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Abstract

We give a characterization of a set of probability measures with which a prior

“weakly merges.” For that purpose we introduce the concept of “conditioning rules”

which represent regularities of probability measures, and then we define a proba-

bility measure “eventually generated” by a family of conditioning rules. Then we

∗Very preliminary. Comment welcome.
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show that a set of probability measures is learnable, i.e., all probability measures

in the set are weakly merged with by a prior, if and only if the set is included in

a set of probability measures eventually generated by a countable family of con-

ditioning rules. We also demonstrate that quite similar results obtain for “almost

weak merging.” In addition we argue that our characterization is associated with

the impossibility result in Nachbar (1997) and (2004).

1 Introduction

Bayesian learning is one of learning procedures that have been extensively studied in game

theory. Especially, Kalai and Lehrer (1993) introduce a learning notion called merging to

repeated games, and show that if every player’s prior belief merges with the probability

measure induced by the players’ true strategies, then the path of play converges to a Nash

equilibrium path. Merging requires that the updated forecast (or belief) about any future

events be eventually accurate; the future events include infinite future ones such as tail

events. However, when players discount future payoffs in a repeated game, the merging

property is too enough for obtaining convergence to Nash equilibrium: any information

about infinite future events is not useful for the discounting players. Accordingly, Kalai

and Lehrer (1994) propose a weaker notion of merging called “weak merging.” Weak

merging means that the updated forecast about any finite period future event is eventually

accurate. Furthermore, Lehrer and Smorodinsky (1997) and Sandroni (1998) argue that

the weak merging property is sufficient to deal with learning to play Nash equilibrium.

Since then, the literature has mainly focused on weak merging (Nachbar (1997) and (2004),

Jackson, Kalai and Smorodinsky (1999), Foster and Young (2001), and so on).
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In this paper we consider a characterization of a set of probability measures with

which a prior (belief) weakly merges. This problem is especially important in the context

of repeated games. In a repeated game players sequentially interact each other so as to

be quite uncertain about their opponents strategies at the beginning of the game. There-

fore, it is natural to start with assuming that each player does not know his opponents

charateristics except that they play behavior strategies. In this situation the player would

want to use a prior that weakly merges with as many opponents strategies as possible.

Nonetheless it is not difficult to show that there is no prior that weakly merges with all

opponents strategies. Then, a foundamental question is addressed: what is a learnable set

of opponents strategies, i.e., a set of opponent strategies with which a prior could weakly

merges? Characterizing a learnable set is certainly helpful in clarifying the possibilities of

Bayesian learning in repeated games. For example, as Nachbar (1997) and (2004) show,

some diversity property of learnable sets may be related to the impossibility of learning

to play Nash equilibrium. Later we will argue that our characterization is associated with

the generality of Nachbar’s impossibility result.

To characterize a learnable set we introduce the concept of “conditioning rules” which

represent regularities of probability measures; it is originally introduced by Noguchi (2000)

to capture the regularity of a behavior strategy. For instance, a second order Markov mea-

sure has the regularity that current probabilities of states are always determined by the

last two period realized states. In other words, the current probabilities are conditioned

on the last two period states. A conditioning rule captures such a conditioning property

of a probability measure, so that the regularity of any probability measure is arbitrar-

ily approximated by some conditioning rule. Further, we define a probability measure
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“eventually generated” by a family (or a set) of conditioning rules. This means that the

regularity of the probability measure is (arbitrarily) approximated by one in the family

from some period on. As for the above Markov case, a measure eventually generated by

a second order Markov conditioning rule means that current probabilities of states (with

respect to the measure) are determined by the last two period states from some period

on. The main conclusion of this paper is that a set of probability measures eventually

generated by a countable family of conditioning rules plays a canonical role in character-

izing a learnable set. More specifically, a set of probability measures is learnable, i.e., all

measures in the set are weakly merged with by a prior, if and only if the set is included in

a set of probability measures eventually generated by a countable family of conditioning

rules. Put differently, Bayesian learning can eventually make accurate predictions against

all probability measures eventually generated by a countable family of conditioning rules,

but it cannot do so against more than those.

We provide two main results to obtain the conclusion. First, we show that any prior

cannot weakly merges with more probability measures than those eventually generated by

a countable family of conditioning rules. Therefore, any learnable set must be included in

a set of measures eventually generated by a countable family of conditioning rules. Second

and more importantly, we show that for any countable family of conditioning rules, there

exists a prior such that the prior weakly merges with all probability measures in the set

of those eventually generated by the family. This implies that if a set of probability

measures is included in a set of those eventually generated by a countable family of

conditioning rules, then the set is learnable. Therefore we conclude that a learnable set is

characterized by a countable family of conditioning rules. Furthermore, we demonstrate
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that quite similar results obtain for “almost weak merging.”

The point of this paper is how to form or construct a prior for our purpose. As

Gilboa, Postlewaite, and Schmeidler (2004) point out, “Bayesian learning means nothing

more than the updating of a given prior. It does not offer any theory, explanation, or

insight into the process by which prior beliefs are formed.” Indeed, there have not been

given many ideas of constructing nontrivial priors. As such, we make use of an insight

obtained from a study of another learning procedure called conditional smooth fictitious

play : we construct a prior on the basis of conditional empirical frequencies. Specifically,

our constructing prior is simply a slight modification of a belief formation process for

conditional smooth fictitious play in Noguchi (2003). Although the process is based on a

quite simple intuitive story of individual learning behavior, it is sufficiently powerful as to

eventually make accurate predictions against as many probability measures as possible,

as will be shown. Furthermore, in order to prove that the prior works, we use a different

mathematical technique than those in previous work: theory of large deviations which

gives precise probability evaluations about rare events.

Previous work has mainly explored conditions on relations between a prior and a (true)

probability measure for the prior to (weakly) merge with the measure (Blackwell and

Dubins (1962), Kalai and Lehrer (1993), Lehrer and Smorodinsky (1997), Sandroni (1998),

and so on). The main reason is that if we interpret priors as players’ prior beliefs and a

probability measure as that induced by players’ true strategies, then those conditions are

also conditions for convergence to Nash equilibrium. Clearly those conditions are helpful

in considering learnable sets. For example, the absolute continuity condition implies that

any countably many measures are merged with by any prior that puts a weight on each
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of those measures. Nonetheless those conditions are not easy to check in many cases, so

that we take a different approach to characterize a learnable set.

This paper is organized as follows. In Section 2 we describe the basic model and several

concepts. In Section 3, which is the main part of this paper, we give a characterization of

a set of probability measures with which a prior weakly merges. In addition, we also show

that similar results obtain for almost weak merging. In Section 4 we apply our results

to repeated games, and discuss its implications including one to Nachbar’s impossibility

result. In Section 5 we conclude with giving several remarks.

2 The Model and Concepts

2.1 The basic model and notations

Let S be a finite set. We write HT for the T−fold Cartesian product of S: HT := ×t=T
t=1 S.

That is, HT is the set of all finite histories with time length T . Let H denote the set of

all finite histories including the null history h0, i.e., H :=
⋃∞

t=0 Ht, where h0 := ∅ and

H0 := {∅}. A finite history is denote by h. When we emphasize the time length of a

finite history, we write hT for a finite history up to time T : hT := (s1, · · · , sT ). Let H∞

designate the set of all infinite histories: H∞ := ×t=∞
t=1 S. An infinite history is denoted by

h∞ := (s1, s2, · · · ). If a finite history h is an initial segment of a finite history h′, then it is

denoted by h ≤ h′. When h ≤ h′ and h �= h′, it is designated by h < h′. Similarly, if h is

an initial segment of an infinite history h∞, then it is denoted by h < h∞. We assume the

standard measurable structure on H∞. Let FT denote the minimum σ−algebra including

all cylinder sets based on finite histories with time length T : FT := σ({Ch | h ∈ HT})
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where Ch := {h∞ | h < h∞}; FT ⊂ FT+1 for all T . {FT}T is the standard filtration.

Let F be the minimum σ−algebra including all cylinder sets based on finite histories:

F := σ(
⋃∞

t=1{Ch | h ∈ Ht}). Let µ denote a probability measure on (H∞,F). Especially,

when a probability measure is considered as a prior, it is denoted by µ̃.

2.2 Weak merging

In this paper we mainly focus on weak merging. Weak merging requires that the updated

forecast about any finite period future event be eventually accurate.

