
A Spatial Interaction Model with Heterogeneous Agents

Virginie Masson

Department of Economics

University of Pittsburgh

Nicolas Rosenfeld

Department of Economics

University of Pittsburgh

March 31, 2005

1



Abstract

We develop an evolutionary model with a neighborhood structure in which two types of individ-

uals coexist: A-Type individuals who prefer to coordinate on strategy A and B-Type individuals

who prefer to coordinate on strategy B. Players meet to play a 2× 2 coordination game in which

the relevant payoff matrix depends on their types. The selection of a particular decision rule, either

imitation or best reply, is conditional on: (i) whether the opponent is a neighbor or a stranger, and

(ii) the characteristics of the information they sample. We show that the equilibrium asymptotically

selected depends on the distribution of types in the population.

Keywords: Evolutionary Game Theory, Non cooperative games, Stochastic stability, Asymetric

information, Networks, Heterogeneity.
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1 Introduction

In most models of evolution of conventions populations are assumed to be homogeneous, that is

composed by individuals sharing common preferences. However, simple observation of real life

examples indicates that the existence of populations of heterogeneous agents abound. Not all

individuals vote for the same candidate during an election, or not all individuals choose the same

meal on a restaurant menu. Therefore, personal interests can be different, even if individuals

face the same strategy space. The present paper develops an evolutionary model incorporating

a heterogeneous population and studies its asymptotic properties. More specifically, we consider

a population with two types of individuals: A-Type and B-Type. The payoffs matrices are such

that A-Type individuals are encouraged to coordinate on strategy A, and B-Type individuals to

coordinate on strategy B.

Eshel, Samuelson and Shaked [2] considers an evolutionary model where agents can be of two

types: altruists or egoists. Players can choose whether or not to contribute to a public good.

The benefits of the public good are local: only a certain number of closest neighbors can enjoy

the public good while only the provider bears the costs. As time progresses, players can adjust

their play by imitating the most successful strategy on average within their neighborhoods. The

paper shows how cooperation survives in the long run if altruists are close enough to enjoy the

benefits of their mutual cooperation. Myatt and Wallace [8] also considers a public good game

with heterogeneous individuals. In their model, a certain number of contributors are necessary to

successfully provide the public good. In each period, an individual is selected to revise his strategy.

The individual observes the number of current contributors and decide to contribute only if his

contribution incentive (the difference between valuation and cost) conditional of being pivotal is

positive. By making the revising player to draw both his valuation and cost from some noisy

distribution, the paper introduces heterogeneity. The population is thus composed of idiosyncratic
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agents. The authors study the results of the best reply dynamics when the noise parameter becomes

small. Specifically, they analyze the case where the threshold public good is efficiently provided in a

homogeneous population and then introduce a single ’bad apple’. The results show that the efficient

provision of the public good can always be interrupted in the case of a bad apple with sufficiently

low valuation or sufficiently high variance. In this paper, we consider types as exogenously given

and do not allow individuals to switch between them. The intuition behind this can be explained

as follows: when studying public goods, one may suggest the possibility that some individuals’

good will becomes contagious. But when considering personal interests, one can find plethora of

examples where an individual’s choices are not influenced by others. For example, you prefer blue

to pink or you prefer cartoons to science fiction movies, no matter the taste of the population you

belong to.

Evolutionary models with boundedly rational agents adopt, in general, either the best reply

rule or the imitation rule. Focusing the attention on 2 × 2 coordination games in which there

is coexistence of efficiency and risk-dominance; Kandori, Mailath and Rob [5], Young [11] and

Ellison [1] show that best reply dynamics favors the selection of the latter. However, the efficient

equilibrium survives, when the dynamics is driven by imitation as in Robson and Vega-Redondo

[10] and Josephson and Matros [4]. Matros [7] goes one step further and studies a model where

agents can choose between best reply and imitation in order to select their strategies. He finds

results consistent with those in Eshel et al [2]. Moreover, he shows the robustness of these results

to the introduction of the best reply rule. Masson [6] also combines best reply and imitation.

An individual considers his opponent a neighbor if he can observe his opponent’s past plays and

payoffs, otherwise the opponent is regarded a stranger. The use of a specific decision rule is therefore

conditional upon the opponent: when players are neighbors they use best reply; but when they

are strangers, they select the imitation rule. In this case, evolutionary forces select the efficient
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equilibrium.

