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Abstract

I analyze a model of advice with two perfectly informed experts and one
decision maker. The bias of an expert is her private information. I show
that consulting two experts is better than consulting just one. In the simple
“peer review” mechanism, the decision maker receives just one report, and
the second expert decides whether to block the first expert’s report. A more
rigid peer review process improves information transmission. Simultaneous
consultation transmits information better than sequential consultation and peer
review. However, peer review achieves significant information transmission,
with the decision maker receiving only one report. There is an asymmetric
equilibrium that is more efficient than the symmetric equilibrium. When given
the chance to discover biases of experts, the decision maker may prefer not to
do so.
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I. Introduction

People specialized in decision making rarely have specialized knowledge about things

on which they make decisions. Either they lack the necessary talent to acquire the

knowledge, or the opportunity costs for acquiring it are too high. They usually

turn to experts for advice. This naturally brings about the issue of objectivity and

credibility of advice from the experts. As well said by Samuel Butler, “opinions have

vested interests just as men have.” Experts have more specialized knowledge, but

their preferences on issues may well be different from those of the decision maker.

There are ample cases in which this should be a real concern. If an investor

asks an analyst about the stock of a company, the analyst tends to make suggestions

that favor herself, depending on her positions in the stock and business relations to

the company.1 If the US President asks his cabinet members on policies about world

affairs, they are likely to recommend policies that favor their own interests. If a CEO

elicits advice on compensation schemes, each employee is likely to favor schemes that

benefits her most.

A common way believed to potentially alleviate the problem is to introduce

counterbalancing forces. For example, decision makers may seek second opinions. By

asking multiple experts, it is conceivable that decision makers may be able to hear

more diversified opinions, so as to get a better picture of the underlying situation and

avoid blunders in the final decision.

However, there are difficulties facing a decision maker. An expert takes the

presence of other experts into strategic consideration when providing advice. The

decision maker must first listen to these experts, disentangle the strategic elements in

the experts’ advice, and choose the best action. As an outsider to experts’ specialized

field, the decision maker may not know the actual preferences of the experts. A second

problem is that interactions among experts are complicated. Experts may strengthen,

rebut, and fine tune each other’s reports depending on their respective biases. The

decision maker may not have the time or energy to listen to and handle all the pros

and cons on an issue.

Thus, it is important to find the kind of communication mechanisms the decision

maker should use to maximize information transmission efficiency given time and

financial constraints.

In the business organization environment, lower level managers and employees

have better information about consumer preferences, production technologies, de-

1In this paper, I refer the decision maker as “he,” and each expert “she.”
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mand for staff, etc. A CEO has to choose a mechanism to combine opinions from

employees. He does not necessarily know their preferences. The reason is two-fold:

on the one hand, different individuals may have different biases, which are hard for

top management to track; on the other hand, the issues to be dealt with are varied,

people’s biases may change depending on the issue at hand. If one views communica-

tion mechanism as inflexible, then it is important to have a mechanism that optimizes

communication allowing uncertainty about experts’ biases.

This paper studies efficiency of information transmission between experts and

the decision maker. I compare various communication mechanisms on their ability

to transmit information. Information transmission efficiency can be measured by the

decision maker’s expected utility. It turns out for the class of preferences I consider,

before knowing the state, any expert ranks equilibria the same as the decision maker

does.

In my model, there are two perfectly informed experts and a single decision

maker. The experts may have biases on what decision to take, and their biases are

unknown to both the decision maker and the other expert.

It is always an option for the decision maker to ask just one expert or ignore

reports from one of the experts. On the other hand, when using information from

both experts, he has various options.

One mechanism he can choose is to ask each expert simultaneously. Experts are

aware of the existence of another expert, but they do not observe each other’s report

when making their own reports. Another option for the decision maker is to ask two

experts sequentially. The first expert makes a report, and the second expert gets to

observe it and then offer her own report. Hearing both reports, the decision maker

makes a decision. I call these two mechanisms direct consultation mechanisms since

the decision maker hears both experts’ reports. I also consider a mechanism called

peer review.

Peer review. By “peer review,” I refer to mechanisms in which some experts do

not report their own opinion, but decide whether they want to pass on other experts’

opinion.

Consider the two-expert model. The decision maker asks the first expert to make

a report, and let the second expert, the reviewer, decide whether she wants to reject

it or not. If she accepts it, then the decision maker hears the original report. If she

rejects it, however, then with some probability, the message fails to reach the decision

maker. I interpret this probability as the rigidity of the peer review process. When

the first expert’s report is rejected, the decision maker receives a signal drawn from
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the random distribution endogenously generated by interactions of experts.

It is important to note that in the peer review mechanism the decision maker

only receives one final report, as opposed to two reports in the direct consultation

mechanisms. This mechanism is simpler for the decision maker and presumably less

costly, since he receives and handles just one report. In some sense, he delegates part

of the information solicitation task to the reviewer. In contrast, the direct consultation

mechanisms generate two reports.

The consideration of the peer review mechanism is of interest since it captures

some of the features of many communication and organization structures in reality.

CEO’s do not directly listen to reports of lower level employees. Lower level employees

make reports to the middle level management, and what the executives get is a

selective pool of reports that are filtered by middle level management. Similarly, the

US president does not directly listen to field personnel, but learn information through

his advisors.

Findings. Before an expert knows the underlying state, she has the same pref-

erence ordering over different equilibria as the decision maker. So communication

effectiveness can be compared across different equilibria.

Under certain assumptions about the distribution of biases, having a more rigid

peer review process improves communication if we consider symmetric equilibria. In

symmetric equilibria, truthful reports are never rejected by reviewers, so the only

effect peer review has is to deter the experts from lying and to keep false reports from

reaching the decision maker when they do lie.2

Consulting two experts is always better than consulting just one. Consulting two

experts simultaneously does the best among all three mechanisms. When comparing

peer review with consulting two experts sequentially, there exist symmetric equilibria

in which sequential consultation does better than peer review. However, there do

exist equilibria in which the decision maker is worse off than under peer review.

Although the setup of the model is symmetric, there also always are asymmetric

equilibria in the peer review case. In some asymmetric equilibria, the decision maker

is better off than he is in symmetric equilibria.

Given the chance to discover what the biases of experts are, the decision maker

may prefer not to do so.

The paper proceeds as follows. Section II introduces the basics of the model,

2Since the decision taken by the decision maker does not correspond exactly to the label of
messages, I use the words “lie” and “misrepresentation” to mean any report by biased-experts that
is different from what an unbiased expert would send.
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describes communication mechanisms, and defines equilibria. Section III characterizes

symmetric equilibria of the various communication mechanisms. Section IV compares

the benefits and shortcomings of the three different mechanisms. Section V discusses

extensions of the basic model. Section VI summarizes related literature. Section VII

concludes and suggests further research.

II. The Model

I study a model with a decision maker and two experts. The decision maker takes an

action that affects payoffs of both the decision maker and the experts. The decision

maker’s objective is to maximize the welfare of a society or an organization. The best

action for him to take depends on some underlying state. The decision maker does

not know the state, but experts do. Experts’ preferences are not necessarily the same

as those of the decision maker. Their preferences are unknown to the decision maker

and to each other.