Definition 1 A prior µ̃ weakly merges with a probability measure µ if for all k ≥ 1,

lim
T→∞

sup
A∈FT+k

| µ̃(A | FT ) − µ(A | FT ) |= 0, µ − a.s.

Let µ(s | hT ) denote the probability of s at time T + 1 conditional on a realized past

history hT up to time T . Then it is important to note that µ̃ weakly merges with µ if and

only if the one period ahead forecast is eventually correct (see Lehrer and Smorodinsky

(1996a)): for µ−almost all h∞ and all s ∈ S

lim
T→∞

| µ̃(s | hT ) − µ(s | hT ) |= 0.

The purpose of this paper is to characterize a set of probability measures with which

a prior weakly merges, so that we shall define merging with a set of probability measures.

Definition 2 We say that a prior µ̃ weakly merges with a set M of probability measures

if µ̃ weakly merges with all probability measures in M . Moreover, we say that M is weakly

merged if there exists a prior µ̃ such that µ̃ weakly merges with M .
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2.3 Conditional probability systems

We make use of conditional probability systems. A conditional probability system (ab-

breviated to CPS) is a mapping from the set H of finite histories to the set ∆(S) of

probability distributions over S.1 It is denoted by f : H → ∆(S). Then, it follows from

Kolmogorov’s extension theorem (see Shiryaev (1984)) that for all f there exists a unique

probability measure µf such that µf (s | h) = f(h)[s] for all s ∈ S and all h ∈ H. Con-

versely, it is easy to see that for all probability measures µ there exists a CPS fµ such

that fµ(h)[s] = µ(s | h) for all s ∈ S and all h ∈ H.2 The correspondence allows us

to focus on conditional probability systems, instead of probability measures. Indeed, µ̃

weakly merges with µ if and only if for µ−almost all h∞

lim
T→∞

‖fµ̃(hT ) − fµ(hT )‖ = 0

where ‖ · ‖ is the maximum norm: ‖x‖ := maxs | x[s] |.

Remark 1 If µ̃(A) = µ̃′(A) for all A ∈ F , then µ̃ and µ̃′ are identical as probability

measures. However, it might be a case that µ̃(s | h) �= µ̃′(s | h) for some h ∈ H with

µ̃(Ch)(= µ̃′(Ch)) = 0 and some s ∈ S. In this paper, we implicitly assume that µ̃ and µ̃′

are different as priors in such a case.

1∆(S) := {x ∈ R#S | x[s] ≥ 0 for all s ∈ S and
∑

s x[s] = 1}, where #S denotes the cardinality of S,

and R#S is the #S−dimensional Euclidean space.
2A CPS fµ corresponding to µ is not necessarily unique because if µ(h) = 0, then µ(s | h) is arbitrarily

taken. But µ(s | h) is uniquely determined for all s ∈ S and all h ∈ H with µ(h) > 0. Thus, for any two

fµ and f ′
µ corresponding to µ, fµ(h)[s] = f ′

µ(h)[s] for all s ∈ S and all h ∈ H with µ(h) > 0.
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2.4 Conditioning rules

We introduce a key concept to characterize a learnable set: conditioning rules. A condi-

tioning rule represents an (approximate) regularity of a conditional probability system or

a probability measure. Formally, a conditioning rule is a finite partition of H, denoted by

P . An element of a conditioning rule P is called a conditioning class or simply a class in

P , denoted by β. Note that a class is considered as a subset of H because it is an element

of a partition of H. In the following we often define a subset of H and call it a class by

the abuse of language. For any CPS f , we may define its ε−approximate conditioning

rule.

Definition 3 A finite partition Pf
ε is called an ε−approximate conditioning rule of f , if

for all β ∈ Pf
ε and all h, h′ ∈ β, ‖f(h) − f(h′)‖ < ε.

The definition says that probability distributions (on S) after finite histories in each

class β are almost the same. Note that any CPS f has its ε−approximate conditioning

rule for all ε > 0.3 For example, let S = {L, R}, and let f be a first-order Markov

system such that f(ht) = (1
3
, 2

3
) when st = L, and f(ht) = (2

3
, 1

3
) when st = R. Then, let

Pf := {βL, βR} where βL := {ht ∈ H | st = L} and βR := {ht ∈ H | st = R}. Pf is an

ε−approximate conditioning rule of f for all ε > 0.
3By the compactness of ∆(S), for all ε > 0 we may take a finite family {∆j}m

j=1 of subsets in ∆(S)

such that (1) {∆j}j covers ∆(S), i.e.,
⋃m

j=1 ∆j = ∆(S) and (2) those diameters are no more than ε, that

is, supπ,π′∈∆j
‖π − π′‖ < ε for all j. Thus, for all CPS f and all ε > 0, an ε−approximate conditioning

rule Pf
ε of f may be defined by the following equivalence relation on H :

h ∼Pf
ε

h′ def.⇔ there exists j such that f(h), f(h′) ∈ ∆j and f(h), f(h′) /∈ ∆k for all k < j.
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Conversely, we may generate conditional probability systems from conditioning rules.

Definition 4 We say that a CPS f : H → ∆(S) is generated by a family Φ of condition-

ing rules, if for all ε > 0 there exists P ∈ Φ such that P is an ε−approximate conditioning

rule of f : for all β ∈ P and all h, h′ ∈ β, ‖f(h) − f(h′)‖ < ε.

The definition says that for all ε > 0, the regularity of f is ε−approximated by a

conditioning rule in Φ. For instance, let S = {L, R} and P1 = {βL, βR} where βL =

{ht ∈ H | st = L} and βR = {ht ∈ H | st = R}. Furthermore, let P2 = {βe, βo}

where βe = {ht ∈ H | t is odd} and βo = {ht ∈ H | t is even}. Then, f : H → ∆(S) is

generated by {P1,P2} if and only if either there exist 0 ≤ p, q ≤ 1 such that for all h ∈ βL,

f(h) = (p, 1 − p), and for all h ∈ βR, f(h) = (q, 1 − q), or there exist 0 ≤ p′, q′ ≤ 1 such

that for all h ∈ βe, f(h) = (p′, 1 − p′), and for all h ∈ βo, f(h) = (q′, 1 − q′). Note that

all i.i.d. CPS’s are generated by any (non-empty) family of conditioning rules.4 Note

also that any CPS f is generated by a countable family {Pf
1
n

}n of its 1
n
−approximate

conditioning rules.

Similarly, we may define (approximate) conditioning rules of a probability measure µ.

Definition 5 A finite partition Pµ
ε is called an ε−approximate conditioning rule of µ if

there exists a CPS fµ corresponding to µ such that Pµ
ε is an ε−approximate conditioning

rule of fµ.

Definition 6 We say that a probability measure µ is generated by a family Φ of condi-

tioning rules if there exists a CPS fµ corresponding to µ such that fµ is generated by Φ.

The set of all probability measures generated by Φ is denoted by G(Φ).

4We say that a CPS f is i.i.d. if f(h) = f(h′) for all h, h′ ∈ H .
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As in the CPS case, all i.i.d. probability measures are generated by any (non-empty)

family of conditioning rules. Also, any probability measure µ is generated by a countable

family of conditioning rules.

Remark 2 A useful fact is that any countable union of countable families is countable.

For example, any countably many measures {µm}m are generated by a countable family of

conditioning rules because each µm is generated by a countable family {Pfµm
1
n

}n.

3 Characterization of a Learnable Set

3.1 Bounds of weak merging

In order to characterize a learnable set of probability measures, we need to slightly extend

the generation of probability measures by conditioning rules. Let {Pi}i be a countable

family of conditioning rules.

Definition 7 We say that a CPS f : H → ∆(S) is eventually generated by {Pi}i if

for all ε > 0 there exist an index i0, a µf−probability one set Z0, and a time function5

T0 : Z0 → N such that for all β ∈ Pi0 and all hT , h′
T ′ ∈ β, if there exist h∞, h′

∞ ∈ Z0 such

that hT < h∞ and T ≥ T0(h∞) and h′
T ′ < h′

∞ and T ′ ≥ T0(h
′
∞), then ‖f(hT )−f(h′

T ′)‖ < ε.

The definition is rather complicated, but it simply says that for any ε > 0, the reg-

ularity of f is (almost surely) ε−approximated by one of conditioning rules {Pi}i from

some period on. Clearly any CPS generated by {Pi}i is eventually generated by {Pi}i.

