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1 Introduction

Iterated strict dominance is perhaps one of the most basic principles in game

theory. The concept of iterated strict dominance rests on the following sim-

ple idea: no player would play strategies for which some alternative strategy

can yield him/her a greater payo¤ regardless of what the other players play

and this fact is common knowledge. This concept has been used to expound

the fundamental con�ict between individual and collective rationality as il-

lustrated by the Prisoner�s Dilemma, and is closely related to the global sta-

bility of the Cournot-tatonnement process in terms of dominance solvability

of games (cf. Moulin 1984; Milgrom and Roberts 1990). In particular, it has

fruitful applications in Carlsson and van Damme�s (1993) global games (see

Morris and Shin 2003 for a survey).

A variety of elimination procedures has been studied by game theorists.1

Among the most interesting questions that have been explored are: Does

the order of elimination matter? Is it possible that the iterated elimination

process fails to converge to a maximal reduction of a game? What are the

su¢ cient conditions for existence and uniqueness of maximal reduction? Can

a maximal reduction generate spurious Nash equilibria?

In the most general setting (where the number of players can be in�nite,

strategy sets can be in general topological spaces, and payo¤ functions can

be discontinuous) Dufwenberg and Stegeman (2002) (henceforth DS) investi-

gated the properties of a de�nition of iterated elimination of (strictly) dom-

inated strategies (IESDS). Among others, DS demonstrated that (i) IESDS

is in general an order dependent procedure, (ii) a maximal reduction may

fail to exist, and (iii) IESDS can generate spurious Nash equilibria even

1See in particular Moulin (1984), Gilboa, Kalai, and Zemel (1990), Stegeman (1990),
Milgrom and Roberts (1990), Borgers (1993), Lipman (1994), Osborne and Rubinstein
(1994), among others. (See also Jackson (1992) and Marx and Swinkels (1997) for iterated
weak dominance.)
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in �dominance-solvable� games.2 As DS pointed out, these anomalies and

pathologies appear to be rather surprising and somewhat counterintuitive.

DS (2002, p. 2022) concluded that:

The proper de�nition and role of iterated strict dominance is unclear

for games that are not compact and continuous. ... The identi�cation

of general classes of games for which IESDS is an attractive procedure,

outside of the compact and continuous class, remains an open problem.

The main purpose of this paper is to o¤er a de�nition of IESDS that is

suitable for all games, possibly with an arbitrary number of players, arbitrary

strategy sets, and arbitrary payo¤ functions. This de�nition of IESDS will

be denoted by IESDS� (the asterisk � is used to distinguish it from other

forms of IESDS). We will show that IESDS� is a well-de�ned order indepen-

dent procedure: it yields a unique maximal reduction (see Theorem 1). This

nice property is completely topology-free. For games that are compact and

continuous, our IESDS� yields the same maximal reduction as DS�s de�nition

of IESDS (see Theorem 2). We also provide a characterization of IESDS� in

terms of a �stability�criterion (see Theorem 3).

The IESDS� proposed in this paper is based mainly upon Milgrom and

Roberts�(1990, pp. 1264-1265) de�nition of IESDS in a general class of su-

permodular games,3 and has two major features: (1) IESDS� allows for an

uncountable number of rounds of elimination, and is thus more general than

DS�s IESDS procedure, and (2) in each round of elimination, IESDS� allows

2DS also provided su¢ cient conditions for positive results. In particular, if strategy
spaces are compact Hausdor¤ spaces and payo¤ functions are continuous, then DS�s de�-
nition of IESDS yields a unique maximal reduction.

3Ritzberger (2002, Section 5.1) considered a similar de�nition of IESDS for compact
and continuous games that allows for eliminating strategies that are dominated by an
uneliminated or eliminated strategy. We are grateful to Prof. Dufwenberg for drawing our
attention to this. (See also Brandenburger, Friedenberg, and Keisler�s (2004) an analogous
De�nition 3.3 which allows for dominance by mixed strategy.)

3



for eliminating dominated strategies (possibly by using strategies that have

previously been eliminated), rather than eliminating only those strategies

that are dominated by some uneliminated strategy. These two features en-

dow the IESDS� procedure with greater elimination power than DS�s IESDS

procedure.