Let the set of feasible actions be the real numbers R. There are three possible

states of the world. The state space is S = {−1, 0, 1}. The best decision for the

decision maker in state s ∈ S is equal to s. Each state happens with probability
1
3
. There are also three types of experts from the set X = {−1, 0, 1}. So there

exist “neutral” experts and experts with opinions to the two extremes. The prior

distribution of experts’ types is uniform on the three possible types. The state are

both experts’ biases are independent of one another. An expert of type x ∈ X has

bias

bx = bx,

where b ∈ (1
2
, 1).3 The meaning of “bias” will be made clear below. Experts do not

know each other’s biases a priori. Neither does the decision maker know the biases

of the experts.4

3There exists a fully revealing equilibrium for all communication mechanisms above when b ≤ 1
2 ,

in which every expert tells the truth and the decision maker takes the corresponding actions.
4One may argue that a decision maker should be able to infer biases of experts if he interacts

often with experts. It is conceivable that a decision maker does not know their biases when their
interactions start. How decision makers learns biases of experts is best modelled in a repeated game,
such as in Morris (2001). As Morris shows, however, an expert may want to conceal his type, in order
to get future benefits from the decision maker’s decision. Another force working against learning
by the decision maker is that he faces a variety of issues and a pool of different experts over time.
Furthermore, as shown in Section V, the decision maker may prefer not to learn experts’ biases even
if given the chance to do it at no costs.
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Both the experts and the decision maker have utility functions of the following

form

u(y, s, b̃) = −(y − (s + b̃))2. (1)

where y is the action taken by the decision maker, s is the true state, and b̃ is the bias

of the agent. For the decision maker b̃ = 0, and for an expert of type x ∈ X, b̃ = bx.

This utility function form is the same as the special case introduced by Crawford and

Sobel (1982). It has the convenient property that for any agent with bias b̃, the ideal

action is s + b̃. When there is uncertainty about the state, the most preferred action

is always E(s) + b̃, the expected value of the state plus the bias. An expert with a

positive bias always prefers the decision maker to take an action greater than the true

state, and vice versa.

Using the terminology of Krishna and Morgan (2001b), Y = [−1, 1] is the set of

“rationalizable” decisions for the decision maker.5 Except taking an action according

to the report(s) he receives, the decision maker cannot commit to decision rules using

any other device. In particular, he cannot use monetary transfers that are correlated

with reports.

The assumption that the decision maker has to use communication mechanisms

instead of committing to other decision rules is also significant. If he could use other

commitment devices, he would let the expert and the reviewer report the underlying

state, and give them prohibitive punishments for inconsistent reports (the “shoot

them all” mechanism). This would guarantee full revelation to be an equilibrium,

assuming that experts cannot collude with each other.

The decision maker asks for advice from experts. He can choose to ask just one

expert. In the case where the decision maker asks both experts, he may choose among

various mechanisms. In this paper, I consider the following three: simultaneous

consultation, sequential consultation, and peer review.

Simultaneous Consultation

In this mechanism, two experts make simultaneous reports to the decision maker.

They are aware of the existence of another expert, but they do not know the bias of

the other expert, or what the other expert reports. Based on the two reports, the

decision maker makes his decision. This is called simultaneous consultation.

Each expert is allowed to send a signal from a message space M . For clarity of

notation, I label the experts A and B. Expert i’s report is denoted mi, i = A, B.

5Precisely, an action is rationalizable if it is an optimal action for some belief by the decision
maker about the underlying state.
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Define the strategy of expert i of type x as

mi
x : S → M, i = A, B and x ∈ X.

In other words, mi
x(s) is what expert i of bias x would report if the state is s ∈ S.

The decision maker’s strategy is defined as

y : M ×M → [−1, 1],

where y(mA, mB) is the action taken by the decision maker when he receives the

message pair (mA, mB).

Sequential Consultation

The decision maker asks both experts, but one is consulted first. The first expert

makes a report, which is observed by the second expert. The second expert makes

her report based on both the underlying state and the first expert’s report. The

decision maker hears both reports and bases his action on these two reports. This is

called sequential consultation.

Similar to the notation for simultaneous consultation, I call the first expert “Ex-

pert A” and the second expert “Expert B.” With a slight abuse of notation (since mB
x

has already been used above as a function with a single argument), their strategies

can be defined respectively as

mA
x : S → M,

mB
x : S × S → M.

For A, mA
x (s) is the report sent by an expert of type x when the true state is s; for B,

mB
x (s, t) is the report sent by an expert of type x when the true state is s and expert

A has reported t. The decision maker’s strategy is

y : M ×M → [−1, 1],

where y(mA, mB) represents the action taken when the reports are respectively mA

and mB.

Peer Review

In the peer review mechanism, one expert provides advice to a decision maker by mak-

ing statements about the underlying state. However, the advice must pass through
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a reviewer (who is another expert) before reaching the decision maker. The reviewer

decides whether to reject the advice or to accept it and pass it on to the decision

maker. When she rejects it, she may or may not be able to successfully block the re-

port from reaching the decision maker. For example, the decision maker may commit

to investigating the original report with a certain probability. I interpret the success

rate as the rigidity of the peer review process. When the reviewer is successful at

blocking the report, the decision maker receives a random report coming from the

endogenous distribution of signals eventually getting through to the decision maker.

This distribution is generated by interactions between the experts in the model. The

decision maker cannot distinguish whether the message he receives is an original re-

port or a random report drawn after a rejection. He takes an action based on the

message he eventually receives.

More explanation of this mechanism is in order. The equilibrium of this mecha-

nism can be viewed as the steady state of a dynamic process. Experts make reports

based on their knowledge of the state and biases, and reviewers decide whether to

reject the report based on their knowledge of the state and biases. When a certain

report is rejected and successfully blocked, the decision maker is more likely to receive

other reports that are already “out there”. On the other hand, the distribution of

messages that are “out there” is a result of interactions between experts and reviewers.

The “peer review” mechanism is in some sense similar in spirit to mechanisms

involving “veto power” in the literature. See Gilligan and Krehbiel (1987), Krishna

and Morgan (2001a), and Dessein (2002) for details. In these mechanisms, the decision

maker retains the power to “do nothing,” that is, maintains the status quo. Results

typically depend on the exogenously given value of the status quo. If one wants to

evaluate the overall efficiency of a mechanism with veto power, a distribution over

the status quo should be specified. The distribution is best modelled as endogenously

generated by the mechanism itself. The peer review mechanism studied in this paper

can be viewed as an attempt to achieve this goal. When the reviewer successfully

blocks what the expert reports, the decision maker receives a random message, the

distribution of which is endogenously generated.

Since the role of reviewers is performed by fellow experts, there are also the same

three types of reviewers in X. Again, the expert and the reviewer do not know each

other’s types.6

6The significant assumption here is that the expert does not know the reviewer’s type. In fact even
if the reviewer does know the expert’s type, the equilibria below remain so if we let the reviewer’s
equilibrium strategy be independent of the expert’s type. However if the expert knows the reviewer’s
type, her incentive structure will change, which will affect her decision. The assumption that the
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It is important to note that the decision maker does not observe the expert’s

report or the reviewer’s decision. This is one major difference between this mecha-

nism and the two mechanisms above. Thus he cannot make decisions based on the

reviewer’s rejection or acceptance decisions. The role of the second player is also dif-

ferent. Rather than making her own report, she affects the decision maker’s decision

by influencing what the decision maker receives.

Let α ∈ [0, 1] be the rigidity of the peer review process. Denote by Γ the

distribution of messages eventually received by the decision maker in equilibrium.

It will be shown that there are only a finite number of messages sent in equilibrium.

So I use γm to indicate the probability of message m ∈ M being received. If the

expert’s advice gets rejected, then with probability α the decision maker receives a

message randomly drawn from the endogenous distribution Γ, and with probability

1 − α the original advice gets through to the decision maker. When α = 1, when

the expert’s advice is rejected it never gets to the decision maker. When α = 0, the

decision maker receives the advice of the expert, even if the reviewer rejects it. As α

gets higher, it is increasingly hard to evade the peer review process.

Define the expert’s strategy as

mx : S → M,

where mx(s) is the message sent by an expert of type x ∈ X when the state is s.