In this paper, we study the impact of introducing a heterogeneous population in an environment

similar to the one developed in Masson [6]. Time is discrete and in each period, a finite number of

individuals are paired to play a 2×2 coordination game. Players can have one of two possible types:

an A-Type whose members prefer to coordinate on strategy A and a B-Type whose members prefer

coordination on strategy B. The relevant payoff matrix is now dependent upon the type of players

being matched. With two types, there are 3 possible payoff matrices and 3 possible matchings. The

payoff matrices depend on the type of each player, whereas the matching refers to the relationship

between both players, i.e if each player considers his opponent as neighbor or stranger.

Given this environment, it is shown that the stochastically stable equilibrium depends upon the

proportion and the distribution of the two types in the population. More specifically, a population

of a given type may be diverted from its preferred equilibrium due to the presence of at least two

neighbors from the other type.

The paper is organized as follows. Section 2 presents the formal model introducing the unper-

turbed and perturbed version of the process. In section 3, the asymptotic behavior of the process

is analyzed and our main results are presented. Section 4 concludes.

2 The Model

In this section, we first describe the population structure and then introduce the game and its

dynamics. Time is discrete and let t = 1, 2, ... be the time periods. Let N = {1, 2, ..., 2n} be the

finite number of individuals in the population and let each i ∈ N be represented by a node in a

graph. Each individual is of a specific type: either A-Type or B-Type. For all i, define Ni as

the set of individual i′s neighbors. This relationship among the individuals is defined by a set of
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directed edges E = ∪i {(i, j) : j ∈ Ni}. That is, if an individual j ∈ Ni, then individual i knows

individual j′s type and has access to the lastm-period plays and payoffs of individual j. In this case,

individual i considers individual j a neighbor. When individual j /∈ Ni, individual j is considered

a stranger by individual i who cannot access to any information about j′s type, past plays and

payoffs. Formally, let i→ j means that i has access to j′s m-period strategy-payoff pairs, and that

i knows j′s type; i.e. the first player considers the second a neighbor. If no edge exist between two

players, they consider themselves as strangers. For simplicity, consider the following notations:1

(i) Ni = {j : i→ j} ; the set of players that individual i considers his neighbors.

(ii) Ri = {j : j → i} ; the set of players who consider individual i as their neighbor.

(iii) Ii = Ni ∩Ri; the set of players who have a double-sided link with i.

(iv) Si = Ni ∪Ri; the set of players who have no link with i.

Before introducing the dynamics of the model, we make some additional assumptions concerning

the population structure:

(I) ”Symmetric” neighborhoods: ∀i, ∃ j 
= i such that Ii = {i, j}

(II) Diversity: Card(Si) ≥ Card(Ii), ∀i

(III) Connectedness: From every individual in Ii, there exists a directed path to any other indi-

vidual in the population.

Assumption (I) allows us to partition the population into groups in which any pair of individuals

consider each other as neighbors. Assumption (II) ensures that each individual can be matched

with a stranger with positive probability and reflects the fact that individuals usually know a small

1For the rest of the study, we assume that an individual has access to his own last m − period strategy-payoff
pairs, i.e individual i considers himself a neighbor

6



proportion of the whole population. Assumption (III) imposes an overlapping structure to the

neighborhoods in the spirit of Ellison [1] and Eshel et al [2].

The dynamics of the game depend on the type of the players and on the relationship between

the players. In each period, individuals are randomly matched to play a 2× 2 coordination game.

Each individual decides which decision rule to use according to the relationship with his opponent

and the type of his neighbors: individual i uses the best reply rule whenever his opponent is one

of his neighbors. But when individual i′s opponent is a stranger, individual i may either use the

imitation rule or the best reply rule, depending on the type of his neighbors. Individual i only

imitates neighbors of the same type.

The type of players in each match determines the relevant payoff matrix they face. We assume

that both types have the same strategy set Xi = {A,B} , and that players are myopically rational.