The rationale behind the two features of IESDS� is as follows. Recall

that a prominent justi�cation for IESDS is �common knowledge of rational-

ity�; see, e.g., Bernheim (1984), Osborne and Rubinstein (1994, Chapter 4),

Pearce (1984), and Tan and Werlang (1988). While the equivalence between

IESDS and the strategic implication of �common knowledge of rationality�

has been established for games with compact strategy spaces and continuous

payo¤ functions (see Bernheim 1984, Proposition 3.1), Lipman (1994) demon-

strated that, for a more general class of games, there is a non-equivalence be-

tween countably in�nite iterated elimination of never-best replies and �com-

mon knowledge of rationality�. In particular, he showed that the equiva-

lence can be restored by �removing never best replies as often as necessary�

(p. 122), i.e., by allowing for an uncountably in�nite iterated elimination of

never-best replies (see Lipman 1994, Theorem 2). Therefore, it seems fairly

natural and desirable to de�ne IESDS for general games by allowing for an

uncountably in�nite iterated elimination. Example 1 in Section 2 shows that

IESDS� requires an uncountably in�nite number of rounds to converge to a

maximal reduction.

The second feature of IESDS� is in the same spirit as Milgrom and Roberts�

(1990, pp. 1264-1265) de�nition of IESDS.4 That is, in each round of elimina-

4Formally, given any product subset bS of strategy pro�les, Milgrom and Roberts (1990,
p. 1265) de�ned the set of player i�s undominated responses to bS as including strategies
of i that are undominated by not only uneliminated strategies, but also by previously
eliminated strategies. From the viewpoint of learning theory, the second feature of IESDS�

can be �justi�ed� by Milgrom and Roberts� (1990, p. 1269) adaptive learning process,
where each player will never play a strategy for which there is another strategy, from the
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tion, IESDS� allows for eliminating dominated strategies, rather than elimi-

nating only those strategies that are dominated by some uneliminated strategy

in that round. For games where strategy spaces are compact and payo¤ func-

tions are uppersemicontinuous in own strategies, this feature does not imply

giving IESDS� more elimination power than DS�s IESDS procedure, because

it can be shown that, in this class of games, for any dominated strategy, there

is some remaining uneliminated strategy that dominates it (see DS�s Lemma,

p. 2012).5 However, for more general games, the second feature of IESDS�

gives it more elimination power than DS�s IESDS procedure.

To see this, consider a simple one-person game where the strategy space

is (0; 1) and the payo¤ function is u (x) = x for every strategy x. (This game

is also described in DS�s Example 5, p. 2011.) Clearly, every strategy is a

never-best reply and is dominated only by a dominated strategy. Eliminate

in round one all strategies except a particular strategy x in (0; 1). Under DS�s

IESDS procedure, x survives DS�s IESDS and is thus a �spurious Nash equi-

librium.�Under our IESDS�, in round two, x is further eliminated, and thus

our maximal reduction yields an empty set of strategies, indicating (correctly)

that the game has no Nash equilibrium. This makes sense since x cannot be

justi�ed as a best reply (and hence cannot be justi�ed by any higher order

knowledge of �rationality�). Consequently, this example shows that eliminat-

ing dominated strategies, rather than eliminating only those strategies that

are dominated by some uneliminated strategy or by some undominated strat-

egy, is a very natural and desirable requirement for a de�nition of IESDS in

general games; see also our Example 2 in Section 2.

We also study the relationship between Nash equilibria and IESDS�. Ex-

player�s strategy space, that would have done better against every combination of the
other players�strategies in the recent past plays.

5Chen and Luo (2003, Lemma 5) showed a similar result. Milgrom and Roberts (1996,
Lemma 1, p. 117) proved an analogous result which allows for dominance by mixed
strategy.
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ample 4 in Section 3 demonstrates that, even with its strong elimination

power, our IESDS� might generate spurious Nash equilibria. In particular,

the game in Example 4 is in the class of Reny�s (1999) better-reply secure

games, which have regular properties such as compact and convex strategy

spaces, as well as quasi-concave and bounded payo¤ functions. We do obtain

positive results: if the best replies are well de�ned, then no spurious Nash

equilibria appear under IESDS�. In particular, no spurious Nash equilibria

appear in one-person or �dominance solvable�games (see Theorem 4). More-

over, no spurious Nash equilibria appear in many games that arise in economic

applications (see Corollary 4).

The remainder of this paper is organized as follows. Section 2 o¤ers the

de�nition of IESDS� and investigates its properties. Section 3 studies the

relationship between IESDS� and Nash equilibria. Section 4 o¤ers some con-

cluding remarks. To facilitate reading, all the proofs are relegated to the

Appendix.

2 IESDS�

Throughout this paper, we consider a strategic game G �
�
N; fXigi2N ; fuigi2N

�
,

where N is an arbitrary set of players, for each i 2 N , Xi is an arbitrary set

of player i�s strategies, and ui : Xi�X�i ! < is i�s arbitrary payo¤ function.
X � �i2NXi is the joint strategy set. A strategy pro�le x� 2 X is said to be

a Nash equilibrium if for every i, x�i maximizes ui(:; x
�
�i).