Let m̃x(s, t) indicate the probability with which an expert of type x sends message

t ∈ M when the true state is s. That is, if mx(s) = t then m̃x(s, t) = 1, otherwise

m̃x(s, t) = 0 if we consider only pure strategies. Since the reviewer does not know

the expert’s type, her strategy can only be based on the true state and the message

she receives from the expert. Define her strategy as

rv : S ×M → {0, 1} ,

where rv(s, t) indicates whether a reviewer of type v rejects message t when the state

is s. The number 1 means rejection, and 0 means acceptance. The decision maker

bases his decision on the message he receives as a result of the expert’s advice and

the reviewer’s decision. The decision maker’s strategy is thus defined as

y : M → [−1, 1].

For convenience denote by ym the action taken by the decision maker after hearing

message m ∈ M .

expert does not know the reviewer’s type best fits situations of anonymous review or situations in
which the expert does not interact frequently with the same reviewer. One may also want to consider
the case that the expert does know the type of the reviewer
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Equilibrium

I consider only pure strategy equilibria. An equilibrium is a strategy profile that

satisfies the following conditions where they apply:

(EQ1) An expert of any type x ∈ X sends the message that maximizes her expected

utility in any state s ∈ S, given strategies of the other expert, the decision

maker, and the distribution Γ.

(EQ2) Peer review: A reviewer of any type v ∈ X rejects a message t in state s,

i.e. r∗v(s, t) = 1 if and only if rejection gives her higher expected utility than

acceptance,7 given the decision maker’s strategy, and the distribution Γ. That

is, u(yt, s, v) < αu(yt, s, v) + (1− α)
∑

t′∈M γt′u(yt′ , s, v), which is equivalent to

u(yt, s, v) <
∑
t′∈M

γt′u(yt′ , s, v).

(EQ3) The decision maker takes action y(m) = E(s|m) when receiving message(s) m,

where m could either be a scalar or a two-dimensional vector.

(EQ4) Peer review: the distribution of messages generated from interactions between

experts and reviewers is the same as the distribution from which a random

message is drawn when a report is rejected and successfully blocked. Formally,

this can be written as

γt =
∑

s∈S Ps

∑
x∈X Pxm̃x(s, t)

∑
v∈X Pv[1− rv(s, t) + rv(s, t)(1− α)]

+
∑

s∈S Ps

∑
x∈X Px

∑
t′∈M m̃x(s, t

′)
∑

v∈X Pvrv(s, t
′) · αγt.

In the above equation Ps, Px, and Pv stand for the probabilities of state s, type

x expert, and type v reviewer occurring respectively. They are all equal to 1
3

in this model. The first part is the probability of the event that experts report

the message t and it gets through to the decision maker, and the second part is

the probability of the event that experts report any message, the message gets

rejected, and the randomly drawn message is t.

As in all cheap talk models, two issues arise. First, the meaning of messages.

Since the decision space is Y = [−1, 1], it is without loss of generality that I limit the

message space M to [−1, 1]. The message space is rich enough for experts to reveal

7This requirement involves the idea of sequential rationality. Even if in some states a message
is never sent in equilibrium, the reviewer still needs to compare the utilities from rejection and
acceptance.
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all their private information. I make the following assumption to reduce essentially

identical equilibria into one.8

Monotonicity. The decision maker’s strategy must be increasing in the mes-

sage(s) he receives. The experts’ reports should be increasing in the state and their

biases.

The idea is that messages should have its natural meaning, that is, a high message

should more likely indicate a higher state than a low message. A right-biased expert

should be more likely to make a right-biased report than other types of experts. Any

expert should be more likely to report a state to be high when it is indeed high.

Second, multiplicity of equilibria. In particular, a babbling equilibrium always

exists. Following previous applications of the cheap talk model (Krishna and Morgan

(2001b), Morris (2001)), I will focus on informative equilibria, meaning that the de-

cision maker’s equilibrium strategy satisfies the following assumption.

Informativeness. For each of its arguments, y(m) strictly varies with it some

of the time, unless one of the messages reveals the underlying state.

This prevents an expert’s report from being completely uninformative whenever

there is information to be revealed. For example, this restriction rules out the case

in which y(mA, mB) = f(mB) for all mA ∈ M and some mB ∈ M as long as mB is

not exclusively sent in a single state.

In general, I consider the most informative equilibrium. For papers studying

refinements of cheap talk equilibria, one may refer to Farrell (1993), Farrell and

Rabin (1996), and Matthews, Okuno-Fujiwara, and Postlewaite (1991). The second

paper provides a concise survey.

Before characterizing the equilibria, I look at whether full revelation is possible

in equilibrium. Take the peer review mechanism, for example. Full revelation means

that y = s for every s ∈ S. Given that rejection results in messages being sent

that are inconsistent with the underlying state, there cannot be any rejection on the

equilibrium path. Thus full revelation could only happen if every expert tells the

truth about the underlying state and truthful reports are always accepted. Thus the

8This assumption does not pose additional restrictions for simultaneous consultation and peer
review. However it does for sequential consultation, but it is unlikely that equilibria that are ruled
out by monotonicity are more informative than those that do satisfy monotonicity.
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decision maker should take action y = m when receiving message m. Also observe that

in such cases the message m = 0 from an expert should always be accepted, because

by rejecting 0 the reviewer will with probability α let the decision maker receive

messages −1, 0, 1 with equal probabilities, which is the endogenous distribution of

signals generated by the truth-telling strategy profile. The utility the reviewer receives

is thus lower than that from acceptance regardless of the type of the reviewer, which

is an implication of the quadratic loss utility function. Given this, reporting 0 when

the state is −1 gives a type 1 expert higher payoff than reporting −1 because b > 1
2
.

Thus I have the following result.

Proposition 1. There does not exist a fully revealing equilibrium for any of the above

mechanisms.

Proof. See Appendix for the proof for peer review. Proofs for simultaneous consulta-

tion and sequential consultation are omitted. In the following sections, all the pure

strategy symmetric equilibria will be characterized for these two mechanisms. None

of the equilibria fully reveals information.

Proposition 1 is a typical result of cheap talk models. It illustrates the difficulty

of communication between informed experts and the uninformed decision maker when

their objectives are not perfectly aligned with each other.

III. Symmetric Equilibrium

A pure strategy profile (m̂, (r̂, )ŷ) is a “mirror image” of another strategy profile

(m, (r, )y) if for all i = A, B, x, v ∈ X, s, t ∈ S, and m ∈ S or S × S, the following

conditions are satisfied where they apply:

(SE1) Simultaneous consultation: mi
x(s) = −m̂i

−x(−s);

Sequential consultation: mA
x (s) = −m̂A

−x(−s);

Peer review or consulting one expert: mx(s) = −m̂−x(−s).

(SE2) Sequential consultation: mB
x (s, t) = −m̂B

−x(−s,−t);

Peer review: rv(s, t) = r̂−v(−s,−t).

(SE3) ŷ(m) = −y(−m).

(SE4) Peer review: γt = γ̂−t for all t ∈ M .
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An equilibrium is symmetric if and only if the equilibrium strategy profile is a

mirror image of itself.

In fact, to define a symmetric equilibrium, conditions (SE3) and (SE4) are redun-

dant as they follow from the equilibrium conditions (EQ3) and (EQ4) and symmetry

conditions (SE1) and (SE2). Intuitively, in a symmetric equilibrium experts and re-

viewers of type 1 and −1 behave in a similar way. For example, if a reviewer of type 1

rejects report 0 when the true state is 1, then a reviewer of type −1 must reject report

0 when the true state is −1. Also experts and reviewers of type 0 treat state values −1

and 1 and report values −1 and 1 in a similar way. Note that given the above three

conditions, there are certain facts that have to be true in a symmetric equilibrium.

