an) whose L1-distance from αn is at most

2ηn. As the entropy H(α) as a function on ∆(A1) is uniformly continuous (in the

L1-distance), there is a nondecreasing function ε : R+ → R+ with ε(η)
η→0−−−→ 0 such

that
∣∣H(

ρ(an)
)−H(αn)

∣∣ < ε(ηn) for all an ∈ Adn
1 . Since the number of distinct em-

pirical distributions arising from sequences in Adn
1 is at most d

|A1|
n , we deduce that

∣∣Fn

∣∣ ≤ d
|A1|
n 2dn(H(αn)+ε(ηn)). As H(αn) ≤ γn, we have

∣∣Fn

∣∣ ≤ d
|A1|
n 2dn(γn+ε(ηn)).

Furthermore, since dn ↑n→∞ ∞ and ηn
n→∞−−−−→ 0, we can choose a sequence of non-

increasing nonnegative reals (εn)n such that13 εn
n→∞−−−−→ 0 and

∣∣Fn

∣∣ ≤ 2dn(γn+εn).

Thus, to show (10), it is enough to choose (γn)n so that

(11)
N∑

n=1

dn

(
γn + εn

) ≤ log f(tN ) for each N = 1, 2, · · · .

Next we derive a sufficient condition to be verified in order to show that σ̂ has

the property (iii)-(a). It is easy to see that the L1-distance between the conditional

distributions of x[n] and x̂[n] given x[1], · · · ,x[n − 1] is at most 2P
(
x[n] /∈ Fn

)
,

13For example, εn = sup
`≥n

�
ε(η`) + |A1| log d`

d`

�
.
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that is,
∑

an∈Adn
1

∣∣∣P
(
x[n] = an

)− P
(
x̂[n] = an

)∣∣∣ ≤ 2P
(
x[n] /∈ Fn

)
.

It follows that, in the n-th block, we have

min
τ∈Σ2

Eσ̂,τ

[
tn∑

t=tn−1+1

g(at, bt)

]
≥ dnU(γn)− 2‖g‖P(

x[n] /∈ Fn

)

and hence, for each N = 1, 2, · · · ,

min
τ∈Σ2

Eσ̂,τ

[
tN∑
t=1

g(at, bt)

]
≥

N∑
n=1

dnU(γn)− 2‖g‖
N∑

n=1

P
(
x[n] /∈ Fn

)
.

Thus, by virtue of (9), in order to show part (iii)-(a) of the theorem it suffices to

choose (γn)n so that

(12)
1
tN

N∑
n=1

dnU(γn) N→∞−−−−→ (cav U)(γ).

We now exhibit a choice of (γn)n that satisfy (11) and (12). It will be seen that

(i)-(b) is also satisfied with our choice of (γn)n below. We distinguish two cases.

Case 1 - (cav U)(γ) = U(γ): In this case, any sequence (γn)n with γn
n→∞−−−−→ γ

and γn + εn ≤ log f(tn)
tn

satisfies (11) and (12) as well as (i)-(b).

Case 2 - (cav U)(γ) > U(γ): In this case, the definitions of U and cav U imply

the existence of γ−, γ+ with 0 ≤ γ− < γ < γ+ and α−, α+ ∈ ∆(A1) together with

a p ∈ (0, 1) such that

a) γ = pγ− + (1− p)γ+

b) (cav U)(γ) = pU(γ−) + (1− p)U(γ+)

c) H(α−) ≤ γ− and H(α+) ≤ γ+

d) g(α−, b) ≥ U(γ−) and g(α+, b) ≥ U(γ+) for all b ∈ A2.

Choose n̄ large enough so that
log f(tn̄)

tn̄
>

γ− + γ

2
and εn̄ <

γ − γ−
2

. For n < n̄,

set γn = 0. Then set γn̄ = γ− and, for n > n̄, define γn by induction as follows:

γn =





γ+ if
n−1∑
`=n̄

d`(γ` + ε`) + dn(γ+ + εn) ≤ log f(tn),

γ− otherwise.

With the above choice of the sequence (γn)n, we have |F1| = · · · = |Fn̄−1| = 1.

So for N < n̄, the inequality (10) trivially holds. For N ≥ n̄, the inequality (11)
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can be easily verified by induction using the fact that
log f(tn)

tn
is nondecreasing

and εn is nonincreasing.

We conclude by showing that

(13)
1
tN

N∑
n=1

dnγn
N→∞−−−−→ γ

which implies (12). Indeed, since γk = γ− or γ+, this implies that

1
tN

N∑
n=1

dn1(γn = γ−) N→∞−−−−→ p

from which (12) follows immediately.

Let SN =
N∑

n=1
d`(γn +εn). Since

1
tN

N∑
n=1

dnεn
N→∞−−−−→ 0, to show (??) it is enough

to show that
SN

tN

N→∞−−−−→ γ. Note that this also implies (i)-(b).