Analogously, we may define the eventual generation of probability measures.

5N is the set of all natural numbers.
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Definition 8 We say that a probability measure µ is eventually generated by {Pi}i if

there exists a CPS fµ corresponding to µ such that fµ is eventually generated by {Pi}i.

The set of all probability measures eventually generated by {Pi}i is denoted by EG({Pi}i).

As in the CPS case, any probability measure generated by {Pi}i is eventually generated

by {Pi}i: G({Pi}i) ⊂ EG({Pi}i). More precisely it can be shown that EG({Pi}i) is

strictly larger than G({Pi}i), i.e., G({Pi}i) � EG({Pi}i).

Our first result is that the weak merging property is always bounded by a countable

family of conditioning rules. In other words, any prior cannot merge with more probability

measures than those eventually generated by a countable family of conditioning rules.

Proposition 1 For any prior µ̃, there exists a countable family {Pi}i of conditioning

rules such that µ̃ never weakly merges with any µ /∈ EG({Pi}i).

Proof. Fix any prior µ̃. Let fµ̃ be a CPS corresponding to µ̃. As noted in Subsection

2.4, for each n, we may take a 1
n
−approximate conditioning rule Pfµ̃

1
n

of fµ̃. We shall show

that µ̃ never weakly merges with any µ /∈ EG({Pfµ̃
1
n

}n). Take any probability measure

µ /∈ EG({Pfµ̃
1
n

}n). Then, there exists ε0 > 0 such that for all n, all µ−probability one

sets Z, and all time functions T : Z → N, there exist β ∈ Pfµ̃
1
n

and hT , h′
T ′ ∈ β such

that hT < h∞, T ≥ T (h∞), h′
T ′ < h′

∞, and T ′ ≥ T (h′
∞) for some h∞, h′

∞ ∈ Z, and

‖fµ(hT ) − fµ(h′
T ′)‖ ≥ ε0.

Suppose that µ̃ weakly merges with µ. Then, there exists a µ−probability one set Z0

such that for all h∞ ∈ Z0 there exists T0(h∞) such that for all T ≥ T0(h∞), ‖fµ̃(hT ) −

fµ(hT )‖ < ε0

4
. On the other hand, letting n0 ≥ 4

ε0
, it follows from the previous paragraph

that for n0, Z0 and T0 : Z0 → N, there exist β ∈ Pfµ̃
1

n0

and hT , h′
T ′ ∈ β such that hT < h∞,
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T ≥ T0(h∞), h′
T ′ < h′

∞, and T ′ ≥ T0(h
′
∞) for some h∞, h′

∞ ∈ Z0, and ‖fµ(hT )−fµ(h′
T ′)‖ ≥

ε0. These deduce that ‖fµ̃(hT ) − fµ̃(h′
T ′)‖ ≥ ε0

2
for hT , h′

T ′ ∈ β. But then, since β ∈ Pfµ̃
1

n0

and hT , h′
T ′ ∈ β, ‖fµ̃(hT )− fµ̃(h′

T ′)‖ < 1
n0

≤ ε0

4
. This is a contradiction. Thus, µ̃ does not

weakly merge with µ.

3.2 Frequency-based prior

In this subsection we show a more important result: for any countable family of condi-

tioning rules, we construct a prior that weakly merges with all probability measures that

are eventually generated by the family. This, together with our first result (Proposition

1), implies that merging with a set of probability measures is characterized by a countable

family of conditioning rules.

To obtain a desired prior we use the method of constructing a belief formation process

for conditional smooth fictitious play in Noguchi (2003): a prior is defined on the basis of

conditional empirical frequencies ; such a prior will be called frequency-based.

Proposition 2 For any countable family {Pi}i of conditioning rules, there exists a frequency-

based prior µ̃F such that µ̃F weakly merges with all µ ∈ EG({Pi}i).

In order to prove Proposition 2, we prepare a mathematical lemma. Recall that a

subset of H is also called a class, denoted by β. If a realized history hT−1 ∈ β, then we

say that β is active at time T or time T is a β−active period. Let T β
n (h∞) denote the

calendar time of the nth β−active period in h∞; T β
n (h∞) < ∞ means that β is active at

least n times in h∞. Let dβ
n(h∞) designate a vector in which each coordinate dβ

n(h∞)[s]

is the number of times that s has occurred in the first n β−active periods along h∞.
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The next lemma extends a basic fact of large deviations to a conditional case. The

lemma says that if the probabilities of a state s have common upper and lower bounds in

active periods of a given class, then the probability that the frequency of s occurring in

the first n active periods of that class is not between those bounds decreases exponentially

in the sample size n.

Lemma 1 Let β be any subset of H. Suppose that a probability measure µ and a state s

satisfy the following assumption:

For all h ∈ β, l ≤ µ(s | h) ≤ L

where l and L are nonnegative numbers. Then, for all ε > 0 and all n = 1, 2, · · · ,

µ(T β
n < ∞,

dβ
n[s]

n
≤ l − ε or

dβ
n[s]

n
≥ L + ε) ≤ 2 exp(−2nε2)

where dβ
n[s] is the s−coordinate of dβ

n(h∞).

Proof. See Noguchi (2003).

Without loss of generality, we may assume that {Pi}i is ordered in fineness: Pi ≤ Pi+1

for all i.6 In order to construct a frequency-based prior µ̃F , let us start with determining

the prior sample size nβ
0 for each class β ∈

⋃
i Pi on the basis of Lemma 1, where

⋃
i Pi is

the set of all classes in {Pi}i. Suppose β ∈ Pi. Then, choose any positive integer nβ
0 such

that

nβ
0 ≥ i2

2
(i − log(

1 − exp(−2i−2)

#Pi
)).

6Partition P is finer than partition Q if for all β ∈ P there exists α ∈ Q such that β ⊂ α. It is denoted

by Q ≤ P. We say that class β is finer than class α, or α is coarser than β, if β ⊂ α.
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This inequality is equivalent to #Pi ·
∑∞

n=nβ
0
exp(−2ni−2) ≤ exp(−i). Taking larger nβ

0

means collecting more prior samples for class β, so that we may make the probability of

wrong prediction exponentially smaller.

Next we introduce functions i : H → N and β : H →
⋃

i Pi. Intuitively, i(·) and β(·)

describe a forecaster’s selection of classes in {Pi}i: when hT is a realized past history, the

forecaster uses β(hT ) ∈ Pi(hT ) as a category at time T + 1. Then, the forecaster collects

prior samples for β(hT ) and observed samples in the past periods of using β(hT ) as a

category, obtains the empirical distribution of those samples, and uses the distribution as

the forecast at time T + 1; having obtained enough prior samples for class β(hT ) enables

the forecaster to make accurate predictions from the first period (to the last period) of

using β(hT ) as a category. In the following we shall define i(·) and β(·), categories, prior

samples, and then prior µ̃F .

To give formal definitions of i(·) and β(·), we also define three other functions m :

H → N, n : H → N, and α : H →
⋃

i Pi. Roughly speaking, m(hT ) is a maximum index

of past used conditioning classes that are equal to or coarser than β(hT ). Let n(hT ) be

the number of times that a currently employed class has been used as a category and

α(hT ) be a finer class that will be employed next. We recursively define i(·), β(·), m(·),

n(·) and α(·) as follows:

• i(h0) := 1 and β(h0) := β, where h0 ∈ β and β ∈ P1. Further, let m(h0) := 1,

n(h0) := 0, and α(h0) := β, where h0 ∈ β and β ∈ Pm(h0)+1.
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• Suppose that i(ht), β(ht), m(ht), n(ht), and α(ht) are defined for 0 ≤ t ≤ T − 1. Let

m(hT ) := max{i(ht) | ht < hT , hT ∈ β(ht)},

α(hT ) := β, where hT ∈ β and β ∈ Pm(hT )+1,

n(hT ) := #{ht | ht < hT , i(ht) = m(hT ), α(hT ) ⊂ β(ht)},

where if {i(ht) | ht < hT , hT ∈ β(ht)} = ∅, then let m(hT ) = 1. Then, define i(hT ) and

β(hT ) as follows:

i(hT ) :=

⎧⎪⎨
⎪⎩

m(hT ) + 1, if n(hT ) ≥ n
α(hT )
0

m(hT ), otherwise

where n
α(hT )
0 is the prior sample size for conditioning class α(hT ). Finally let β(hT ) := β,

where hT ∈ β and β ∈ Pi(hT ).