A strategy xi 2 Xi is said to be dominated given Y � X if for some

strategy x0i 2 Xi,6 ui(x0i; y�i) > ui(xi; y�i) for all y�i 2 Y�i, where Y�i � fy�ij
6In the literature, especially in the case of �nite games, a dominated (pure) strategy

is normally de�ned by the existence of a mixed strategy that generates a higher expected
payo¤against any strategy pro�le of the opponents. In this paper, we follow DS in de�ning,
rather conservatively, a dominated (pure) strategy by the existence of a (pure) strategy
that generates a higher payo¤ against any strategy pro�le of the opponents. The two
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(yi; y�i) 2 Y g.

The following example illustrates that for some games, our IESDS� (a

formal de�nition of which will be given below) yields a maximal reduction

containing all Nash equilibria (in this case, a singleton) only after an uncount-

ably in�nite number of rounds. (This is unlike Lipman�s (1994) Example and

DS�s Examples 3 and 6, which can be remedied to yield a maximal reduc-

tion by performing a second countable elimination after a �rst countable

elimination.)

Example 1. Consider a two-person symmetric game: G �
�
N; fXigi2N ; fuigi2N

�
,

where N = f1; 2g; X1 = X2 = [0; 1]; and for all xi; xj 2 [0; 1], i; j = 1; 2, and
i 6= j

ui(xi; xj) =

8<:
1, if xi = 1
2, if xi � xj and xi 6= 1
0, if xi � xj or xi = xj 6= 1

,

where 4 is a linear order on [0; 1] satisfying (i) 1 is the greatest element; and
(ii) [0; 1] is well ordered by the linear order 4.7

In this example only the least element r0 in [0; 1] (w.r.t. 4) is strictly
dominated by 1. After eliminating r0 from [0; 1], only the least element r1 in

[0; 1]n fr0g is strictly dominated by 1 given [0; 1]n fr0g. It is easy to see that
every strategy is eliminated whenever every smaller strategy is eliminated

and only one element in [0; 1] is eliminated at each round. Thus, IESDS�

de�nitions of dominance are equivalent for games where strategy spaces are convex; for
instance, mixed extensions of �nite games. Borgers (1993) provided an interesting justi-
�cation for �pure strategy dominance�by viewing players�payo¤ functions as preference
orderings over the pure strategy outcomes of the game.

7A linear order is a complete, re�exive, transitive, and antisymmetric binary relation.
A set is said to be well ordered by a linear order if each of its nonempty subsets has a least
or �rst element. By the well-ordering principle � i.e., every nonempty set can be well
ordered (see, e.g., Aliprantis and Border 1999, Section 1.12), [0; 1) can be well ordered by a
linear order .. The desired linear order 4 on [0; 1] can be de�ned as: for any r; r0 2 [0; 1),
r � 1; 1 4 1; and r 4 r0 i¤ r . r0.
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leads to a unique uncountable elimination, which leaves only the greatest

element 1 for each player.8

Let us proceed to a formal de�nition of our IESDS�. For any subsets

Y; Y 0 � X where Y 0 � Y , we use the notation Y ! Y 0 (read: Y is reduced

to Y 0) to signify that for any y 2 Y nY 0, some yi is dominated given Y . Let
�0 denote the �rst element in an ordinal �, and let �+1 denote the successor

to � in �.9

De�nition. An iterated elimination of strictly dominated strategies (IESDS �)

is de�ned as a (�nite, countably in�nite, or uncountably in�nite) familyn
D�
o
�2�

such that D�0 = X, D� ! D�+1, and D � \�2�D
� ! D0 only for

D0 = D. The set D is called a �maximal reduction.�

The above de�nition of IESDS� does not require the elimination of all

dominated strategies in each round of elimination. That is, we do not require

that for every �, D�+1 = D�n
n
y 2 D� j 9i s.t. yi is dominated given D

�
o
.

This �exibility raises an important question: does the IESDS� procedure

yield a unique maximal reduction? Without imposing any topological con-

dition on the games, we show that IESDS� is always a well-de�ned order

independent procedure and D is nonempty if a Nash equilibrium exists. For-
mally, we have:

Theorem 1 D uniquely exists. Moreover, D is nonempty if the game G has
a Nash equilibrium.

8Example 1 also illustrates that DS�s IESDS procedure may fail to yield a maximal
reduction. DS�s Theorem 1 on existence and uniqueness of maximal reduction relies on
the game G being a compact and continuous game, which is not the case in our example
(because it is impossible to �nd a topology on [0; 1] such that G is a compact and continuous
game).