For example, y(0, 0) = y0 = 0, m0(0) = mA
0 (0) = 0, etc. Furthermore, when I make

descriptions or prove facts about symmetric equilibria, I need only consider behavior

of experts (and reviewers) of types 0 and 1.

The crucial aspects of symmetric equilibria are that the resulting distribution of

actions is symmetric and that experts’ behavior regarding the messages that corre-

spond to these actions are symmetric. The labelling of messages is not crucial. For

example, one can relabel the message “0” to “0.01.” This would violate the sym-

metry requirements but would not alter the essential properties of the equilibrium.

Putting these extra symmetry restrictions on equilibria, however, would not reduce

the number of essentially distinct symmetric equilibria precisely because one can re-

name “0.01” back to “0” to satisfy these restrictions.

Consulting One Expert

First I establish a result on the number of messages sent in equilibrium.

Lemma 1. When the decision maker consults one expert,

1. If b ∈ (1
2
, 1), then no more than 5 messages are sent in pure strategy symmetric

equilibria;

2. If b ∈ (3
4
, 1), then no more than 3 messages are sent in pure strategy symmetric

equilibria.

Proof. Symmetry requires that the message 0 is always sent in equilibrium by experts

of type 0 in state 0. In state 1 experts of types 0 and 1 both want to send the mes-

sage that induces the highest possible action from the decision maker in equilibrium

since their most preferred action in [−1, 1] is 1. For simplicity I call this message 1.
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Similarly in state −1 experts of types 0 and −1 both want to send the message −1,

which induces the lowest possible action from the decision maker in equilibrium.

Now the only possibility of an expert sending a positive message m1,0 other than

the highest message is that m−1(1) or m1(0) is equal to m1,0. In fact it must be that

both m−1(1) and m1(0) are equal to m1,0. Otherwise this message would induce an

action of 0 or 1, a contradiction. Thus y(m1,0) = 1
2
. In order for m−1(1) = m1(0) =

m1,0 to be optimal we must have b ≤ 3
4
. Otherwise an expert of type 1 would prefer

1 instead in state 0.

To summarize, there are no more than 5 messages in pure strategy symmetric

equilibria. When b > 3
4
, there are no more than 3 messages.

For the discussion of the rest of the section, I restrict the range of b, which gives

the most salient set of results for the mechanisms.

Range of bias. b ∈ [17
21

, 6
7
].

Note that b is greater than 3
4
. Thus there are only 3 messages in equilibrium.

More general values of b will be discussed in a later section.

Proposition 2. When the decision maker consults only one expert, the only symmet-

ric equilibrium is as follows:

1) m∗
0(s) = s, m∗

−1(s) = s− 1 if s 6= −1, m∗
−1(−1) = −1, m∗

1(s) = s + 1 if s 6= 1, and

m∗
1(1) = 1;

2) y∗m = (2/3)m.

In equilibrium, the decision maker’s expected payoff is −10/27.

Proof. See Appendix.

In equilibrium, biased experts always misrepresent the state when possible. That

is, an expert of type 1 reports state −1 as 0 and 0 as 1. They are able to do so since

there are no forces to counteract or punish biased reports. In a sense, this is the

worst that could happen to the decision maker in an informative equilibrium. It is

imaginable that by introducing another expert, the situation can be improved.

When studying two-expert mechanisms, each expert is allowed to choose from a

set of three messages. It can be shown that this does not pose constraints for these

mechanisms given my assumption that b ∈ [17
21

, 6
7
]. In particular, the experts can send

messages in the set S.
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Simultaneous Consultation

In this mechanism, each expert simultaneously sends a report to the decision maker.

In addition to the symmetry conditions above, I add another symmetry condition.

Anonymity. mA
x (s) = mB

x (s) for all x ∈ X and s ∈ S.

The idea behind this condition is that an expert’s reports are not affected by

her labelling, but only by the underlying state and her bias. This captures the

“simultaneity” nature of the mechanism. As a result, in equilibrium, the decision

maker does not discriminate according to the source of messages. His decision is based

only on the combination of message pairs, but not who provides which message.

Symmetry and anonymity put certain restrictions on the decision maker’s strate-

gies, which are straightforward to derive. These properties include y(0, 0) = 0,

y(−1, 1) = y(1,−1) = 0, y(mA, mB) = y(mB, mA) = −y(−mA,−mB) for all mA, mB ∈
S, etc.

The following lemma describes experts’ equilibrium behavior.

Lemma 2. When the decision maker consults two experts simultaneously, in equi-

librium, the following must be true about experts’ strategies: for i = A, B, mi
0(s) =

mi
s(s) = s for s = −1 and 1, and mi

0(0) = 0.

Proof. See Appendix.

Intuitively, unbiased experts never try to distort information. A biased expert

tells the truth about the state when the state is at the extreme in the same direction

as the bias of the expert. There is no way for her to further shift the decision maker’s

decision in her favor, and she doe not want to report the other two messages that are

unfavorable.

Since I only look for symmetric equilibria, when describing strategy profiles I

only state what is necessary in uniquely identifying the strategy profile and leave the

rest for deduction with the symmetry conditions. Now we define strategy profile (A):

(A1) For i = A, B, mi
0(s) = s for all s ∈ S, and mi

1(s) = s for s = 1 and s + 1 for

s = −1, 0;

(A2) y(0, 0) = 0, y(0, 1) = y(1, 0) = 2/3, y(1,−1) = 0, and y(1, 1) = 4/5.

Proposition 3. In the simultaneous consultation game, strategy profile (A) is the

only pure strategy symmetric equilibrium satisfying anonymity. In this equilibrium,

the decision maker’s expected payoff is −94/405.
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Proof. See Appendix.

Strategy profile (A) looks much like the equilibrium of the one-expert case, except

that now two experts are present. Biased reports are sometimes balanced by the

other expert of a different bias. For example, although a right-biased expert would

still report state −1 as 0, it is offset by the other expert when the other expert is of

bias −1 or 0, which happens with probability 2/3. When the decision maker receives

the message pair (0,−1) or (−1, 0), he takes the action −2/3. On the other hand, in

the one-expert mechanism, he takes action 0 when he receives the message 0, which

is farther from his most preferred action −1 in state −1.

Sequential Consultation

In the sequential consultation mechanism, the second expert gets to observe what

the first expert has reported. Thus the second expert’s strategy depends on both the

underlying state, and the first expert’s report.

Now I solve for the symmetric equilibria of the sequential consultation game that

satisfy the informativeness and monotonicity conditions. First I establish a lemma

describing the experts’ behavior in such equilibria.

Lemma 3. When the decision maker consults two experts sequentially, the following

must be true about experts’ strategies in equilibrium:

1. mA
0 (1) = mA

1 (1) = 1, and mA
0 (0) = 0;

2. mB
0 (1, mA), mB

1 (1, mA) ∈ arg maxmB y(mA, mB);

3. mB
0 (0, 0) = 0, mB

1 (0,−1) ∈ arg maxmB y(−1, mB), and mB
1 (0, 0) ∈ arg maxmB y(0, mB).

Proof. See Appendix.

Monotonicity and informativeness require that the first expert reports 1 in state

1 if she is of type 1. If she does not, then monotonicity implies mx(s) = 0 for all x ∈
X, which renders the first expert’s reports uninformative, violating informativeness.

Symmetry requires that the first expert reports 0 in state 0 when she is of type 0.