The inequality in the definition of i(hT ) is a switching criterion such that if n
α(hT )
0

samples are obtained as prior samples for α(hT ), then a forecaster switches to a finer class

α(hT ); otherwise, he keeps employing a used class.

A category is represented by a pair of index and class, i.e., (i, β), where β ∈ Pi. Given

a finite history hT−1, we say that time T is an effective period of category (i, β) or category

(i, β) is effective at time T if i(hT−1) = i and β(hT−1) = β. Note that given any h∞, each

period has exactly one effective category. Note also that any category (i, β) with i ≥ 2 has

its (unique) predecessor (ip, βp) such that ip = i − 1 and β ⊂ βp ∈ Pip; by the definitions

of i(·) and β(·), category (i, β) can be effective only after (ip, βp) has been effective nβ
0

times.

Next we define the prior samples d
(i,β)
0 and the prior sample size n

(i,β)
0 for each category

(i, β). For all (1, β), we may take d
(1,β)
0 as an arbitrary #S−dimensional vector with
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positive integer components and its sum being nβ
0 : d

(1,β)
0 [s] is a positive integer for all

s ∈ S and n
(1,β)
0 :=

∑
s d

(1,β)
0 [s] = nβ

0 . For all categories (i, β) with i ≥ 2, let d
(i,β)
0

consist of observed samples in the first nβ
0 effective periods of its predecessor (ip, βp):

each component d
(i,β)
0 [s] is the number of times that s has occurred in the first nβ

0 effective

periods of (ip, βp). Thus d
(i,β)
0 is history-dependent for i ≥ 2. Let n

(i,β)
0 :=

∑
s d

(i,β)
0 [s] = nβ

0 .

Finally we define a prior µ̃F . Given a realized past history hT up to the last date, a

category, say (i, β), is effective at time T + 1: i = i(hT ) and β = β(hT ). Then we obtain

observed states in the past effective periods of category (i, β) which is represented by a

vector d
(i,β)
T : each component d

(i,β)
T [s] is the number of times that s has occurred in the

past effective periods of (i, β). Let n
(i,β)
T denote the sample size for (i, β) up to time T :

n
(i,β)
T :=

∑
s d

(i,β)
T [s]. We define the conditional empirical distribution D

(i,β)
T on category

(i, β) up to time T : D
(i,β)
T := d

(i,β)
T + d

(i,β)
0 � n

(i,β)
T + n

(i,β)
0 . Then we use D

(i,β)
T as the

forecast at time T + 1. Accordingly we define frequency-based CPS fF as follows: for all

hT ∈ H,

fF (hT ) := D
(i,β)
T ,

where i = i(hT ) and β = β(hT ). Then let µ̃F := µfF
.

The following lemma will be used to prove Proposition 2. It insists that a forecaster

uses finer and finer classes as categories, as time proceeds.

Lemma 2 For all h∞, limT→∞ i(hT ) = ∞.

Proof. See Appendix A.

We are in a position to prove Proposition 2.
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Proof of Proposition 2: Without loss of generality we may assume that Pi ≤ Pi+1

for all i. Let fF be a frequency-based CPS for {Pi}i. Fix any µ ∈ EG({Pi}i), and let

fµ be a CPS corresponding to µ. Then, it suffices to show that for µ−almost all h∞,

‖fF (hT ) − fµ(hT )‖ → 0 as T → ∞:

µ(
∞⋂

n=1

∞⋃
T0=1

⋂
T≥T0

{h∞ | ‖fF (hT ) − fµ(hT )‖ <
1

n
}) = 1.

Equivalently, we have only to show that for all n,

µ(

∞⋂
T0=1

⋃
T≥T0

{h∞ | ‖fF (hT ) − fµ(hT )‖ ≥ 1

n
}) = 0.

Since µ ∈ EG({Pi}i), we obtain a µ−probability one set Z0, i.e., µ(Z0) = 1 such that

for any ε > 0 there exist i0 and T0 : Z0 → N such that for all β ∈ Pi0 and all hT , h′
T ′ ∈ β,

if there exist h∞, h′
∞ ∈ Z0 such that hT < h∞, h′

T ′ < h′
∞, T ≥ T0(h∞) and T ′ ≥ T0(h

′
∞),

then ‖fµ(hT ) − fµ(h′
T ′)‖ < ε.

Step 1: Let ε := 1
3n

. Since Pi ≤ Pi+1 for all i, we may take i0 ≥ 3n. For all β ∈ Pi0, define

a class β̂ as follows: hT ∈ β̂ if and only if hT ∈ β and hT < h∞ and T ≥ T0(h∞) for some

h∞ ∈ Z0. Then, for all β ∈ Pi0, let Lβ [s] := suph∈β̂ fµ(h)[s] and lβ [s] := infh∈β̂ fµ(h)[s];

note that Lβ[s] − lβ [s] ≤ ε for all s. Furthermore, for all categories (i, β), we define a

class γ(i, β) as follows: hT ∈ γ(i, β) if and only if (i(hT ), β(hT )) = (i, β) or (ip, βp) and

hT < h∞ and T ≥ T0(h∞) for some h∞ ∈ Z0. Since Pi ≤ Pi+1 for all i, for each category

(i, β) with i ≥ i0 + 1, there exists a unique class α ∈ Pi0 such that γ(i, β) ⊂ α̂; then, let

L(i,β)(s) := Lα[s] and l(i,β)[s] := lα[s] for all s. Moreover, it follows from the definition of

fF and Lemma 2 that for all h∞ ∈ Z0 and all i ≥ i0 + 1, there exists T0 such that for all

T ≥ T0, fF (hT ) = D
(j,β)
T = d

γ(j,β)
n (h∞)�n for some (j, β) with j ≥ i and some n ≥ nβ

0 .
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Step 2: For all categories (i, β) with i ≥ i0 + 1, let

B(i,β)
n := {h∞ | T γ(i,β)

n < ∞, ∃s ∈ S(
d

γ(i,β)
n [s]

n
≥ L(i,β)[s] +

1

i
or

d
γ(i,β)
n [s]

n
≤ l(i,β)[s] − 1

i
)}.

Then, from Step 1 it follows that for all j ≥ i0 + 1,

∞⋂
T0=1

⋃
T≥T0

{h∞ | ‖fF (hT ) − fµ(hT )‖ ≥ 1

n
}
⋂

Z0 ⊂
⋃
i≥j

⋃
β∈Pi

⋃

n≥nβ
0

B(i,β)
n .

Step 3: By Step 1 and Lemma 1, µ(B
(i,β)
n ) ≤ 2(#S) exp(−2ni−2). Also, by the definition

of nβ
0 ’s, #Pi ·

∑∞
n=n

β
0
exp(−2ni−2) ≤ exp(−i) for all β ∈ Pi and all i. These imply that

µ(
⋃
i≥j

⋃
β∈Pi

⋃

n≥n
β
0

B(i,β)
n ) ≤

∑
i≥j

∑
β∈Pi

∑

n≥n
β
0

2(#S) exp(−2ni−2)

≤ 2(#S)
∑
i≥j

#Pi

∑

n≥nβ
0

exp(−2ni−2)

≤ 2(#S)
∑
i≥j

exp(−i)

≤ 2(#S)(1 − exp(−1))−1 exp(−j).

From this inequality and the set inclusion in Step 2 it follows that for all j ≥ i0 + 1

µ(
∞⋂

T0=1

⋃
T≥T0

{h∞ | ‖fF (hT ) − fµ(hT )‖ ≥ 1

n
}
⋂

Z0) ≤ 2(#S)(1 − exp(−1))−1 exp(−j).

Thus, letting j → ∞, we have

µ(
∞⋂

T0=1

⋃
T≥T0

{h∞ | ‖fF (hT ) − fµ(hT )‖ ≥ 1

n
}
⋂

Z0) = 0.

Since the complement of Z0 is of probability zero, i.e., µ(Zc
0) = 0, the above equality

implies the desired result:

µ(
∞⋂

T0=1

⋃
T≥T0

{h∞ | ‖fF (hT ) − fµ(hT )‖ ≥ 1

n
}) = 0.
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Propositions 1 and 2 induce a characterization of merging with a set of probability

measures by a countable family of conditioning rules, which is the main purpose of this

paper.