9An ordinal is a well-ordered set in the order-isomorphic sense (see, e.g., Suppes 1972,
p. 129).
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An immediate corollary of the proof of Theorem 1 is as follows:

Corollary 1. Every Nash equilibrium survives both IESDS � and DS�s IESDS

procedures.

In contrast to DS�s IESDS, our IESDS� does not require that, in each

round of elimination, the dominator of an eliminated strategy be some une-

liminated strategy. However, the following result asserts that, for the class of

games where strategy spaces are compact (Hausdor¤) and payo¤ functions

are uppersemicontinuous in own strategies, any maximal reduction of G using
DS�s IESDS procedure yields a joint strategy set identical to our D. Thus,
our IESDS� extends DS�s IESDS to arbitrary games. Let H denote a max-

imal reduction of G in the DS sense, i.e., a set of strategy pro�les resulting
from using DS�s IESDS procedure. Formally, we have:

Theorem 2 For any compact and own-uppersemicontinuous game, H = D
if H exists. Moreover, for any compact (Hausdor¤ ) and continuous game,

H = D.

The following example demonstrates that outside the class of compact and

own-uppersemicontinuous games, D could be very di¤erent from a unique H
that results from a well-de�ned �fast�IESDS procedure in the DS sense.

Example 2. Consider a two-person symmetric game: G =
�
N; fXigi2N ; fuigi2N

�
,

where N = f1; 2g, X1 = X2 = [0; 1], and for all xi; xj 2 [0; 1], i; j = 1; 2, and
i 6= j (cf. Fig. 1)

ui(xi; xj) =

8<:
xi, if xi < 1

2
or xj = 1

2
1
2
min fxi; xjg, if xi � 1

2
and xj > 1

2

0, if xi � 1
2
and xj < 1

2

.
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xj

1/2

1/2

1

1

xi

xi

xj /2

xi /2

0

xi

Fig. 1. Payo¤ function ui(xi; xj).

In this game it is easy to see that any strategy xi in [0; 1=2) is dominated

by yi = 1
4
+ xi

2
> xi for xi < 1

2
. After eliminating all these dominated

strategies, 1=2 is dominated by 1 since (i) ui(1; 1=2) = 1 > 1=2 = ui(1=2; 1=2)

if xj = 1=2, and (ii) ui(1; xj) = xj=2 > 1=4 = ui(1=2; xj) if xj > 1=2. After

eliminating the strategy 1=2, no xi 2 (1=2; 1] is strictly dominated by some
strategy x0i 2 (1=2; 1], because in the joint strategy set (1=2; 1] � (1=2; 1],
setting xj = xi, we have ui(xi; xj) = xi � ui(x

0
i; xj) for all x

0
i 2 (1=2; 1].

Thus, H � (1=2; 1]� (1=2; 1] is a unique maximal reduction under the �fast�
IESDS procedure in the DS sense.

However, any xi 2 (1=2; 1) is dominated by the previously eliminated
strategy yi = (1 + xi)=4 2 [0; 1=2) since, for all xj 2 (1=2; 1], ui(xi; xj) �
xi=2 < (1 + xi)=4 = ui(yi; xj). Thus, D = f(1; 1)g 6= H. In fact, (1; 1) is the
unique Nash Equilibrium, which could also be obtained with the �iterated
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elimination of never-best replies� (cf., e.g., Bernheim 1984; Lipman 1994).

In this game, the payo¤ function ui (:; xj) is not uppersemicontinuous since

lim supxi"1=2 ui (xi; xj) = 1=2 > 0 = ui (1=2; xj) for all xj < 1=2.

We end this section by providing a characterization of IESDS� by means

of a �stability� criterion. A subset K � X is said to be a stable set if

K = fx 2 Xj xi is not dominated given Kg; cf. Luo (2001, De�nition 3).

Theorem 3 D is the largest stable set.

The following result is an immediate corollary of Theorem 3.

Corollary 2. Given a game G, DS�s IESDS is order independent if every
H is a stable set.

Corollary 2 does not require the game G to have compact strategy sets
or uppersemicontinuous payo¤ functions. Of course, if strategy spaces are

compact (Hausdor¤) and payo¤ functions are uppersemicontinuous in own

strategies, then by DS�s Lemma, every dominated strategy has an undomi-

nated dominator. Under these conditions, every DS�s maximal reduction H
is a stable set. Corollary 2 therefore generalizes DS�s Theorem 1(a). The

following example illustrates this point.

Example 3. Consider a two-person game: G =
�
N; fXigi2N ; fuigi2N

�
, where

N = f1; 2g, X1 = X2 = [0; 1], and for all x1; x2 2 [0; 1], u1(x1; x2) = x1 and

u2(x1; x2) =

8<:
x2, if x2 < 1
1, if x1 = 1 and x2 = 1
0, if x1 < 1 and x2 = 1

.