We define the payoff matrices as follows. For A-Type individuals, the payoff matrix is repre-

sented by:

A B

A a b

B c d

Table 1

For B-Type individuals, the payoff matrix is represented by:

A B

A d c

B b a

Table 2
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Regarding the payoffs, we assume a > c > d > b � 0 and a− c < d− b. Given these payoffs,

we see that matches of players with the same type display tension between risk-dominance and

efficiency. A-Type individuals obtain the highest payoff if they coordinate on the efficient equilib-

rium represented by (A,A) in the first table, while B-Type individuals obtain the highest payoff if

they agree on the efficient equilibrium represented by (B,B) in Table 2. When matching occurs

between individuals of different types, Nash equilibrium is reached only if one of the individual

deviates from his preferred strategy. Efficiency in this latter case could only be reached if both

types deviate. Intuitively, the fact that an individual deviates from its preferred strategy can be

seen as willingness to compromise. If both individuals compromise, Pareto efficiency is reached.

However, if only one of them yields, he bears the cost of the compromise. Moreover, the worst

outcome occurs when both individuals refuse to sacrifice one’s own.

Let the vector xt =
(
xt1, ...x

t
2n

)
be the play at time t, where xti is player i

′s strategy in that

period. The history at time t is given by the vector ht = (x1, ..., xt). Let integers m and s be such

that m � 4 and 1 < s � m
2
. When individual i faces a neighbor, he randomly selects s past plays

from the history of length m of his current opponent, and plays best reply against this sample

as in Young[11]. In the case where individual i is matched with a stranger, he randomly draws s

strategy-payoff pairs generated previously by some of his neighbors. If some of these s strategy-

payoff pairs are drawn from neighbors with the same type as individual i, individual i imitates the

strategy that gave the highest average payoff among these particular strategy-payoff pairs only. If

none of the strategy-payoff pairs drawn belong to an individual of the same type as i, individual

i only considers the strategies used, and plays best reply against the whole sample, in an A-Type

versus B-Type game. If an individual has more than one optimal strategy, we assume that he

chooses among them with equal probability.
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In period t+ 1, the relevant history of play corresponds to the most recent m periods. Denote

the finite history of length m by h = (xt−m+1, ..., xt). From this state the process just described

will move to a new state h′ = (xt−m+2, ..., xt+1) in period t+ 1. For each xj ∈ X, let pi(xj | h) be

the probability that individual i chooses strategy xj in state h. Given our assumptions, pi(xj | h)

is independent of time and pi(xj | h) > 0 if and only if: xj is a best reply of individual i when

he faces a neighbor; xj is the best reply to the sample drawn by individual i from some of his

neighbors’ most recent m strategy-payoff pairs, when individual i faces a stranger and when none

of his neighbors is of the same type as him; or xj is the strategy that gave the highest average

payoff in the sample drawn among his neighbors who share the same type, and individual i faces a

stranger.

If h′ is a successor of h and x is the right-most element of h′, the transition probability becomes

Pm,s(h′ | h) =
2n∏

i=1

pi(xi | h).

If h is not a successor of h′, Pm,s(h′ | h) = 0. Hence, we have defined a Markov process Pm,s

on the finite space of histories Z = Xm (where Xm =
2n∏

i=1

Xi). We refer to Pm,s as selection play

with memory m and sample size s.

Let us now consider a population that has the following struture (E������ 1):
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 A-Type
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One can verify that this population structure satisfies assumptions (I) to (III):

N1 = {1, 2, 3, 8} R1 = {1, 2, 3, 8} I1 = {1, 2, 3, 8} card(S1) = 4 card(I1) = 4

N2 = {1, 2} R2 = {1, 2} I2 = {1, 2} card(S2) = 6 card(I2) = 2

N3 = {1, 3, 4} R3 = {1, 3, 4} I3 = {1, 3, 4} card(S3) = 5 card(I3) = 3

N4 = {3, 4, 5, 7} R4 = {1, 3, 7} I4 = {3, 7} card(S4) = 4 card(I4) = 2

N5 = {5, 6} R5 = {4, 5, 6} I5 = {5, 6} card(S5) = 5 card(I5) = 2

N6 = {5, 6, 7} R6 = {5, 6, 7} I6 = {5, 6, 7} card(S6) = 5 card(I6) = 3

N7 = {4, 6, 7} R7 = {4, 6, 7, 8} I7 = {4, 6, 7} card(S7) = 4 card(I7) = 3

N8 = {1, 7, 8} R8 = {1, 8} I8 = {1, 8} card(S8) = 5 card(I8) = 1

The payoffs matrices are as follow:
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A B