Theorem 1 A set M of probability measures is weakly merged if and only if all probability

measures in M are eventually generated by some countable family {Pi}i of conditioning

rules, that is, there exists a countable family {Pi}i of conditioning rules such that M ⊂

EG({Pi}i).

Proof. Suppose that a set M of probability measures is weakly merged. Then, there

exists a prior µ̃ such that µ̃ weakly merges with all µ in M . But then, Proposition 1 states

that there exists a countable family {Pi}i of conditioning rules such that µ̃ never weakly

merges with any µ /∈ EG({Pi}i). Therefore, M ⊂ EG({Pi}i).

Conversely, suppose that there exists {Pi}i such that M ⊂ EG({Pi}i). Then, Propo-

sition 2 states that there exists a prior µ̃F such that µ̃F weakly merges with all µ ∈

EG({Pi}i). Thus, µ̃F weakly merges with all µ ∈ M because M ⊂ EG({Pi}i). There-

fore, M is weakly merged.

3.3 Almost weak merging

Lehrer and Smorodinsky (1996b) introduce a weaker notion of merging: almost weak

merging. Almost weak merging says that the updated forecast about any finite period

future event is accurate in almost all periods. Let us call a set D of positive integers
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a dense sequence of periods if limT→∞ #(D
⋂
{1, · · · , T})�T = 1, where # denotes the

cardinality of a set.

Definition 9 A prior µ̃ almost weakly merges with a probability measure µ if for all ε > 0,

all k ≥ 1, and µ−almost all h∞ there exists a dense sequence D of periods such that for

all T ∈ D

sup
A∈FT+k

| µ̃(A | FT ) − µ(A | FT ) |< ε.

Notice that a prior µ̃ almost weakly merges with a probability measure µ if and only

if for all ε > 0 and µ−almost all h∞ there exists a dense sequence D of periods such

that for all T ∈ D, ‖fµ̃(hT ) − fµ(hT )‖ < ε. It is also equivalent to the following: for all

ε > 0 there exist a µ−probability one set Z and a family {Tm}m of time functions, i.e.,

Tm : Z → N, such that (1) for all h∞ ∈ Z and all m, ‖fµ̃(hTm) − fµ(hTm)‖ < ε, and (2)

limT→∞
NT (h∞)

T
= 1 for all h∞ ∈ Z, where NT (h∞) := {m | Tm(h∞) ≤ T}.

Accordingly, we define the almost generation of a CPS by a family of conditioning

rules.

Definition 10 We say that a CPS f : H → ∆(S) is almost generated by {Pi}i if for all

ε > 0 there exist an index i0, a µf−probability one set Z0, and a family {Tm}m of time

functions such that (1) for all β ∈ Pi0 and all hT , h′
T ′ ∈ β, if there exist h∞, h′

∞ ∈ Z0

and m, m′ such that hT < h∞ and T = Tm(h∞) and h′
T ′ < h′

∞ and T ′ = Tm′(h′
∞), then

‖f(hT ) − f(h′
T ′)‖ < ε, and (2) limT→∞

NT (h∞)
T

= 1 for all h∞ ∈ Z0, where NT (h∞) :=

max{m | Tm(h∞) ≤ T}.

The definition says that for any ε > 0, the regularity of f is (almost surely) ε−approximated

by one of the conditioning rules in almost all periods. We shall define the almost genera-
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tion of probability measures.

Definition 11 We say that a probability measure µ is almost generated by {Pi}i if there

exists a CPS fµ corresponding to µ such that fµ is almost generated by {Pi}i. The set of

all probability measures almost generated by {Pi}i is denoted by AG({Pi}i).

Obviously EG({Pi}i) � AG({Pi}i). We show that any prior cannot almost weakly

merge with more probability measures than those that are almost generated by a countable

family of conditioning rules.

Proposition 3 For any prior µ̃, there exists a countable family {Pi}i of conditioning

rules such that µ̃ never almost weakly merges with any µ /∈ AG({Pi}i).

Proof. See Appendix B.

For any countable family of conditioning rules, we construct a prior µ̃′
F that almost

weakly merges with all probability measures almost generated by the family. For that

purpose, we have only to modify the switching criterion in the definition of i(·) as follows:

i(hT ) :=

⎧⎪⎨
⎪⎩

m(hT ) + 1, if n(hT ) ≥ n
α(hT )
0 and

�M(hT )+1
i=1

�
β∈Pi

n
β
0

n(hT )
< 1

m(hT )

m(hT ), otherwise

All other things are exactly the same as in the weak merging case. In the definition of

i(·) the switching criterion consists of two inequalities: the first one is the same as in the

weak merging case, and the second inequality is added so that for almost all categories,

the prior sample size is negligible relative to the number of effective periods; this fact is

useful for proving Proposition 4.
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Proposition 4 For any countable family {Pi}i of conditioning rules, there exists a frequency-

based prior µ̃′
F such that µ̃′

F almost weakly merges with all µ ∈ AG({Pi}i).

Proof. See Appendix B.

Notice that µ̃′
F also weakly merges with EG({Pi}i); the proof is quite similar to that

of Proposition 2. Therefore, µ̃′
F not only almost weakly merges with AG({Pi}i) but also

weakly merges with EG({Pi}i).

Corollary 1 For any countable family {Pi}i of conditioning rules, there exists a prior

µ̃′
F such that µ̃′

F not only almost weakly merges with AG({Pi}i) but also weakly merges

with EG({Pi}i).

Finally, Propositions 3 and 4 give us a characterization of almost weak merging with

a set of probability measures, as in the weak merging case.

Theorem 2 A set M of probability measures is almost weakly merged if and only if there

exists a countable family {Pi}i of conditioning rules such that M ⊂ AG({Pi}i).

Proof. Similar to the proof of Theorem 1.

4 Application to Repeated Games

4.1 Basic observation

Let us apply our results to an infinitely repeated game of two players; the argument may

be easily extended to the n player case, and our results about almost weak merging may

also be applied in the same way. Suppose that each player may observe a past history of
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actions at each period. Player i(= 1, 2) takes an action ai in a finite set Ai at every period.

A history of the repeated game is a sequence of actions by players 1 and 2. Notations

hT , h∞, H, H∞, h ≤ h′, h < h′, and h < h∞ have the same meanings as in Subsection

2.1. Player i’s behavior strategy is denoted by σi : H → ∆(Ai). Let Σi denote the set of

all player i’s behavior strategies. We write µ(σ1, σ2) for the probability measure (on H∞)

induced by playing σ1 and σ2.

Since player i( �= j)’s prior belief about player j’s behavior is identified with a player j’s

behavior strategy, let σ̃j : H → ∆(Aj) designate a player i’s prior. Note that given a player

i’s strategy σi, µ(σi, σ̃j) weakly merges with µ(σi, σj) if and only if for µ(σi, σj)−almost

all h∞,

lim
T→∞

‖σ̃j(hT ) − σj(hT )‖ = 0.

Note also that merging with an opponent true strategy may depend on a player own

behavior in a repeated game. If a prior weakly merges with an opponent strategy for all

player’s strategies, we say that the prior weakly merges with the opponent strategy.

Definition 12 We say that a player i’s prior σ̃j weakly merges with a set Mj of player

j’s strategies if for all σi ∈ Σi and all σj ∈ Mj , µ(σi, σ̃j) weakly merges with µ(σi, σj). It

is said that a set Mj of player j’s strategies is weakly merged if there exists a player i’s

prior σ̃j such that σ̃j weakly merges with Mj.

A behavior strategy may be generated by a countable family of conditioning rules, as

in the CPS case.

Definition 13 We say that a player j’s strategy σj is generated by a countable family

{Pn}n of conditioning rules if for all ε > 0 there exists n0 such that for all β ∈ Pn0 and
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all h, h′ ∈ β, ‖σj(h)− σj(h
′)‖ < ε. The set of all player j’s strategies generated by {Pn}n

is denoted by Gj({Pn}n).

Noting that merging in a repeated game may depend on a player’s own behavior, we

define the eventual generation of behavior strategies.

Definition 14 (1) We say that a player j’s strategy σj is eventually generated by a count-

able family {Pn}n of conditioning rules with a player i’s strategy σi if for all ε > 0 there

exists an index n0, a µ(σi, σj)−probability one set Z0, and a time function T0 : Z0 → N

such that for all β ∈ Pn0 and all hT , h′
T ′ ∈ β, if there exist h∞, h′

∞ ∈ Z0 such that

hT < h∞, T ≥ T0(h∞), h′
T ′ < h′

∞, and T ′ ≥ T0(h
′
∞), then ‖σj(hT ) − σj(h

′
T ′)‖ < ε.