In this example it is easy to see that f(1; 1)g is the unique maximal reduc-
tion under DS�s IESDS procedure, and that it is a stable set. Thus, DS�s

IESDS procedure is order independent in this game. However, u2 (x1; :) is
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not uppersemicontinuous in x2 at x2 = 1 if x1 6= 1 and hence DS�s Theorem
1(a) does not apply.

Gilboa, Kalai, and Zemel (1990) (GKZ) considered a variety of elimina-

tion procedures. GKZ�s de�nition of IESDS requires that in each round of

elimination, any eliminated strategy is dominated by a strategy which is not

eliminated in that round of elimination (see DS 2002, pp. 2018-2019). An

immediate corollary of Theorems 1 and 3 is as follows.

Corollary 3. (i) GKZ�s IESDS procedure is order independent if every

maximal reduction under GKZ�s IESDS procedure is a stable set. (ii) In

particular, for any compact and own-uppersemicontinuous game, both GKZ�s

IESDS procedure and our IESDS � procedure yield the same D.

3 IESDS� and Nash Equilibrium

As Nash (1950, p. 292) pointed out, �no equilibrium point can involve a

dominated strategy�. Nash equilibrium is clearly related to the notion of

dominance. In this section we study the relationship between Nash equilib-

rium and IESDS�.

We have shown in Corollary 1 that every Nash equilibrium survives

IESDS� and hence remains a Nash equilibrium in the reduced game after

the iterated elimination procedure. The converse is not true in general. DS

showed by examples (see their Examples 1, 4, 5, and 8) that their IESDS

procedure can generate spurious Nash equilibria. Since our IESDS� has more

elimination power, it can be easily veri�ed that if we apply our IESDS� to

DS�s examples, there are no spurious Nash equilibria. Despite this happy

outcome, the following example shows that IESDS� might generate spurious

Nash equilibria.

Example 4. Consider a two-person symmetric game: G �
�
N; fXigi2N ; fuigi2N

�
,

where N = f1; 2g, X1 = X2 = [0; 1], and for all xi; xj 2 [0; 1], i; j = 1; 2, and

12



i 6= j (cf. Fig. 2)

ui(xi; xj) =

8<:
1, if xi 2 [1=2; 1] and xj 2 [1=2; 1]
1 + xi, if xi 2 [0; 1=2) and xj 2 (2=3; 5=6)
xi, otherwise

.

xj

1/2

1/2

1

1

1+xi

xi

xi

1

xi

2/3

5/6

.

.

Fig. 2. Payo¤ function ui (xi; xj).

It is easily veri�ed that D = [1=2; 1]� [1=2; 1] since any yi 2 [0; 1=2) is domi-
nated. That is, IESDS� leaves the reduced game GjD �

�
N; fDigi2N ; fuijDgi2N

�
that cannot be further reduced, where uijD is the payo¤ function ui restricted
on D. Clearly, D is the set of Nash equilibria in the reduced game GjD since
uijD is a constant function. However, it is easy to see that the set of Nash
equilibria in game G is fx 2 Dj x1; x2 =2 (2=3; 5=6)g. Thus, IESDS� generates
spurious Nash equilibria x 2 D where some xi 2 (2=3; 5=6).

13



Remark. Example 4 belongs to Reny�s (1999) class of games for which a

Nash equilibrium exists (in this class of games, the player set is �nite, the

strategy sets are compact and convex, payo¤ functions are quasi-concave in

own strategies, and a condition called �better-reply security�holds). To see

that game G in Example 4 belongs to Reny�s class of games, let us check the
better-reply secure property. Recall that better-reply security means that �for

every non equilibrium strategy x� and every payo¤ vector limit u� resulting

from strategies approaching x�, some player i has a strategy yielding a payo¤

strictly above u�i even if the others deviate slightly from x� (Reny 1999, p.

1030)�. Let � > 0 be su¢ ciently small. We consider the following two cases:

(1) If x� =2 D, then some x�i < 1=2. Thus, i can secure payo¤ x�i + � > u�i =
x�i (if x

�
j =2 (2=3; 5=6)) or x�i + 1 + � > u�i = x�i + 1 (if x�j 2 (2=3; 5=6))

by choosing a strategy x�i + �.