Then it is easy to see that for every N ≥ n̄ there is an n > N such that
Sn

tn
≥ log f(tN )

tN
. Suppose that there is an N ≥ n̄ such that

Sn

tn
<

log f(tN )
tN

for

infinitely many n’s. Then choose an M large enough so that
log f(tN )

tN
<

log f(tM )
tM

and n > M large enough so that
Sn

tn
<

log f(tN )
tN

<
log f(tM )

tM
≤ Sn−1

tn−1
, and

tn−1

tn

log f(tM )
tM

+
dn

tn
γ− ≥ log f(tN )

tN
.

Such an n exists by the supposition and (s-2). But then,

Sn

tn
=

tn−1

tn

Sn−1

tn−1
+

dn

tn
(γ− + εn) ≥ log f(tN )

tN
,

a contradiction. We have thus shown that, for every N ,
Sn

tn
≥ log f(tN )

tN
for all but

finitely many n’s and so Note that by (s-7), we have and therefore

1
tn

n∑

k=1

dkγk
n→∞−−−−→ γ.

Q.E.D.

End of Theorem 2 with revised proof.
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4. Nonstationary Bounded Recall Strategies

In this section, we study a concrete case of the game examined in the last section.

Specifically, player 1’s feasible strategy set is taken to be B1(κ), the set of κ-recall

strategies. Player 2 is assumed to have full recall. Recall that

B1(κ) = {σ ∧ κ : σ ∈ Σ1}

where (σ ∧ κ)(a1, · · · , at) = σ(at−κ(t)+1, · · · , at).

As mentioned in Example 1, σ ∧ κ acts like a fixed stationary bounded recall

strategy of size k, indeed it is exactly σ Z k, whenever κ(t) = k. The significance of

requiring stationarity in this manner can be illustrated as follows. Suppose that for

each t and t′ with κ(t) = κ(t′) = k, we allow player 1 to use a different stationary

bounded recall strategies σZk and σ′Zk. Then for any sequence a = (a1, a2, · · · ) ∈
A∞1 , the oblivious strategy σ〈a〉 can be implemented simply by using a series of

0-recall strategies σt Z 0 ≡ at. Thus a mixed strategy σ〈z〉, where z = (z1, z2, · · · )
is a sequence of random actions i.i.d. according to an optimal strategy of player 1

in G, trivially guarantees Val(G) in the long run.

Let G∗(κ) be the repeated game under consideration and denote its value by

V(κ). If we set Ψ1 = B1(κ), then from (1) we have

log ψ1(t) ≤ cmκ(t) log m1.(14)

for some constant c > 0 (in fact, c = m/(m − 1)). If κ(t) <
log t

log m
for sufficiently

large t, then (14) implies that
log ψ1(t)

t

t→∞−−−→ 0. Hence, by Theorem 2 together

with the fact that player 1 can always guarantee w = max
a∈A1

min
a2∈A2

g(a, a2) with a

stationary bounded recall strategy of size 0, we obtain the following result.

Theorem 5. If lim sup
t→∞

κ(t)
log t

<
1

log m
, then V(κ) = w.

This suggests that, in order to gain any benefit from recalling the past (to get

a payoff above w) against a player with perfect recollection, one must remember

at least some sufficiently large constant times log t stages back. It is thus natural

to ask,“if a player has growing recall κ(t) > K1 log t for some K1 >
1

log m
, is it

enough to guarantee Val(G) against a player with full recall?”. This question will

be answered affirmatively in the next theorem. In order to exhibit the constant K1
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explicitly, let ζ(G) = max
α

max
a∈A1

α(a) where α is taken over all optimal strategies of

player 1 in the stage game G. For example, ζ(G) = 1 if there is a pure optimal

strategy. Define

K1(G) =





0 if ζ(G) = 1,

3
|log ζ(G)| if ζ(G) < 1.

For instance, in matching pennies, K1 = 3.

Theorem 6. If lim inf
t→∞

κ(t)
log t

> K1(G), then there is a σ̂ ∈ ∆
(
B1(κ)

)
with the

following properties.

(i) lim inf
T→∞

(
min
τ∈Σ2

gT (σ̂, τ)
)
≥ Val(G),

(ii) inf
τ∈Σ2

Eσ̂,τ

[
lim inf
T→∞

1
T

T∑
t=1

g(at, bt)
]
≥ Val(G).

Proof: By taking the lower envelope of κ if necessary, we assume without loss of

generality that κ is nondecreasing. Let t1 = 1 < t2 < · · · < tn < · · · be stages

at which player 1’s recall grows (points of jump of κ). Set kn = κ(tn) and call

Bn = {tn, tn + 1, · · · , tn+1 − 1} the n-th block.

Let α∗ ∈ ∆(A1) be an optimal strategy of player 1 in the stage game that

achieves ζ(G), i.e., min
b∈A2

g(α∗, b) = Val(G) and max
a∈A1

α∗(a) = ζ(G). If α∗ is a pure

action, then the theorem is trivially true. So suppose that α∗ is not a pure action.