The set of all player j’s strategies eventually generated by {Pn}n with σi is denoted by

EGj({Pn}n, σi).

(2) We say that a player j’s strategy σj is eventually generated by a countable family

{Pn}n of conditioning rules if σj is eventually generated by {Pn}n with all σi. The set of

all player j’s strategies eventually generated by {Pn}n is denoted by EGj({Pn}n).

Obviously, EGj({Pn}n) =
⋂

σi
EGj({Pn}n, σi) and Gj({Pn}n) � EGj({Pn}n). As in

the CPS case, all i.i.d. strategies are generated by any (non-empty) family of conditioning

rules;7 thus Gj({Pn}n) is always uncountable. Also, any strategy σj is generated by a

countable family of conditioning rules. Thus any countably many strategies {σn
j }n are

generated by a countable family of conditioning rules. In general, even Gj({Pn}n) is much

larger than previously known learnable sets; Gj({Pn}n) is also neither parametrized in any

finite dimensional space nor compact (in the sup norm). Propositions 5 and 6 correspond

to Propositions 1 and 2 respectively.
7We say that σj is i.i.d. if σj(h) = σj(h′) for all h, h′ ∈ H .
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Proposition 5 For any player i’s prior σ̃j, there exists a countable family {Pn}n of

conditioning rules such that for all σi ∈ Σi and all σj /∈ EGj({Pn}n, σi), µ(σi, σ̃j) does

not weakly merge with µ(σi, σj).

Proof. As in the CPS case, σ̃j has its 1
n
−approximate conditioning rule P σ̃j

1
n

for all

n. The rest of the argument is the same as the proof of Proposition 1.

Proposition 6 For any countable family {Pn}n of conditioning rules, there exists a

frequency-based prior σ̃F
j such that for all σi ∈ Σi and all σj ∈ EGj({Pn}n, σi), µ(σi, σ̃

F
j )

weakly merges with µ(σi, σj).

Proof. The construction of σ̃F
j is just the same as that of a frequency-based CPS fF

except that D
(i,β)
T is the conditional empirical distribution of player j’s actions.

Note that σ̃F
j is exactly a belief formation process of conditional (smooth) fictitious

play in Noguchi (2003); taking a (smooth approximate) myopic best response to σ̃F
j is

just conditional (smooth) fictitious play (see Fudenberg and Levine (1999)). Thus, in

the case that a player takes a myopic best response to his belief, conditional fictitious

play is interpreted as a Bayesian learning procedure. Surprisingly Propositions 5 and 6

imply that from the weak merging point of view, the learning performance of conditional

(smooth) fictitious play is better than or at least as good as that of any other Bayesian

learning procedure.8

Corollary 2 For any prior σ̃j, there exists a frequency-based prior σ̃F
j such that σ̃F

j always

weakly merges with all strategies that σ̃j could merges with: for all strategies σj, if µ(σi, σ̃j)
8In addition, conditional smooth fictitious play also has a sophisticated no-regret property simultane-

ously while Bayesian learning procedures do not have a no-regret property. See Noguchi (2003).
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weakly merges with µ(σi, σj) for some σi, then µ(σi, σ̃
F
j ) weakly merges with µ(σi, σj) for

all σi.

Propositions 5 and 6 also entail a characterization of a set of behavior strategies with

which a prior weakly merges.

Theorem 3 A set Mj of player j’s strategies is weakly merged if and only if there exists

a countable family {Pn}n of conditioning rules such that Mj ⊂ EGj({Pn}n).

Proof. The proof is similar to that of Theorem 1.

4.2 Regular strategies

As a typical example of a learnable set we may consider the set of regular strategies.

Regular strategies have strong regularities in the sense that those conditioning rules are

determined by computer algorithms. Precisely, a function Λ : H × H → {0, 1} is called

a characteristic function of a partition P if for all h, h′ ∈ H, h ∼P h′ ⇔ Λ(h, h′) = 1. A

conditioning rule P is said to be regular if its characteristic function is (Turing machine)

computable. Let ΦR designate the set of all regular conditioning rules. Note that ΦR is

countable because Turing machines are countable. A strategy σj : H → ∆(Aj) is called

regular if σj is generated by ΦR. Most of practical strategies, including all i.i.d. strategies,

all (Turing machine) computable pure strategies,9 all Markov strategies of all orders,

equilibrium strategies in Folk Theorems,10 and so on, are regular. Regular strategies may

9For example, see Nachbar and Zame (1996) for computable pure strategies.
10For example, equilibrium strategies in Fudenberg and Maskin (1991) are regular, provided that

players’ discount factors, players’ payoffs in a stage game, and the target values of averaged discounted

payoff sums are computable numbers.
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also be interpreted as a generalization of computable pure strategies to mixed strategies.

Indeed, any computable pure strategy is generated by some regular conditioning rule. Let

ΣR
j denote the set of all player j’s regular strategies: ΣR

j := Gj(Φ
R). ΣR

j is also so large

that it cannot be finite dimension parameterized nor compact (in the sup norm). Since

regular conditioning rules are countable, we may apply Proposition 6 to ΣR
j .

Corollary 3 There exists a frequency-based prior σ̃F
j such that σ̃F

j weakly merges with

ΣR
j .

Remark 3 The union of ΦR and any countable family {Pi}i of conditioning rules is also

countable. Thus we may always assume that ΣR
j is included in a learnable set.

4.3 Implication to Nachbar’s impossibility result

Nachbar (1997) and (2004) show that in a large class of games, if all players’ learnable

sets are so diverse and symmetric that they equally include various strategies, then some

player’s optimizing strategy to his belief does not belong to his opponent’s learnable set.

Do our results strengthen or weaken the validity of Nachbar’s impossibility result? As a

positive fact, it is straightforward to see that the product of the sets of strategies generated

by {Pn}n, G1({Pn}n) × G2({Pn}n) satisfies the learnability and diversity conditions in

Nachbar (2004). Thus the impossibility holds for G1({Pn}n)×G2({Pn}n): some player i’s

optimizing strategy to his belief does not belong to his opponent’s learnable set Gj({Pn}n).

Nonetheless, since our results show that EGi({Pn}n) includes any learnable set, what we

really want to know is whether the impossibility still holds for EG1({Pn}n)×EG2({Pn}n).

Unfortunately it is not clear whether EG1({Pn}n) × EG2({Pn}n) satisfies one of the
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diversity conditions, that is, condition CS (1) in Nachbar (2004); loosely speaking, CS

(1) requires that if a mixed strategy belongs to EGi({Pn}n), then some pure strategy in

the support of the mixed strategy also belong to EGi({Pn}n). If the impossibility holds

for EG1({Pn}n) × EG2({Pn}n), then it may be a strong evidence for the generality of

Nachbar’s impossibility; otherwise, one may doubt its generality.

5 Concluding Remarks

5.1 Bayesian prior

One might think that a prior belief µ̃ should be defined by an appropriate Bayesian repre-

sentation. The representation form clearly exhibits that the prior µ̃ puts a positive weight

on every learnable probability measure µθ or at least an arbitrary small neighborhood of

it. Typically it may be the form µ̃ =
∫
Θ

µθdλ(θ), where Θ is a parameter set and λ is a

probability distribution over Θ. Motivated by the thought, Jackson et al. (1999) pursue

a canonical Bayesian representation. From this point of view, we may ask whether our

constructing prior µ̃F (or µ̃′
F ) has such a Bayesian representation. One might want to

apply the result in Jackson et al. (1999) to µ̃F . According to their result, µ̃F must satisfy

the asymptotically reverse-mixing condition so as to have a (unique) canonical Bayesian

representation. However, it does not seem immediate to check whether µ̃F satisfies the

condition or not.
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5.2 Merging

We have only explored (almost) weak merging. We may ask the same question about

merging: what is a set of probability measures with which a prior merges? Sandroni and

Smorodinsky (1999) investigate relations between merging and weak merging, and show

that merging requires weak merging with a fast speed in almost all periods. Their result

leads us to guess that in general, a merged set of probability measures may be much

smaller than a weakly merged set. But the problem is beyond the scope of this paper.