(2) If x� 2 D, then some x�i 2 (2=3; 5=6) and x�j � 1=2. We distinguish

two subcases: (2.1) x�j > 1=2. As x
�
i lies in an open interval (2=3; 5=6),

j can secure payo¤ 1 + xj > 1 by choosing a strategy xj 2 (0; 1=2).
(2.2) x�j = 1=2. In this subcase, the limiting vector u� depends on

how x approaches x�. We must distinguish two subsubcases. (2.2.1)

u� = (1; 1). Similarly to (2.1), j can secure payo¤ 1 + xj > 1 by

choosing a strategy xj 2 (0; 1=2). (2.2.2) The limiting payo¤ vector is
u� = (x�i ; 3=2) even though the actual payo¤ vector at x

� 2 D is (1; 1):
Thus, i can secure payo¤x�i +� > u

�
i = x

�
i by choosing a strategy x

�
i +�,

since for any xj that deviates slightly from 1=2,

ui (x
�
i + �; xj) =

�
x�i + �, if xj < 1=2
1, if xj � 1=2

.

Moreover, the player set is �nite, strategy set Xi = [0; 1] is compact and

convex, and payo¤ function ui(�; xj) is quasi-concave and bounded. This
example shows that IESDS� might generate spurious Nash equilibria in the

class of Reny�s better-reply secure games.

14



We next provide su¢ cient conditions under which IESDS� preserves the

set of Nash equilibria. Consider a game G �
�
N; fXigi2N ; fuigi2N

�
. We

say that G has �well-de�ned best replies� if for every i 2 N and for every

x�i 2 X�i, there exists xi 2 Xi that maximizes ui (:; x�i). We say that G
is �dominance-solvable�if IESDS� leads to a unique strategy choice for each

player.10 The following Theorem 4 asserts that (i) IESDS� cannot generate

spurious Nash equilibria if the game has well-de�ned best replies, and that

(ii) for one-person games and for dominance-solvable games, the set of Nash

equilibria is identical to the set D generated by our IESDS�. Formally, let

NE denote the set of Nash equilibria in G, and let NEjD denote the set of
Nash equilibria in the reduced game GjD �

�
N; fDigi2N ; fuijDgi2N

�
, where

uijD is the payo¤ function ui restricted on D. We can then state:

Theorem 4 (i) If G has well-de�ned best replies, then NE = NEjD. (ii) If
G is a one-person or dominance-solvable game, then NE = D.

Remark. Theorem 4(i) is true also for DS�s IESDS procedure (see DS 2002,

Theorem 2). However, Theorem 4(ii) is not true for DS�s IESDS procedure.

To see this, consider again the one-person game in the Introduction. Clearly,

no Nash equilibrium exists in the example. Because any strategy x 2 (0; 1)
can survive DS�s IESDS procedure, H = fxg 6= NE . This one-person game
also demonstrates in the simplest manner that DS�s IESDS procedure can

generate spurious Nash equilibria.

Many important economic applications such as the Cournot game are

dominance-solvable. As DS�s Examples 3 and 8 illustrate, their IESDS pro-

cedure may fail to yield a maximal reduction and may produce spurious Nash

equilibria in the Cournot game. By our Theorem 4, the set of Nash equilibria

can be solved by our IESDS� in the class of dominance-solvable games. The

following example, taken from DS�s Example 3, illustrates this point.
10For example, the standard Cournot game (Moulin, 1984), Bertrand oligopoly with

di¤erentiated products, the arms-race games (Milgrom and Roberts, 1990), and global
games (Carlsson and van Damme, 1993).
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Example 5 (Cournot competition with outside wager). Consider a three-

person game G �
�
N; fXigi2N ; fuigi2N

�
, where N = f1; 2; 3g, X1 = X2 =

[0; 1], X3 = f�; �g, and for all x1; x2; and x3, u1(x1; x2; x3) = x1(1�x1�x2),
u2(x1; x2; x3) = x2(1� x1 � x2), and�

u3(x1; x2; �) > u3(x1; x2; �), if (x1; x2) = (1=3; 1=3)
u3(x1; x2; �) < u3(x1; x2; �), otherwise

.

This game is dominance-solvable since our IESDS� yields (1=3; 1=3; �), which

is the unique Nash equilibrium. By contrast, DS�s IESDS procedure fails to

give a maximal reduction since no countable sequence of elimination can

eliminate the strategy � for player 3.

We close this section by listing the �preserving Nash equilibria�results for

our IESDS� in some classes of games commonly discussed in the literature.

These results follow immediately from Theorem 4(i).

Corollary 4. D preserves the (nonempty) set of Nash equilibria in the

following classes of games G �
�
N; fXigi2N ; fuigi2N

�
:

(i) (Debreu 1952; Fan 1966; Glicksberg 1952). Xi is a nonempty,

convex, and compact Hausdor¤ topological vector space; ui is quasi-

concave on Xi and continuous on Xi �X�i.