When the true state is 1 and the expert is of type 1 or 0, the expert wants the action

taken by the decision maker to be as close to 1 as possible, which translates into as

large an action as possible since the decision maker’s action must lie in [−1, 1] to be

rationalizable. The other results in the lemma follow similar lines of argument.
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Let us define strategy profiles (B), (C), and (D). Strategy profile (B) is defined

by

(B1) mA
0 (s) = s for all s ∈ S, and mA

1 (s) = s for s = 1 and s + 1 for s = −1, 0;

(B2) mB
1 (−1, 0) = 0, mB

0 (s, 0) = s for s ∈ S, mB
1 (1, 0) = 1 for all t ∈ S, and expert

B’s other strategies do not matter as long as they make (B3) hold;

(B3) y(0, 0) = 0, y(0, 1) = 2/3, and y(1, mB) = 2
3

for all mB ∈ S.

Strategy profile (C) is defined by

(C1) mA
0 (s) = s for all s ∈ S, and mA

1 (s) = s for s = 1 and s + 1 for s = −1, 0;

(C2) mB
1 (−1,−1) ∈ arg maxmB y(−1, mB), mB

1 (−1, 0) = 0, mB
0 (0, 0) = 0, mB

0 (0,−1), mB
1 (0,−1) ∈

arg maxmB y(−1, mB), mB
1 (0, 0) = 1, mB

0 (1, 0) = mB
1 (1, 0) = 1, and mB

0 (1, t), mB
1 (1, t) ∈

arg maxmB y(t,mB) for t = −1, 1; furthermore, they must also ensure that (C3)

hold;

(C3) y(0, 0) = 0, y(0, 1) = 2/3, y(1,−1) = 1
2
, y(1, 0) ∈ [1

2
, 2b− 4

5
]∪{4

5
} and y(1, 1) = 4

5
.

Strategy profile (D) is defined by

(D1) mA
0 (s) = s for all s ∈ S, and mA

1 (s) = s for s = 1 and s + 1 for s = −1, 0;

(D2) mB
1 (−1,−1) ∈ arg maxmB y(−1, mB), mB

0 (0, 0) = 0, mB
0 (0,−1), mB

1 (0,−1) ∈
arg maxmB y(−1, mB), and mB

0 (1, t), mB
1 (1, t) ∈ arg maxmB y(t,mB) for t =

−1, 1; furthermore, they must also ensure that (D3) hold;

(D3) y(0, mB) = 0 for all mB ∈ S, y(1,−1) = 1/2, y(1, 0) ∈ [1/2, 2b− 4
5
] ∪

{
4
5

}
, and

y(1, 1) = 4/5.

Now comes the main proposition of this section.

Proposition 4. Strategy profiles (B), (C), and (D) are the only symmetric equilib-

ria of the sequential consultation game that satisfy the monotonicity condition. The

decision maker’s expected payoff is −26/81 in (B), −104/405 in (C), and −16/45 in

(D).

Proof. The proof is rather involved and so relegated to the Appendix.
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Now I examine the equilibria more closely. In equilibrium, expert A always

distorts her report towards the direction she prefers if she is biased. For example, an

expert of type 1 reports −1 as 0 and 0 as 1. If she is unbiased, then she simply reports

the true state. Expert B makes her reaction based on her own bias, the underlying

state and expert A’s report. If expert A has not made a biased report, then expert

B acts as if she were the first expert and sends a distorted report. In the case that

the first report is biased, if expert B has the same bias as expert A, she may choose

to further distort it, make a moderate report, or corrects the distortion by expert A

it proves to be excessive (for example, reporting −1 as 1). If she is unbiased or if her

bias is opposite to expert A’s, then she chooses to offset the distortion by expert A

if this option is available in equilibrium. For example, mB
0 (0,−1) = 1. That is, an

expert of type 0 would like to report 1 if expert A has reported 0 as −1. She does

not exactly “tell the truth” in the face of a biased report even though she herself is

unbiased. Taking all this into account, the decision maker takes an action based on

the message combination he receives.

Equilibrium (D) gives the lowest payoff among the three equilibria. The main

reason is that y(0, mB) = 0 for all mB. Thus expert B loses the leverage to control

what the decision maker does if expert A chooses to make the report 0. A biased

expert A then has the liberty of misrepresenting extreme states as the middle state,

which results in loss of information.

Notably, there are actually equilibria in which monotonicity is violated and in

which the decision maker does even worse. In one such equilibrium, y(1,−1) <

y(0,−1). A positive-biased expert A reports all states as 1. Also, a positive-biased

expert B reports state −1 as 1 given that expert A has honestly reported the state.

This can be viewed as an extremely partisan debate, which not surprisingly does not

transmit much information.

In equilibrium, it is possible for the second expert and the decision maker to infer

the type of the first expert (or both experts in the case of the decision maker) although

I assume that experts’ types are known only to themselves. However this does not

provide useful information for expert B or the decision maker. The only information

that matters to their decision is the underlying state (for expert B) and the report(s)

by the expert(s). If the decision maker knew the experts’ types or the first expert

knew the second expert’s type ex ante, then the situation would be different.
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Peer Review

When α = 0, the reviewer is in effect nonexistent. The only equilibrium is thus the

same as the one in the one-expert case. But as α increases, if rejection happens in

equilibrium, and if the unbiased reviewer wants to reject the report, then it has the

effect of increasing the decision maker’s payoff. Peer review also has the potential of

deterring experts from lying.

Formally, when the report of an expert is rejected by a reviewer, with probability

1 − α, the report still gets to the decision maker; with probability α, the reviewer

will draw a signal from the endogenous signal distribution over {−1, 0, 1}. Let us

denote the distribution by (γ−1, γ0, γ1). Due to symmetry it can be represented as

(γ, 1− 2γ, γ), where

γ ∈ (0,
1

2
).

Before solving for the equilibrium, I establish a result that measures the decision

maker and an expert’s expected utility from any strategy profile.

Proposition 5. In any strategy profile, the decision maker’s expected payoff is −2
3
+∑

m γmy2
m, and his payoff in a symmetric equilibrium is −2

3
+ 2γy2

1.

An expert’s expected payoff before knowing the underlying state is −2
3
−b2

x+
∑

m γmy2
m,

and −2
3
− b2

x + 2γy2
1, where bx is her bias, x ∈ X.

Proof. In any strategy profile, the decision maker’s expected payoff is

U0 = −
∑

s

∑
m

Psm(ym − s)2 = −
∑

s

Pss
2 −

∑
m

γmy2
m +

∑
s

∑
m

2Psmsym,

where U0 indicates the expected utility of an unbiased agent. In the above equation,

Psm indicates the joint probability of the state being s, and the decision maker receiv-

ing message m, and Ps and γm are the corresponding marginal probabilities. Using

the fact that
∑

s Psms = γmym, we have

U0 = −2

3
+

∑
m

γmy2
m.

In symmetric equilibria, we have y0 = 0 and y−1 = −y1, and the definition γ = P (s =

1), and conclude

U0 = −2

3
+ 2γy2

1.

The expected payoff for an expert of type x is

Ux = −
∑

s

∑
m

Psm(ym − (s + bx))
2 = U0 −

∑
s

Ps(b
2
x + 2sbx) +

∑
s

∑
m

2Psmbxym.
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Now we may use the fact
∑

s Pss = 0 and
∑

m γmym =
∑

m γmE(s|m) = E(s) = 0,

and conclude

Ux = U0 − b2
x.

Hence the desired statement.

One conclusion we can draw from the above proposition is that ranking of equilib-

ria by the decision maker and that by the experts are the same. This is true even after

the experts learn their biases, and thus true before the experts learn their biases. Note

that the crucial conditions in proving this, namely
∑

s Pss = 0 and
∑

m γmym = 0,

are just the statements that the probability-weighted average of states and actions

are equal to the expected value of the state. The value 0 is not crucial here. This

condition can thus be generalized to a variety of circumstances in which the decision

maker and the experts have quadratic loss utility functions.