A 10, 10 0, 9

B 9, 0 7, 7

A B

A 7, 7 9, 0

B 0, 9 10, 10

A B

A 10, 7 0, 0

B 9, 9 7, 10

A-Type versus A-Type B-Type versus B-Type A-Type versus B-Type

Assume that individuals are paired at random in such a way that individual 7 faces individual

8. That means that individual 8 plays the game according to the best reply rule whereas individual

7 selects his decision rule depending on the type of the neighbors from whom he samples.

Let m = 8 and s = 3. The state h could for example be as follow:

Ind 1 Ind 2 Ind 3 Ind 4 Ind 5 Ind 6 Ind 7 Ind 8

A-Type B-Type B-Type A-Type A-Type A-Type B-Type A-Type

t (A, 10) (A, 7) (B, 0) (A, 0) (A, 10) (A, 10) (A, 3) (B, 3)

t− 1 (A, 0) (B, 10) (B, 0) (A, 10) (A, 10) (B, 9) (A, 9) (B, 10)

t− 2 (B, 7) (B, 10) (B, 7) (B, 9) (A, 0) (A, 10) (A, 7) (B, 10)

t− 3 (A, 10) (B, 10) (B, 10) (A, 10) (B, 7) (A, 10) (B, 10) (A, 10)

t− 4 (B, 3) (A, 0) (A, 3) (A, 10) (B, 9) (A, 0) (A, 9) (A, 10)

t− 5 (A, 10) (A, 3) (A, 7) (B, 7) (A, 0) (B, 3) (B, 0) (B, 7)

t− 6 (B, 9) (B, 0) (B, 10) (A, 0) (A, 10) (A, 10) (B, 10) (A, 0)

t− 7 (B, 7) (B, 10) (B, 10) (A, 10) (B, 9) (A, 10) (B, 10) (A, 0)

Let the sample of individual 8 be the plays of individual 7 at time t − 1, t − 3 and t − 6,

represented by the sequence of strategies A, B and B. So individual 8 expected payoff is 10

3
if

he plays strategy A, and 23

3
if he plays strategy B. This implies that individual 8 will play B

next period. Now assume that individual 7 samples what individual 4 did at time t, and what
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individual 6 did at time t− 1 and t− 4. Individual 7 then observed the following strategy payoff-

pairs {(A, 0), (B, 9), (A, 0)}. Because individual 7 does not have the same type as individuals 4 and

6, he plays best reply against the sequence of strategies A, B and A, in the A-Type versus B-Type

game. This sequence of plays gives to individual 7 an expected payoff of 23
3
for playing A and 10

3

for playing B. Therefore, the successor of h has in its first row (corresponding to period (t + 1))

the strategy B in the eighth position and A in the seventh position. Suppose now that during the

same period individuals 4 and 5 were also matched together. Individual 4 samples from individual

5’s most recent plays, giving him a frequency of plays as follow: A, A, A. Since individuals 4 and 5

are of the same type, the best reply to this sample for individual 4 is A. Let the sample drawn by

individual 5 be the strategy-payoff pairs of individual 6 at time t− 5, t− 6 and t− 7. Individual 5

then observes the following: {(B, 3), (A, 10), (A, 10)}. Since both individuals are of the same type,

individual 5 plays by imitating the most successful strategy on average, which is A. Therefore, the

successor of h has in its first row the strategy A in the fourth and fifth positions.

According to Young [11], we also define the perturbed version of the process. In each period

and for each player i, there is a small probability ε > 0 that an individual disregards the decision

rule selection described above and just chooses his strategy at random from Xi. It is assumed

that the event that individual i experiments is independent of the event that another individual j

experiments. Experimentations or mistakes are also independent across periods. The introduction

of the experimentation probability makes the process ergodic: now Pm,s,ε(h′ | h) > 0 for all

h, h′ ∈ Z. We denote the perturbed process as Pm,s,ε and refer to it as the selection play with

memory m, sample size s and experimentation probability ε.
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3 Asymptotic behavior: what happens in the long run?