(ii) (Dasgupta and Maskin 1986). N is a �nite set; Xi is a nonempty,

convex, and compact space in a �nite-dimensional Euclidian space; ui
is quasi-concave on Xi, uppersemicontinuous on Xi �X�i, and graph

continuous.

(iii) (Topkis 1979; Vives 1990; Milgrom and Roberts 1990). G is a
supermodular game such that Xi is a complete lattice; and ui is order

upper-semi-continuous on Xi and is bounded above.
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4 Concluding Remarks

We have presented a new notion of IESDS for general games, denoted by

IESDS� and re�ecting common knowledge of rationality. We show that

IESDS� is always a well-de�ned order independent procedure, and that it

can be used to identify Nash equilibrium in dominance-solvable games; e.g.,

the Cournot competition, Bertrand oligopoly with di¤erentiated products,

and the arms-race games. Many game theorists do not recommend iterated

elimination of weakly dominated strategies (IEWDS) as a solution concept,

and one important reason is that order matters for that procedure in some

games (see, e.g., Marx and Swinkels 1997). This criticism cannot be applied

to our IESDS�. As our IESDS� and DS�s IESDS procedure lead to the same

maximal reduction for the compact and continuous class of games, IESDS�

can be viewed as an alternative to DS�s IESDS procedure for games that

are not compact and own-uppersemicontinuous. We have also characterized

IESDS� as the largest stable set. This characterization suggests an interesting

alternative de�nition of IESDS�.

While every Nash equilibrium survives IESDS�, we have demonstrated

by Example 4 that IESDS� might generate spurious Nash equilibria. One

remarkable feature of this example is that strategies eliminated by IESDS�

are dominated by no strategy surviving IESDS� (and thus IESDS� creates

spurious Nash equilibria in the reduced game). The creation of spurious

Nash equilibria by IESDS seems to be an inherent and inevitable attribute

of games that are not compact and own-uppersemicontinuous. The game in

Example 4 belongs to Reny�s (1999) class of games for the existence of a

Nash equilibrium. Similarly to DS (2002, Theorem 2), we have shown that

under IESDS�, the well-de�ned best replies property is su¢ cient to ensure

the non-existence of spurious Nash equilibria. In particular, IESDS� never

generates spurious Nash equilibria in dominance-solvable games. We have

also pointed out that for many classes of games commonly discussed in the

literature, IESDS� preserves Nash equilibria.
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Appendix: Proofs

Theorem 1. D uniquely exists. Moreover, D is nonempty if the game G has
a Nash equilibrium.
To prove Theorem 1, we need the following two lemmas:

Lemma 1 For every x 2 D and every i, xi is not dominated given D.

Proof. Assume, in negation, that for some y 2 D and some i, yi is dominated
given D. Thus, D ! Dnfyg 6= D, which is a contradiction.

Lemma 2 For any Y � Y 0, a strategy is dominated given Y if it is domi-
nated given Y 0.

Proof. Let yi be a strategy that is dominated given Y 0. That is, ui(xi; y�i) >
ui(yi; y�i) for some xi 2 Xi and all y�i 2 Y 0�i. Since Y � Y 0, ui(xi; y�i) >
ui(yi; y�i) for all y�i 2 Y�i. Therefore, yi is dominated given Y .
We now turn to the proof of Theorem 1.

Proof of Theorem 1. For any Y � X de�ne the �next elimination�oper-
ation r by

r [Y ] � fy 2 Y j 9i s.t. yi is dominated given Y g :

The existence of a maximal reduction using IESDS� is assured by the follow-
ing prominent �fast�IESDS�: D � \�2�D

�
satisfying D�+1 = D�nr

h
D�
i
,

where � is an ordinal that is order-isomorphic, via an isomorphism ', to

the well-ordered quotient X=r (more speci�cally, ' (�+ 1) = r
h
D

�
i
with

'
�
�0
�
= ;, and the linear order on the quotient X=r can be de�ned by

the obvious �next elimination�relation r [�]). Now suppose that D and D0
are two maximal reductions obtained by applying IESDS� procedure. Since
D [ D0 � D�0, by Lemmas 1 and 2, D [ D0 � D�

for all �. Therefore,
D [ D0 � D. Similarly, D [ D0 � D0. Thus, D = D0. Let x� be a Nash
equilibrium. Since for every i, x�i is not dominated given fx�g, by Lemma 2,
x� 2 D�

for all �.

Corollary 1. Every Nash equilibrium survives both IESDS � and DS�s IESDS
procedures.
Proof. Let H be the maximal reduction resulting from an IESDS procedure
in the DS sense. Since every strategy that is dominated by an uneliminated
strategy is a dominated strategy, by Theorem 1, the unique D � H. By the
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proof of Theorem 1, every Nash equilibrium survives D and hence, survives
H.