6 Appendix A

Proof of Lemma 2: Suppose that lim infT→∞ i(hT ) < ∞ for some h∞. It means that

i(hTk
) = i0 for infinitely many Tk. Since Pi0 has only finite classes, it in turn implies

that there exists β0 ∈ Pi0 such that β(hTl
) = β0 for infinitely many Tl; since {Tl}l is

a subsequence of {Tk}k, i(hTl
) = i0 for all Tl. It, together with the definition of m(·),

implies that m(hTl
) = i0 for all Tl. Thus there exists a unique class α0 ∈ Pi0+1 such that

α0 ⊂ β0 and α(hTl
) = α0 for all Tl. But then, by the definition of n(·), n(hTl

) → ∞ as

l → ∞. This means that for some l, n(hTl
) ≥ nα0

0 = n
α(hTl

)

0 , so that by the definition of

i(·), i(hTl
) = m(hTl

) + 1 = i0 + 1. This is a contradiction. �

7 Appendix B

Given a history hT , let n
(i,β)
T be the number of times that category (i, β) has been effective

up to time T , and let ΓT denote the set of categories that have been effective up to time T .

Then, we obtain the following lemma, which will be used to prove Proposition 4. Lemma
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3 (1) says the same as Lemma 2, and Lemma 3 (2) insists that for almost all categories,

the prior sample size is negligible relative to the number of effective periods.

Lemma 3 (1) limT→∞ i(hT ) = ∞ for all h∞.

(2) For all h∞, limT→∞
∑

(i,β)∈ΓT

n
(i,β)
T

T

n
(i,β)
0

n
(i,β)
T

= 0.

Proof. (1) Suppose that lim infT→∞ i(hT ) < ∞ for some h∞. It means that i(hTk
) = i0

for infinitely many Tk. Since Pi0 has only finite classes, it in turn implies that there exists

β0 ∈ Pi0 such that β(hTl
) = β0 for infinitely many Tl; since {Tl}l is a subsequence of {Tk}k,

i(hTl
) = i0 for all Tl. It, together with the definition of m(·), implies that m(hTl

) = i0 for

all Tl. Thus there exists a unique class α0 ∈ Pi0+1 such that α0 ⊂ β0 and α(hTl
) = α0 for

all Tl. But then, by the definition of n(·), n(hTl
) → ∞ as l → ∞. This means that for

some l, n(hTl
) ≥ nα0

0 = n
α(hTl

)

0 and

∑m(hTl
)+1

i=1

∑
β∈Pi

nβ
0

n(hTl
)

=

∑i0+1
i=1

∑
β∈Pi

nβ
0

n(hTl
)

<
1

i0
=

1

m(hTl
)

so that by the definition of i(·), i(hTl
) = m(hTl

) + 1 = i0 + 1. This is a contradiction.

(2) Let i∗(hT ) := max{i(ht) | t ≤ T} , t∗(hT ) := min{t | i(ht) = i∗(hT ), t ≤ T},

n∗(hT ) := n(ht∗(hT )), and m∗(hT ) := m(ht∗(hT )). Since i(hT ) → ∞ as T → ∞, i∗(hT ) → ∞

as T → ∞. Note that i∗(hT ) = m∗(hT ) + 1 because switching occurs at time t∗(hT ) + 1.

Note also that if category (i, β) has been effective through time T +1, then β ∈
⋃i∗(hT )

i=1 Pi.

Thus
∑

(i,β)∈ΓT
n

(i,β)
0 ≤

∑m∗(hT )+1
i=1

∑
β∈Pi

nβ
0 . Obviously n∗(hT ) ≤ T . These induce that

∑
(i,β)∈ΓT

n
(i,β)
T

T

n
(i,β)
0

n
(i,β)
T

=

∑
(i,β)∈ΓT

n
(i,β)
0

T
≤

∑m∗(hT )+1
i=1

∑
β∈Pi

nβ
0

n∗(hT )
<

1

m∗(hT )
=

1

i∗(hT ) − 1
.
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The first equality and the second inequality are obvious. The third inequality holds

because switching occurs at time t∗(hT ) + 1 so that the switching criterion is passed.

Since i∗(hT ) → ∞ as T → ∞, the desired result obtains.

Proof of Proposition 3: Fix any prior µ̃. Let fµ̃ be a CPS corresponding to µ̃. As

noted in Subsection 2.4, for each n, we may take a 1
n
−approximate conditioning rule Pfµ̃

1
n

of fµ̃. We shall show that µ̃ never weakly merges with any µ /∈ AG({Pfµ̃
1
n

}n). Take any

probability measure µ /∈ AG({Pfµ̃
1
n

}n). Then, there exists ε0 > 0 such that for all n, all

µ−probability one sets Z, and all families of time functions {Tm}m, either there exist

β ∈ Pfµ̃
1
n

and hT , h′
T ′ ∈ β such that for some h∞, h′

∞ ∈ Z and some m, m′, hT < h∞

and T = Tm(h∞) and h′
T ′ < h′

∞ and T ′ = Tm′(h′
∞) and ‖fµ(hT ) − fµ(h′

T ′)‖ ≥ ε0, or

limT→∞ inf NT (h∞)
T

< 1 for some h∞ ∈ Z.

Suppose that µ̃ almost weakly merges with µ. Then, for ε0

4
, there exist a µ−probability

one set Z0 and a family {T 0
m}m of time functions such that for all h∞ ∈ Z0 and all m,

‖fµ̃(hT 0
m
) − fµ(hT 0

m
)‖ < ε0

4
, and limT→∞

N0
T (h∞)

T
= 1 for all h∞ ∈ Z0, where N0

T (h∞) :=

max{m | T 0
m(h∞) ≤ T}. On the other hand, letting n0 ≥ 4

ε0
, it follows from the previous

paragraph that for n0, Z0 and {T 0
m}m, either there exist β ∈ Pfµ̃

1
n0

and hT , h′
T ′ ∈ β such

that for some h∞, h′
∞ ∈ Z0 and some m, m′, hT < h∞, T = T 0

m(h∞), h′
T ′ < h′

∞, and

T ′ = T 0
m′(h′

∞) and ‖fµ(hT ) − fµ(h′
T ′)‖ ≥ ε0, or limT→∞ inf

N0
T (h∞)

T
< 1 for some h∞ ∈ Z0.

Since limT→∞
N0

T (h∞)

T
= 1 for all h∞ ∈ Z0, these induce that ‖fµ̃(hT ) − fµ̃(h′

T ′)‖ ≥ ε0

2
for

hT , h′
T ′ ∈ β. But then, since β ∈ Pfµ̃

1
n0

and hT , h′
T ′ ∈ β, ‖fµ̃(hT ) − fµ̃(h′

T ′)‖ < 1
n0

≤ ε0

4
.

This is a contradiction. Thus, µ̃ does not almost weakly merge with µ. �
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Proof of Proposition 4: Without loss of generality, we may assume that Pi ≤ Pi+1 for

all i. Let f ′
F be a frequency-based CPS for {Pi}i. Fix any µ ∈ AG({Pi}i). Suppose that

µ̃′
F does not almost weakly merge with µ.

Step 1: On the one hand, since µ̃′
F does not almost weakly merge with µ, there ex-

ists ε0 > 0 such that for any µ−probability one set Z, there exists h∞ ∈ Z such that

there exists a sequence D such that for all T ∈ D, ‖f ′
F (hT ) − fµ(hT )‖ ≥ ε0, and

lim supT→∞ #(D
⋂
{1, · · · , T})�T > 0.

Step 2: On the other hand, since µ ∈ AG({Pi}i), for all ε > 0 there exist an index i0,

a µ−probability one set Z0, and a family {T 0
m}m of time functions such that (1) for all

β ∈ Pi0 and all hT , h′
T ′ ∈ β, if there exist h∞, h′

∞ ∈ Z0 and m, m′ such that hT < h∞

and T = T 0
m(h∞) and h′

T ′ < h′
∞ and T ′ = T 0

m′(h′
∞), then ‖fµ(hT ) − fµ(h′

T ′)‖ < ε, and

(2) limT→∞
N0

T (h∞)

T
= 1 for all h∞ ∈ Z0, where N0

T (h∞) := max{m | T 0
m(h∞) ≤ T}.

Step 3: Let ε := 1
4
ε0. Then, it follows from Step 2 that for ε, there exist an index i0, a

probability one set Z0, and a family {T 0
m}m of time functions such that (1) and (2) hold.