Another observation one can make is that the first term in the expression, −2
3
, is

just the expected utility of the decision maker when he takes action 0 no matter what

the state is. Thus the second term in the expression measures the gain in expected

utility from communication with experts. In the light of the discussion of the previous

paragraph, the second term is therefore the measure of communication effectiveness

between experts and the decision maker.

Now we define a pure strategy profile (E).

(E1) m∗
0(s) = s for all s ∈ S, and m∗

1(s) = s for s = 1 and s + 1 for s = −1, 0;

(E2) r∗0(s, t) = 1 if (s, t) = (−1, 1), (0,−1), (0, 1) or (1,−1), and 0 otherwise; r∗1(s, t) =

1 if (s, t) = (−1, 1), (0,−1) or (1,−1), and 0 otherwise;

(E3) y∗1 = 2(27−4α)
9(9−2α)

;

(E4) γ = 9−2α
27−4α

.

Now I characterize the equilibrium of the peer review mechanism under the

assumption b ∈ [17
21

, 6
7
].

Proposition 6. For the peer review mechanism, strategy profile (E) is the only sym-

metric equilibrium of the game.

Remark: Within this equilibrium, whenever biased reports are rejected, a reviewer

of bias 0 rejects them. Higher α means higher rejection rate of biased reports, which

benefits the decision maker. The following corollary states this fact.
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Corollary 6.1. The decision maker’s expected utility in the symmetric equilibrium is

nondecreasing in α.

Proof. By Proposition 5, the decision maker’s expected utility in strategy profile (E)

is equal to

U0 = −2

3
+ 2γy2

1

Note in strategy profile (E) γy1 = 2
9
. Thus ∂U0

∂α
= 4

9
∂y1

∂α
> 0. Thus the highest payoff

of the decision maker is achieved when α = 1. In this case y = 46
63

, and U0 = −194
567

.

This implies that under my model assumptions, when designing a peer review

mechanism, there should not be ways around the peer review process. If any re-

port must pass through a reviewer first, then we may achieve the most informative

equilibrium given this mechanism.

Since proving the Proposition helps provide insight to how experts and reviewers

behave in equilibrium, I put the proof in the main text.

Consider any reviewer of type v ∈ X. In equilibrium r∗v(s, t) = 1 if and only if

−αγ((y∗1 − (s + bv))
2 − αγ(y∗−1 − (s + bv))

2

−α(1− 2γ)(0− (s + bv))
2 − (1− α)(y∗t − (s + bv))

2 > −(y∗t − (s + bv))
2.

But this inequality is equivalent to

γ((y∗1 − (s+ bv))
2 +(−y∗1 − (s+ bv))

2)+ (1− 2γ)(0− (s+ bv)
2) < (y∗t − (s+ bv))

2. (2)

First, the following lemma establishes a relationship between the behavior of a

reviewer and that of an expert of the same type.

Lemma 4. In any equilibrium (symmetric or otherwise), if r∗v(s, t) = 1, then m̃∗
v(s, t) =

0, i.e., m∗
v(s) 6= t.

Proof. Since r∗v(s, t) = 1, Equation (2) must hold. This implies that−(y∗t−(s+bv))
2 =

u(y∗t , s, bv) < maxt′∈S u(y∗t′ , s, bv). Let t̃ = arg maxt′∈S u(y∗t′ , s, bv). Then if an expert

of type v sends the message t̃ when the state is s, her expected payoff is at least

(1 − α)u(y∗
t̃
, s, bv) + α

3

∑
m∈S u(y∗m, s, bv)], which is greater than (1 − α)u(y∗t , s, bv) +

α
3

∑
m∈S u(y∗m, s, bv)], but the second expression is greater than u(y∗t , s, bv) by Equa-

tion (2). Since the expert’s expected payoff from sending message t is a convex

combination of this expression and u(y∗t , s, bv), the expert is strictly better off send-

ing message t̃. Hence m̃∗
v(s, t) = 0.

Note that I have not used symmetry in the above proof. So Lemma 4 applies to all

equilibria of the game, not just symmetric ones.
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The intuition behind the above lemma is as follows. In equilibrium, if a reviewer

of a certain type rejects a message t in a state s, she prefers a random message from

the endogenous distribution to the message t. So there must be another message t̃

that is strictly better than t for the reviewer. An expert of the same type as the

reviewer also prefers t̃ to t if the message is to get through. Even if t̃ is rejected, the

worst thing that can happen is a random message from the endogenous distribution,

which is still better than t. Thus the expert should not report message t in state s.

Now I prove a result that says the only possible behavior of reviewers in sym-

metric equilibria is as described in (E2), which also implies certain behavior from

experts.

Lemma 5. In a symmetric equilibrium,

1. r∗0(s, t) = 1 if (s, t) = (−1, 1), (0,−1), (0, 1) or (1,−1), and 0 otherwise; r∗1(s, t) =

1 if (s, t) = (−1, 1), (0,−1) or (1,−1), and 0 otherwise;

2. m0(s) = s for all s ∈ S and m1(1) = 1.

Proof. See Appendix.

Observe that rejection results in the decision maker receiving a mixture between

the original message and a random message drawn from the endogenous distribution.

Thus rejection happens only if the reviewer prefers the random distribution of mes-

sages to the original message. The random distribution is never preferred by any

expert/reviewer to the message 0 because agents dislike variance in our model and

because of symmetry. Therefore, a reviewer never rejects the message 0 since reject-

ing would only make her worse off. At the same time, a reviewer of type 0 rejects

messages 1 and −1 in state 0 and message 1 in state −1, since these messages are

the worst for her to pass on to the decision maker. For similar reasons, a reviewer of

type 1 rejects the message −1 when the state is 0 or 1 since it is her least preferred

message. These arguments do not depend on the size of the bias. However, the argu-

ment for type 1 not rejecting −1 in state −1 and rejecting 1 in state −1 does depend

on the fact that her bias is not very large.

Proof. (of Proposition 6) By Lemmas 4 and 5, m1(−1) 6= 1 and m1(0) 6= −1. Thus

what is left to be determined is whether m1(0) = 0 or 1 and whether m1(−1) = −1

or 0.

To summarize, the following must be true:

(i) m0(s) = s for all s ∈ S and m1(1) = 1.
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(ii) r0(s, t) = 1 for (s, t) = (−1, 1), (0,−1), (0, 1), and (1,−1), and r0(s, t) = 0

otherwise; r1(s, t) = 1 for (s, t) = (−1, 1), (0,−1), and (1,−1), and r1(s, t) = 0

otherwise.

Before proceeding, we define θ = 1 − 2
3
α. It is decreasing in α and goes from 1 to

1
3

as α goes from 0 to 1. Observe that since when the decision maker receives no

messages, a signal is randomly drawn from the endogenously generated distribution

(γ, 1− 2γ, γ), the following must be true:

γ = P (s = 1)[P (x = 0, 1) + P (x = 1)(1− m̃1(−1, 0))]

+P (s = 0)P (x = 1)m̃1(0, 1)[P (v = 1) + P (v = −1, 0)[(1− α) + αγ]]

+P (s = 0)P (x = −1)m̃−1(0,−1)(P (v = 0, 1)αγ)

=
1

3
[
2

3
+

1

3
(1− m̃1(−1, 0))] +

1

3
× 1

3
m̃1(0, 1)[

1

3
+

2

3
[(1− α) + αγ]]

+
1

3
m̃−1(0,−1)(

2

3
αγ)

= (
1

3
− m̃1(−1, 0)

9
) +

m̃1(0, 1)

9
(1− 2

3
α(1− 2γ))

I used the fact m̃−1(0,−1) = m̃1(0, 1) by symmetry. From the above equation I get

(†) γ = 1
9
(1− 2

3
α(1− 2γ))m̃1(0, 1)− m̃1(−1,0)

9
+ 1

3
.