Theorem 2. For any compact and own-uppersemicontinuous game, H = D
if H exists. Moreover, for any compact (Hausdor¤ ) and continuous game,
H = D.
Proof. Suppose that H is the maximal reduction resulting from an IESDS
procedure in the DS sense. Clearly, D = ; ifH = ;. By DS�s Lemma, for any
i and any x 2 H 6= ;, xi is not dominated given H. According to De�nition
in this paper, H = D. Moreover, by DS�s Theorem 1(b), H exists if the game
is compact and continuous. The last part of Theorem 2 follows immediately
from the �rst part and from DS�s Theorem 1.

Theorem 3. D is the largest stable set.
Proof. By Lemma 1, D is a stable set. We must show that all stable sets
are subsets of D. By Lemma 2, every stable set K � D�

for all �. Therefore,
D � \�2�D

�
is the largest stable set.

Corollary 2. Given a game G, DS�s IESDS is order independent if every
H is a stable set.
Proof. Let H be a maximal reduction resulting from an IESDS procedure
in the DS sense. It su¢ ces to show that H = D. Since H is a stable set,
by Theorem 3, H � D. By the proof of Corollary 1, D � H. Therefore,
H = D.

Corollary 3. (i) GKZ�s IESDS procedure is order independent if every
maximal reduction under GKZ�s IESDS procedure is a stable set. (ii) In
particular, for any compact and own-uppersemicontinuous game, both GKZ�s
IESDS procedure and our IESDS � procedure yield the same D.
Proof. The proof of the �rst part is totally similar to the proof of Corollary
2. Now suppose that the game is compact and own-uppersemicontinuous, and
suppose thatH is a maximal reduction resulting from an IESDS procedure in
the GKZ sense. Clearly, D = ; if H = ;. By DS�s Lemma and DS�s Theorem
3, GKZ�s de�nition of IESDS coincides with DS�s de�nition of IESDS. By
Theorem 2, H = D.

Theorem 4. (i) If G has well-de�ned best replies, then NE = NEjD. (ii)
If G is a one-person or dominance-solvable game, then NE = D.
Proof. (i) Let x� 2 NEjD. Since G has well-de�ned best replies, ui

�
x��i ; x

�
�i
�
�

ui
�
xi; x

�
�i
�
for some x��i 2 Xi and all xi 2 Xi. Therefore, for every i, x��i

is not dominated given D. Since x� 2 D, by Theorem 3,
�
x��i ; x

�
�i
�
2 D.
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Since x� 2 NEjD, it follows that ui
�
x�i ; x

�
�i
�
� ui

�
x��i ; x

�
�i
�
� ui

�
xi; x

�
�i
�

for all xi 2 Xi. That is, x� 2 NE . Thus, NEjD � NE . By Corollary 1,
NE � NEjD. Hence, NEjD = NE .
(ii) By Corollary 1, NE � D. Therefore, NE = D if D = ;. Now

suppose D 6= ;. By Theorem 3, D is a stable set. Thus, for every i 2 N and
for every x� 2 D, ui (x�) � ui

�
xi; x

�
�i
�
for all x 2 Xi if G is a one-person

or dominance-solvable game. That is, every x� 2 D is a Nash equilibrium.
Hence, NE = D.

Corollary 4. D preserves the (nonempty) set of Nash equilibria in the
following classes of games G �

�
N; fXigi2N ; fuigi2N

�
:

(i) (Debreu 1952; Fan 1966; Glicksberg 1952). Xi is a nonempty,
convex, and compact Hausdor¤ topological vector space; ui is quasi-
concave on Xi and continuous on Xi �X�i.

(ii) (Dasgupta and Maskin 1986). N is a �nite set; Xi is a nonempty,
convex, and compact space in a �nite-dimensional Euclidian space; ui
is quasi-concave on Xi, uppersemicontinuous on Xi �X�i, and graph
continuous.

(iii) (Topkis 1979; Vives 1990; Milgrom and Roberts 1990). G is a
supermodular game such that Xi is a complete lattice; and ui is order
upper-semi-continuous on Xi and is bounded above.

Proof. By the Generalized Weierstrass Theorem (see, e.g., Aliprantis and
Border 1999, 2.40 Theorem), the best replies are well-de�ned for the com-
pact and own-uppersemicontinuous games. By Milgrom and Roberts�(1990)
Theorem 1, the best replies are well-de�ned for the supermodular games in
which strategy spaces are complete lattices. By Theorem 4(i), IESDS� pre-
serves the (nonempty) set of Nash equilibria for these classes of games in
Corollary 4.
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