Following Young [11], we define a recurrent class as a set of states such that there is positive

probability of reaching any state in the class from any state outside, but zero probability of moving

outside the class from any state within the class. If the set of states is a singleton, the recurrent

class is called an absorbing state. We denote by hx a state of the form h = (x, ..., x) where x can

either be A or B, and refer to hx as a convention. Finally, let γ =
nB

nA+nB
be the proportion of

individuals of type B in the population where ni, i = A,B is the number of individuals of type i

such that nA + nB = 2n.

For γ = 0, Masson [6] showed that the unperturbed process we described in the last section con-

verges to a convention from any initial state. Then, when the process is perturbed by incorporating

a small probability of mistake, she also showed that, under certain conditions on the sample size,

the process selects the Pareto efficient state hA, that is, if s ∈

(
2

Int( a−c

a−b−c+d
)
, m
2

)
2 the stochastically

stable state is the efficient convention.3

We begin the study of the asymptotic behavior by examining the unperturbed process Pm,s.

We show next that, when the population is constituted of individuals of both types, no matter their

proportions, none of the conventions are stochastically stable. The following theorem shows that

the unperturbed version of the process converges to a convention independently of the initial state.

Theorem 1 For s ≤ m
2

a set of states is a recurrent class if and only if it is a convention.

Proof. It is obvious that a convention is a recurrent class of the unperturbed process Pm,s: if

the state is a convention, every sample includes only the same strategy, so no matter which decision

rule is used, each individual in the population plays the same strategy forever.

2Where Int(x) is x if x is an integer, and the integer part of x+ 1 if x is not an integer.
3Conversely, it can also be shown that process selects the efficient convention (B,B) when γ = 1.
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Fix s and m, such that s ≤ m
2
and m > 2. Let h(t) = (xt−m+1, ..., xt) be an arbitrary state

in period t � m. Consider Ii for a fixed i. There exists two cases: Ii is only composed by the

same type of individuals or Ii contains individuals from both types. Let us first assume we are in

the first case, and let’s assume without loss of generality that individuals in Ii are A-Type. Given

assumption (II) about the structure of the population, there is a positive probability that every

player in Ii meets a stranger from period t+1 to t+ s inclusive, and that they all draw the sample

composed of the most recent strategy-payoff pairs of player i.4 From period t + s + 1 to t + m

inclusive, there is a positive probability that every member of Ii meets a stranger again and sample

from i′s most recent plays. At the end of period t+m, every individual in Ii has the same history

of plays.5 In the case where Ii is composed with both types of individuals, let’s consider Ii(A) the

group of A-Type individuals who belong to Ii and Ii(B) the group of B-Type individuals who also

belong to Ii. Without loss of generality let’s consider only individuals from Ii(A). Using the above

argument, we can show that there is a positive probability that at the end of period t + m, all

individuals from Ii(A) face the same history of plays. Considering now the whole neighborhood Ii

and given assumption (II) about the structure of the population, there is a positive probability that

every player in Ii meets a stranger from period t+ 1 to t+ s inclusive and that they all draw the

sample composed of the most recent strategy-payoff pairs from one of Ii(A) individuals. This will

lead all individuals from Ii to play the same strategy the next period. This can be seen as follow: if

individuals from Ii(A) face an history of plays composed only by A [resp. B], individuals from Ii(B)

use strategy A [resp. B] for best response. By assumptions (I) and (III), some individuals j ∈ Ii

have their own Rj that contains individuals who do not belong to Ii, such that there exists some

k ∈ Rj satisfying Ii 
= Ik. Let O(Ii) be the set of these players. According to assumption (II), there

4Note that individual i also samples from himself.
5The strategy that is common to all individuals in Ii depends on i’s type. If i is A− type (resp. B − type), each

individual from Ii faces an history of plays of A (resp. B). Note also that payoffs may differ across individuals.
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exists a positive probability that each individual from each Ij, j ∈ O(Ii), and also each individual

from Ii\O(Ii) meets a stranger for the next m periods. There is also a positive probability that

individuals in Ii sample from individuals within Ii and that individuals in each Ij sample from j

for m periods. Then, m periods later, all individuals from Ii and all individuals in each Ij for all

j ∈ O(Ii) face the same history of play. Applying the same reasoning to those players k ∈ Ij that

have their own Rk including individuals l who do not belong to either to Ii or any of the Ijs, we

have shown that a convention has been reached. It follows that the only recurrent classes of the

unperturbed process are conventions.