Note that

(††) y1 = P (s=1,m=1)
P (m=1)

=
1
3
− m̃1(−1,0)

9

γ
.

Given the reviewer’s strategies, the decision of an expert of type 1 should be charac-

terized by the following comparisons.

(1) Since neither 0 nor −1 is ever rejected in state −1, m1(−1) = 0 if u(0,−1, b) ≥
u(−y1,−1, b), which is equivalent to |0− (−1 + b)| ≤ |−y1 − (−1 + b)|. Thus

m1(−1) = 0 if

y1 ≥ 2(1− b).

(2) Since 0 is not rejected in state 0, the utility of an expert of type 1 is

u(0, 0, b) = −(0− (0 + b))2 = −b2

if m1(0) = 0. On the other hand, as shown in the proof of Lemma 5 the expected

payoff of the expert from reporting 1 is

−[(1− 2

3
α)(y1 − b)2 +

2

3
α(2γy1

2 + b2)]
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Thus by comparing the two, we get m1(0) = 0 is optimal if

(1− 2

3
α(1− 2γ))y2

1 − 2b(1− 2

3
α)y1 ≥ 0

⇔ y1 ≥
2b(1− 2

3
α)

1− 2
3
α(1− 2γ)

Since 0 ≤ γ ≤ 1/2 and 0 ≤ α ≤ 1, it is easy to see that 1 − 2
3
α > 0 and

1 − 2
3
α(1 − 2γ) > 0. But when 2b(1 − 2

3
α) > 1 − 2

3
α(1 − 2γ), m1(0) = 0 is

impossible since y1 ∈ [0, 1].

(3) As shown in the proof of Lemma 5, in order for r1(−1,−1) = 0 to be optimal

we need

y1 ≤
2(1− b)

1− 2γ
.

By the no fully revealing equilibrium result in Proposition 1, we only need to consider

three cases: (a) m1(−1) = 0 and m1(0) = 0; (b) m1(−1) = 0 and m1(0) = 1; (c)

m1(−1) = −1 and m1(0) = 1.

(a) It can also be represented as m̃1(−1, 0) = 1 and m̃1(0, 1) = 0.

By Equation (†), γ = 2/9.

By Equation (††) we have y1 = (1/3− 1/9)/(2/9) = 1.

According to condition (3) in this proof, we need 1 ≤ 2(1−b)
5/9

. This requires

b ≤ 13
18

, which is not satisfied by our assumed b values.

(b) This case can be represented by m̃1(−1, 0) = 1 and m̃1(0, 1) = 1.

By Equation (†), γ =
2
9
+ 1

9
θ

1− 2
9
(1−θ)

.

By Equation (††), y1 = 2
9
/γ.

According to condition (1) in this proof, we need y1 ≥ 2(1−b), which translates

into (1− b− 2
9
)θ ≤ 1− 2(1− b)− 2

9
. This holds since θ ≤ 1 and b ≥ 2(1− b) for

our assumed values of b.

In this case 1− 2
3
α(1− 2γ) = 9(γ − 2

9
). Substituting this into condition (2) in

this proof, we get 9y1(γ − 2
9
) ≤ 2bθ. Using γy = 2

9
, we get

bθ2 + (2b− 5

9
)θ − 4

9
≥ 0.

The L.H.S. is strictly increasing in θ since 2b− 5
9

> 0. Now substituting θ = 1
3

into the L.H.S., we get 7
9
b − 17

21
≥ 0, which is true for b ≥ 17

21
. Hence condition

(2) is always satisfied if b ≥ 17
21

.
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Now we check condition (3). We need 2
9
· 1−2γ

γ
≤ 2(1− b), which simplifies into

θ ≥ 1

3(1− b)
− 2.

This inequality holds for any θ ∈ [1
3
, 1] if b ≤ 6

7
.

So we get that strategy profile (E) is an equilibrium if b ∈ [17
21

, 6
7
].

(c) This case can be represented by m̃1(−1, 0) = 0 and m̃1(0, 1) = 1.

By Equation (†), γ =
1
3
+ 1

9
θ

1− 2
9
(1−θ)

.

By Equation (††), y1 = 1
3
/γ.

By condition (1) of this proof, we need y1 ≤ 2(1−b), which requires 1
3
(7

9
+ 2

9
θ) ≤

(1 − b)(2
3

+ 2
9
θ), an impossible statement since 1 − b < 1

3
. So this is not an

equilibrium strategy profile.

Summarizing the above arguments proves the proposition.

In the peer review mechanism, letting the reviewer have more power never hurts

the decision maker if we consider the most informative equilibrium. Hence peer review

mechanisms should be designed such that the review process cannot be evaded by

experts.

IV. Comparisons

In the one expert case, the decision maker gets an expected payoff of −10/27. We

have seen that all equilibria of mechanisms with two experts give strictly higher payoff

than this, confirming the intuition that seeking second opinions improves information

transmission.

It is also interesting to compare payoffs of the equilibria of two-expert mecha-

nisms. Peer review is a simple mechanism in which the expert gets only one final

report. If peer review dominates direct consultation of two experts, one can certainly

make a strong case in support of using peer review as an effective communication

mechanism between experts and decision makers.

There is a major difference between direct consultation mechanisms and peer

review. In simultaneous consultation and sequential consultation, although biased

reports will be counteracted by other reports, they do get seen by the decision maker.

In this sense, they do not prevent experts from misrepresenting information. They

improve information transmission through finely partitioning the decision space so as

to lower the cost of misrepresentation to the decision maker. However in peer review,
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biased experts worry about their reports being rejected by a reviewer that has biases

different from theirs, in which case there will be uncertainty in the decision maker’s

decision. Since experts dislike uncertainty, they will withhold biased reports if the

cost of rejection to them is too high. Note that existence of different biases is crucial

for peer review to work for the decision maker.

In my model, the unique equilibrium in simultaneous consultation gives the de-

cision maker an expected payoff of −94/405. In the most informative equilibrium (C)

in sequential consultation, the decision maker earns an expected payoff of −104/405.

In the unique equilibrium (E) of peer review with α = 1, the decision maker gets an

expected payoff of −194/567. Peer review does worse than both simultaneous consul-

tation and sequential consultation in the most informative equilibrium. However the

message regarding sequential consultation is mixed. Direct sequential consultation

gives the highest information efficiency, but unlike the other two mechanisms, it gen-

erates multiple equilibria. In particular, strategy profile (D) gives the decision maker

an expected payoff of −16/45, which is lower than the expected payoff generated by

peer review. If one is confident that the most informative equilibrium will occur, then

he should favor sequential consultation over peer review. If not, peer review may be

a better choice.

To summarize, the following is the result of the comparisons:

Result of comparisons. Considering the most informative equilibrium, the

ranking of information transmission efficiency of the three mechanisms is(from the

highest to the lowest): 1. simultaneous consultation; 2. sequential consultation; 3.

peer review. However, there exists an equilibrium in sequential consultation in which

the decision maker is worse off than he is under peer review.

In the table below, I calculate the magnitude of the improvement in communica-

tion from the uninformative equilibrium. The first column in the table is the payoffs

from equilibria of different mechanisms. The second column reflects the magnitude of

improvement from the babbling equilibrium, as a percentage of the improvement by

the most informative equilibrium – the simultaneous consultation equilibrium. Since

von Neumann-Morgenstern expected utility is unique up to affine transformations,

these numbers accurately reflect the welfare comparisons between different equilibria.