Then there are two distinct actions a0, a1 ∈ A1 with α∗(a0) > 0 and α∗(a1) > 0.

In order to define the strategy σ̂, we introduce some notation. For each sequence

of player 1’s actions a = (a1, a2, · · · ) ∈ A∞1 and each positive integer n, define a

sequence an = (an
1 , an

2 , · · · ) ∈ A∞1 by

an
t =





a0 if t < tn,

a1 if t = tn,

at if t > tn.

Thus, if player 1 is to play according to the oblivious strategy σ〈an〉, he would take

the action a0 in the first n− 1 blocks, then a1 at the beginning of the n-th block,

and thereafter the actions appearing in the original sequence a.

Suppose that the sequence a satisfies the following property for some n.

(15) ∀` ≥ n,∀r, s ∈ B` : (ar−k`
, · · · , ar−1) 6= (as−k`

, · · · , as−1).
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Then for any block B` after Bn, no two sequences of length k` ending in B` are

identical. In this case it is easy to see that the κ-recall (oblivious) strategy σ〈an〉∧κ

induces the sequence of actions an.

Our σ̂ of the theorem will be a mixture over {σ〈an〉 ∧ κ : a ∈ A∞1 , n = 1, 2, · · · }
where actions in the sequence a = (a1, a2, · · · ) are chosen independently according

to α∗ and then choosing an n with the property (15). Of course, we must make sure

that such an n < ∞ exists for almost all realizations of the sequence. Formally, let

z = (z1, z2, · · · , ) be a sequence of A1-valued i.i.d. r.v.’s with zt ∼ α∗, and, for each

n, define a sequence of A1-valued r.v.’s zn = (zn
1 , zn

2 , · · · ) by

zn
t =





a0 if t < tn,

a1 if t = tn,

zt if t > tn.

Next define a N-valued r.v. ν by ν = n if n is the smallest positive integer with

the property

(16) ∀` ≥ n, ∀r, s ∈ B` : (zr−k`
, · · · , zr−1) 6= (zs−k`

, · · · , zs−1).

Then define σ̂ = σ〈zν〉∧κ. Below we will show that ν < ∞ almost surely under the

condition on κ(t) stated in the theorem, and hence σ̂ is well-defined as a mixture

of strategies in {σ〈an〉 ∧ κ : a ∈ A∞1 , n = 1, 2, · · · } ⊂ B1(κ). In fact, we will show

that, if
κ(t)
log t

> K1(G) for all sufficiently large t, then with probability one there

are only finitely many n’s with the property14that, for some ` ≥ n and r, s ∈ B`,

(zn
r−k`

, · · · , zn
r−1) = (zn

s−k`
, · · · , xn

s−1).

To see this fix an n and let `, r, s ∈ N be such that ` ≥ n and r, s ∈ B`. Then it

is easy to verify that

(17) Prob
(
(zn

r−k`
, · · · , zn

r−1) = (zn
s−k`

, · · · , zn
s−1)

)
≤ ζk` .

14Of course, this is true for any i.i.d. sequence X1, X2, · · · ∼ X where X has a discrete support

D and sup
x∈D

Prob(X = x) < 1.
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Denote the event on the left side of this inequality by Cn(`, s, r) and set Cn =
⋃

`≥n

⋃
s,r∈B`

s<r

Cn(`, s, r). Then, for every n,

Prob
(
Cn

) ≤
∑

`≥n

ζk`d 2
`

where d` = t`+1 − t` is the length of the block B`. Recall that κ(t) is constant for

t ∈ B`. Therefore,
∞∑

`=1

ζk`d 2
` ≤

∞∑
t=1

ζκ(t)t2.

If
κ(t)
log t

> K1(G) =
3

|log ζ(G)| for sufficiently large t, then for some ε > 0 each

summand on the right side is at most t−(1+ε) and so the series on the right side is

convergent. Hence by the first Borel-Cantelli lemma

Prob
(
lim sup

n→∞
Cn

)
= 0

which is what wanted to show.

Next we verify that σ̂ has the desired properties. Fix an arbitrary strategy

τ ∈ Σ2 and a stage T . Then

Eσ̂,τ

[
1
T

T∑
t=1

g(at, bt)
]

≥ P (tν > T )
(−‖g‖)

+ P
(
tν ≤ T

)
Eσ̂,τ

[(
1− tν

T

)
Val(G)− tν

T
‖g‖

∣∣∣∣tν ≤ T

]

= P (tν > T )
(−‖g‖)

+ P (tν ≤ T )
(

Val(G)− Val(G) + ‖g‖
T

Eσ̂,τ

[
tν

∣∣tν ≤ T
])

.

(18)

Since P (tν ≥ t) t→∞−−−→ 0,

1
T

Eσ̂,τ

[
tν

∣∣tν ≤ T
] ≤ 1

T

( T∑
t=1

P (t ≤ tν ≤ T ) + 1
)

t→∞−−−→ 0.

Hence the right side of (18) converges to Val(G). This proves part (i). Q.E.D.
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