Consider now the perturbed version of the process Pm,s,ε and let focus on the limiting distrib-

ution of this process when the probability of experimention tends to zero. By arguments similar to

Young [11], the perturbed process Pm,s,ε is a regular Markov chain and hence it has a unique station-

ary distribution µε that satisfies µεPm,s,ε = µε. Moreover, Young [11] proves that limε→0 µ
ε = µ0

exists and that µ0 is a stationary distribution of the unperturbed process Pm,s. From Foster and

Young [3] and Young [11], we say that a state h ∈ H is stochastically stable relative to the process

Pm,s if limε→0 µε(h) > 0. Let h′ be a successor of h and let x be the right-most element of h′. A

mistake in the transition h→ h′ is a component xi of x that either is not a best reply to a sample

drawn by an individual who used the best reply rule or it does not have the highest average payoff

in the sample drawn by an imitator. Denote by r(h, h′) the resistance for any two states h and

h′ as being the total number of mistakes involved in the transition h → h′ if h′ is a successor of

h; otherwise r(h, h′) = ∞. In the 2 × 2 symmetric coordination game with heterogeneous types

described in section 2, we can apply this procedure as follows. This game has only two absorbing

states: the A-convention and the B-convention. Consider a directed graph with one vertex for each

absorbing state. The directed edge hA → hB has weigh r(hA, hB) and corresponds to the resistance

of the tree rooted at hA. The stochastic potential ρ of the absorbing state hA is the minimum
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resistance of the tree rooted at hA. Similar concepts apply to the tree rooted at hB. The following

theorem states which conventions can be observed asymptotically when the probability of mistake

in the perturbed process vanishes.

Theorem 2 The stochastically stable states of Pm,s,ε are the conventions with minimum stochastic

potential.

Proof. This follows from Theorem 1 and Theorem 4 in Young [11].

We can now present the main results of this paper.

Theorem 3 If there exists at least one Ii that contains at most one A-Type [resp. B-Type] indi-

vidual, the stochastically stable equilibrium is the convention hB [resp. hA].

Proof. Let us first consider the case where we move from hB to hA. The whole population

plays B. Consider Ii, where i is an A-type individual. In this case, whether this A-type individual

is matched with a stranger or a neighbor, he plays using the best reply rule. Let Int(x) be x if

x is an integer, and the integer part of x + 1 if x is not an integer. In period t, there exists a

positive probability that this A-type individual is matched with one of his B-type neighbors for

Int( d−b
a−c−b+d

)s periods, and that the B-type individual makes the mistake of playing A instead of B

during these Int( d−b
a−c−b+d

)s periods. Then, there is a positive probability that these two individuals

are matched together again for s periods, and that the A-type individual always samples the same

plays from this B-type individual and therefore plays A. Given assumption (II), there is a positive

probability that all individuals in Ii face a stranger for the next m periods and sample from the

A-type individual most recent plays. Since these individuals are B-type, their best response to

strategy A in a A-type versus B-type game is to play A also. At the end of these m periods, all

individuals in Ii face a history of plays composed uniquely by the strategy A. By assumptions

(I) and (III), some individuals k from Ii have their own Rk that contains individuals who do not
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belong to Ii, such that there exists some l ∈ Rk satisfying Ii 
= Ik.With positive probability, all

individuals from Ik face strangers in period t+m+1 and sample the s most recent strategy-payoff

pairs from the individual who also belongs to Ii. Applying the same reasoning as the one used for

Ii, we can see that after m periods, all individuals who belong to Ik have the same history of play.

Considering now individuals from Ik that connect to other neighborhoods other than Ii and Ik,

and applying the same argument, we can see that hA is reached by only Int(
d−b

a−c−b+d
)s mistakes.

Let now consider the case where the system moves in the opposite direction, i.e hA −→ hB.