Since Pi ≤ Pi+1 for all i, we may take i0 ≥ 4
ε0

. For all β ∈ Pi0, define a class β̂ as follows:

hT ∈ β̂ if and only if hT ∈ β and hT < h∞ and T = T 0
m(h∞) for some h∞ ∈ Z0 and some

m. Then, for all β ∈ Pi0, let Lβ[s] := suph∈β̂ fµ(h)[s] and lβ[s] := infh∈β̂ fµ(h)[s]; note

that Lβ [s] − lβ[s] ≤ ε for all s. Furthermore, for all categories (i, β), we define a class

γ(i, β) as follows: hT ∈ γ(i, β) if and only if time T + 1 is an effective period of (i, β),

i.e., (i(hT ), β(hT )) = (i, β), or time T + 1 is one of the first nβ
0 effective periods of (ip, βp)

and hT < h∞ and T = T 0
m(h∞) for some h∞ ∈ Z0 and some m. Since Pi ≤ Pi+1 for all

i, for each category (i, β) with i ≥ i0 + 1, there exists a unique class α ∈ Pi0 such that

γ(i, β) ⊂ α̂; let L(i,β)(s) := Lα[s] and l(i,β)[s] := lα[s] for all s. Thus, for all h ∈ γ(i, β)
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and all s ∈ S, l(i,β)[s] ≤ fµ(h)[s] ≤ L(i,β)[s].

Step 4: For all categories (i, β) with i ≥ i0 + 1, let

B(i,β)
n := {h∞ | T γ(i,β)

n < ∞, ∃s ∈ S(
d

γ(i,β)
n [s]

n
≥ L(i,β)[s] +

1

i
or

d
γ(i,β)
n [s]

n
≤ l(i,β)[s] − 1

i
)}.

Then, from Step 2 and Lemma 1 it follows that for all categories (i, β) with i ≥

i0 + 1 and all n, µ(B
(i,β)
n ) ≤ 2(#S) exp(−2ni−2). Also, by the definition of nβ

0 ’s, #Pi ·
∑∞

n=nβ
0
exp(−2ni−2) ≤ exp(−i) for all β ∈ Pi and all i. These imply that for all j ≥ i0+1,

µ(
⋂
j

⋃
i≥j

⋃
β∈Pi

⋃

n≥n
β
0

B(i,β)
n ) ≤ µ(

⋃
i≥j

⋃
β∈Pi

⋃

n≥n
β
0

B(i,β)
n )

≤ 2(#S)(1 − exp(−1))−1 exp(−j).

Thus, letting j → ∞, we have µ(
⋂

j

⋃
i≥j

⋃
β∈Pi

⋃
n≥nβ

0
B

(i,β)
n ) = 0.

Step 5: Let E0 :=
⋃

j

⋂
i≥j

⋂
β∈Pi

⋂
n≥n

β
0
(B

(i,β)
n )c, where (B

(i,β)
n )c is the complement of

B
(i,β)
n . From Steps 3 and 4, µ(E0

⋂
Z0) = 1. Thus, by Step 1, for E0

⋂
Z0, there exists

h∞ ∈ E0

⋂
Z0 such that there exists a sequence D such that lim supT→∞ #(D

⋂
{1, · · · , T})�T >

0 and for all T ∈ D, ‖f ′
F (hT )− fµ(hT )‖ ≥ ε0. Let I

(i,β)
T denote the number of effective pe-

riods of category (i, β) in which ‖f ′
F (hT )−fµ(hT )‖ ≥ ε0. Recall ΓT is the set of categories

that have been effective up to time T . Then, the above statement is equivalent to the fol-

lowing: lim supT→∞
∑

(i,β)∈ΓT

n
(i,β)
T

T

I
(i,β)
T

n
(i,β)
T

> 0. Letting IT (δ) := {(i, β) | I
(i,β)
T

n
(i,β)
T

≥ δ}, this in

turn implies that there exists δ > 0 such that for infinitely many Tk,
∑

(i,β)∈ITk
(δ)

n
(i,β)
Tk

Tk
> δ.

Step 6: Since h∞ ∈ Z0, limT→∞
N0

T (h∞)

T
= 1. Let J

(i,β)
T be the number of times that

for some m, time T 0
m(h∞) is an effective period of (i, β) up to time T . Note that

∑
(i,β)∈ΓT

J
(i,β)
T = N0

T (h∞). Therefore, limT→∞
∑

(i,β)∈ΓT

n
(i,β)
T

T

J
(i,β)
T

n
(i,β )
T

= 1. It means that
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for all ε > 0, there exists k0 such that for all k ≥ k0,
∑

(i,β)∈JTk
(ε)

n
(i,β)
Tk

Tk
≥ 1 − ε,

where JTk
(ε) := {(i, β) | J

(i,β)
T

n
(i,β)
T

≥ 1 − ε}. Moreover, from Lemma 3 (2) it follows that

limT→∞
∑

(i,β)∈ΓT

n
(i,β)
T

T

n
(i,β)
0

n
(i,β)
T

= 0. This implies that for all ε > 0, there exists k1 such that

for all k ≥ k1,
∑

(i,β)∈PTk
(ε)

n
(i,β)
Tk

Tk
≥ 1 − ε, where PT (ε) := {(i, β) | n

(i,β)
0

n
(i,β)
T

≤ ε}.

Step 7: It follows from Steps 5 and 6 that for any ε > 0 there exists k2 such that for all

k ≥ k2,
∑

(i,β)∈ITk
(δ)
�

JTk
(ε)
�

PTk
(ε)

n
(i,β)
Tk

Tk
> δ. This, together with limT→∞ i(hT ) = ∞ from

Lemma 3 (1), implies that for all ε > 0, all T , and all i ≥ i0 + 1, there exist T̄ ≥ T and

(̄ı, β̄) with ı̄ ≥ i such that (i) time T̄ + 1 is an effective period of (̄ı, β̄), i.e., i(hT̄ ) = ı̄ and

β(hT̄ ) = β̄, (ii) T̄ = T 0
m(h∞) for some m, (iii) ‖f ′

F (hT̄ )− fµ(hT̄ )‖ ≥ ε0, (iv)
n

(ı̄,β̄)
0

n
(ı̄,β̄)

T̄

≤ ε, and

(v)
J

(ı̄,β̄)

T̄

n
(ı̄,β̄)

T̄

≥ 1 − ε. Note that

f ′
F (hT̄ ) = D

(ı̄,β̄)

T̄
=

d
(ı̄,β̄)

T̄
+ d

(ı̄,β̄)
0

n
(ı̄,β̄)

T̄
+ n

(ı̄,β̄)
0

=
n

n
(ı̄,β̄)

T̄
+ n

(ı̄,β̄)
0

d
γ(ı̄,β̄)
n [s]

n
+

n
(ı̄,β̄)

T̄
+ n

(ı̄,β̄)
0 − n

n
(ı̄,β̄)

T̄
+ n

(ı̄,β̄)
0

d
(ı̄,β̄)

T̄
+ d

(ı̄,β̄)
0 − d

γ(ı̄,β̄)
n [s]

n
(ı̄,β̄)

T̄
+ n

(ı̄,β̄)
0 − n

where n is the number of times that for some m, time T 0
m(h∞) is either an effective period

of (̄ı, β̄), or one of the first n
(ı̄,β̄)
0 effective periods of its predecessor (̄ıp, β̄p) (up to time T̄ ).

Then, by (iv) and (v), n ≥ n
(ı̄,β̄)
0 (= nβ̄

0 ) and n

n
(ı̄,β̄)

T̄
+n

(ı̄,β̄)
0

≥ J
(ı̄,β̄)
T

(1+ε)n
(ı̄,β̄)

T̄

≥ 1−ε
1+ε

, which means

that f ′
F (hT̄ ) ≈ d

γ(ı̄,β̄)
n [s]

n
. These, together with (ii) and (iii), imply that for some s,

d
γ(ı̄,β̄)
n [s]

n
≥ L(ı̄,β̄)[s] +

1

ı̄
, or

d
γ(ı̄,β̄)
n [s]

n
≤ l(ı̄,β̄)[s] − 1

ı̄
.

Thus, h∞ ∈ (E0)
c where (E0)

c is the complement of E0. But then, h∞ ∈ E0. This is

a contradiction to E0

⋂
(E0)

c = ∅. Therefore µ̃′
F almost weakly merges with µ. �
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