Consider Ii as above, where i is an A-type individual. There is a positive probability that the A-

type individual is matched with one of his neighbors, who makes the mistake of playing B instead

of A for Int( a−c
a−c−b+d

)s periods. Then, there is a positive probability that these two individuals

are matched again for m periods and that the A-type individual plays best response against the

same sample, drawn from the B-type individual, that contains Int( a−c
a−c−b+d

)s times the strategy

B. Using assumption (II) on the structure of the population, there is a positive probability that

all individuals from Ii meet strangers for the next m periods. Following the same reasoning as the

one developed for the case where we move from hB to hA, we can see that hB has been reached

only by Int( a−c
a−c−b+d

)s mistakes. Therefore, the stochastically stable equilibrium is the convention

hB.

Theorem 3 says that the presence of an individual of one type in a neighborhood belonging to

a population of the other type is not enough to move the equilibrium in his favor. The same result

holds even when there are more than one such individual, as long as they are located in separated

neighborhoods. Theorem 4 states the conditions under which agents from a minority type can

influence the selection of their preferred equilibrium. In particular, the minimum requirement is to

have a couple of individuals from the minority type leaving together in one neighborhood. However,

as shown below, their success is limited to the imposition of their preferred equilibrium only half
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of the time.

Theorem 4 If there exists at least one Ii that contains at least two A-type individuals and at least

one Ij that contains at least two B-type individuals, the limiting distribution puts equal probability

on both conventions hA and hB.

Proof. Let us first consider the case hB → hA. Consider Ii where there is at least two A-type

individuals. There exists a positive probability that in period t, two of these A-type individuals

face each other and simultaneously make the mistake of playing A instead of B, yielding the highest

possible payoff of a. There is also a positive probability that these two individuals face strangers

for the next s periods, and sample from each other. Considering assumption (II), with positive

probability, every individual in Ii can face a stranger from period t+ s+1 to t+ s+m and sample

from the s most recent strategy-payoff pairs of one of these two A-type individuals. This means

that at the end of period t + s + m, all individuals in Ii face a history composed uniquely by

As. This comes from the fact that the only samples drawn by individuals in Ii are constituted by

strategy A. So if we consider an A-type individual in Ii, he imitates the only available strategy,

that is A. And if we consider a B-type individual in Ii, he plays a best response to A in an A-type

versus B-type game, which is A. Using assumptions (I) and (III), some individuals k from Ii have

their own Rk that contains individuals who do not belong to Ii, such that there exists some l ∈ Rk

satisfying Ii 
= Ik.By assumption (II), there is a positive probability that all individuals from Ik

face strangers for the next m periods and sample the s most recent strategy-payoff pairs from one

of the individuals, possibly the only one, who also belong to Ii. Applying the same reasoning as

the one for Ii to all Ik while using assumptions (II) and (III), we can see that after m periods, all

individuals who belong to Ik have the same history of plays. Considering now individuals from Ik

that connect to other neighborhoods other than Ii and Ik, and applying the same argument, we

can see that hA is reached by only 2 mistakes.
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Consider now the case where we go from hA to hB. Everybody plays A. Consider Ii where there

is at least two B-type individuals. There exists a positive probability that in period t, two of these

B-type individuals face each other and simultaneously make the mistake of playing B instead of A,

yielding the highest possible payoff of d. Following the same argument as the one developed for the

case hB → hA, one can see that the convention hB has been reached in only two mistakes, letting

thus the selection of a convention undetermined.

The previous theorems show that the selection of a convention is dependent on the distribution of

types in the population. In particular, if there is only one individual of a given type per ’symmetric’

neighborhood, the system will converge to the convention that is preferred by the type which is the

majority. In the more general case where we can find at least one neighborhood that contains two

individuals of one type, and another neighborhood, possibly the same, that contains two individuals

of the other type, the system spends half of the time in each equilibria.

4 Concluding Remarks

In this paper, it has been shown that heterogeneity of types among individuals may lead to both

conventions to exist in the limit. The minimum condition required for this result is the presence of

two neighbors from the minority type. In the terminology of Myatt andWallace [8], the introduction

of a ‘bad apple’ — in our case, an agent of the other type — is not enough to move the system to the

new agent’s preferred equilibrium. On the other hand, a minority of agents can still be capable of

influencing the equilibrium selection, no matter their proportion in the whole population, as long

as two of them belong to the same neighborhood.

It would be interesting to extend this line of research by allowing individuals to create and to

severe links. In this context, we may see the emergence of seggregated neighborhoods, in the spirit

of Schelling [9].
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