From the table, one can see that all two-expert mechanisms do better than the one-

expert mechanism. Also, peer review achieves about 3
4

of the information transmission

by simultaneous consultation.
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Payoff Improvement Percentage

Babbling −2/3 0

One Expert −10/27 68.2

Peer Review −194/567 74.7

Sequential-B −26/81 79.5

Sequential-C −104/405 94.3

Sequential-D −16/45 71.6

Simultaneous −94/405 100

In this paper, I model peer review as interactions between experts that are not

transparent to the decision maker, with the final signal as the only thing observed by

the decision maker. This corresponds to situations in which the decision maker just

receives one unified recommendation, instead of knowing each expert’s opinion and

what they think about each other’s opinion. For example, a politician would only

choose a prominent economic theory for his use, without knowing how economists

have promoted the theory to prominence. A CEO often receives only one report

concerning a new project instead of having competing reports or knowing how the

final report is formed from preliminary versions by lower management.

It is reasonable to expect that monitoring interactions among experts is not cost-

less. This is especially true when the decision maker is unfamiliar with the profession

of experts. Time and financial constraints may prevent decision makers from listening

to multiple opinions on an issue. Peer review, on the other hand, gives the decision

maker an option in which he does not have to monitor all the interactions. Coming

back to the examples, the politician is better off having counterbalancing forces in

his advice seeking process, but it may not pay for him to follow what is really going

on in the process if it proves costly. A CEO is better off having lower management

peer reviewing each other, but it may not be in his best interest to deal with the

opinions of all the lower management. If the sequential consultation game is caught

in a “bad” equilibrium, then the decision maker would be much better off to use peer

review instead.

V. Discussions

Generalized Biases

In the discussion in previous sections, attention has been focused on biases in the

range [17
21

, 6
7
]. On the other hand, there exist values of b such that 5 messages are

sent in the one-expert mechanism. As long as b ≤ 3
4
, the following strategy profile
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constitutes an equilibrium. Everything else is the same at that in strategy profile (A),

except that there are now a pair of new messages. For illustrative purposes, I call

them “1
2
” and “−1

2
” respectively. Message 1

2
is sent in state 0 by experts of type 1

and in state 1 by experts of type −1. When receiving message 1
2
, the decision maker

takes action 1
2
, which is the expected value of the underlying state conditional on the

message 1
2

being received. Using a generalized version of Proposition 5, one can see

that the decision maker’s expected payoff is −2
3

+
∑

m γmy2
m = −1

9
, which is higher

than any equilibrium above with three available messages.

Furthermore, given the appropriate values of b such that 5-message equilibria are

possible, if we allow 5 messages to be sent in equilibrium, then having an additional

expert as reviewer does not help the decision maker. It is not possible for a reviewer

of type 1 to not reject a report of −1
2

in state 0. This results in actions far from

the real state being taken in equilibrium due to the nature of the mechanism, which

lowers the decision maker’s expected utility.

Restrictions on the Set of Allowed Messages

In many situations, it is conceivable that the decision maker wants to limit the number

of messages from which experts are allowed to choose. He may have varied decisions

to make, which requires him to process a vast amount of information. Or, he may

need to make the decision in a fixed time frame. These factors may prevent him from

listening to nuanced description of each problem. As a result, he may just be able to

afford to handle a brief report, or an “up or down” type recommendation. Thus, it

is also interesting to look at how the mechanisms compare with each other when the

message space is restricted to a subset of all possible messages.

For example, the US president makes the final decision on a wide range of issues.

Ideally, he would like to retain the option of allowing experts to give detailed rec-

ommendations on each issue.9 However, this option may be impossible or too costly,

especially on issues of lesser importance. Therefore, he may consider limiting the set

of messages his experts can send. Other examples include a commander who must

make rapid decisions in a military campaign. Time constraint prevents him from

listening to detailed analysis.

9It is not clear whether having the option would strictly benefit him. For example, Szalay (2002)
shows that when it takes effort for the expert to acquire information it is sometimes necessary for
the decision maker to limit the expert’s message space in order to induce better effort on the part
of the expert. However, as long as the decision maker can choose to not use the option of receiving
nuanced reports, retaining that option at least does not hurt him.
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Suppose the decision maker allows only three possible messages. I label the

three messages as statements in the form of “the state is 1,” “0,” or “−1.” This

restriction does not alter the discussion in previous sections where my attention was

limited to the case b ∈ [17
21

, 6
7
], since there are only three messages in equilibrium even

without the restriction. However, for smaller bias values, there could be more than

3 messages in equilibrium when there are no restrictions. Therefore, comparisons

between mechanisms may change when such restrictions are imposed.

Indeed, consider the case b = 2
3
. It can be shown that under the restriction to

three messages, the ranking of the most informative equilibria of the three mecha-

nisms is: sequential consultation, peer review, and then simultaneous consultation.

Furthermore, sequential consultation again allows a less informative equilibrium that

is worse than the unique informative equilibrium under peer review.10 This can be

viewed as lending some support for the adoption of the peer review mechanism.

Asymmetric Equilibrium

Although symmetric equilibria seem to be a natural choice for the game given the

symmetric setup of the model, I shall also look at asymmetric equilibria of the game.

In fact, there exist asymmetric equilibria in which the decision maker is better off

than he is in the symmetric equilibrium. This somewhat counterintuitive result echoes

with the result found in Admati and Pfleiderer (2001) under a different setup. I shall

argue this in fact corresponds to phenomena observed in reality.

Due to the symmetric setup of the model, for any asymmetric equilibrium there

always exists a “mirror image” of it that is also an equilibrium. Thus equilibria always

exist in pairs, unless they are symmetric. This means without loss of generality, when

there are two equilibria that are mirror images of each other I only have to look at

one of them.

First, I shall prove properties that must be true about reviewers’ decisions in any

equilibrium of the game under the general setup.

Lemma 6. In equilibrium, the following must be true for all v, v′ ∈ X, s ∈ S, and

t ∈ M , where v ≥ v′:

1. If yt > 0 then rv(s, t) = 1 implies rv′(s, t) = 1;

2. If yt < 0 then rv(s, t) = 1 implies rv′(s, t) = 1;

10The analysis is similar to that in previous sections. The construction of those equilibria is in an
earlier version of this paper, and is available from the author upon request.
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3. If yt = 0 then rv(s, t) = 0.

Proof. See Appendix.

The intuition of the above lemma is that a negative-biased reviewer is more

likely to reject a message that induces a positive action, compared with neutral and

positive-biased reviewers. Note also if we change the statements into rv(s, t) = 0,

then the order of implication reverses, which expresses the same statement in terms

of acceptance instead of rejection. This lemma is useful since it enables us to check

at most two review decisions for any given state-message pair.

Based on the comment about “mirror images” of equilibria, henceforth I only look

at cases in which y∗0 ≥ (y∗1+y∗−1)/2, because its mirror image satisfies y∗0 ≤ (y∗1+y∗−1)/2.

Now I focus my attention on the setup in Section III. That is, b ∈ [17
21

, 6
7
] and

each expert is allowed to choose from a set of three messages. Again, for illustrative

purposes, let M = S. Using similar notation to that in Section III, let γm indicate

the probability of message m being received in equilibrium.

The following proposition states that it is possible to have asymmetric equilibria

that are more informative than the symmetric ones. Let us first define strategy profile

(F):

(F1) m−1(−1) = m−1(0) = −1, m−1(1) = 0 and m0(s) = m1(s) = s for all s ∈ S;

(F2) r−1(s, t) = 1 for (s, t) = (−1, 0), (−1, 1), (0, 1) and (1,−1), and 0 otherwise;

r0(s, t) = 1 for (s, t) = (−1, 1), (0,−1), (0, 1) and (1,−1), and 0 otherwise;

r1(s, t) = 1 for (s, t) = (−1, 1), (0,−1) and (1,−1), and 0 otherwise;

(F3) y−1 = − (1−4α/27)/3
1/3+(1−2α/3)/9

, y0 = (1−4α/27)/9
1/9+2(1−α/3)/9

, and y1 = 1− 4α/27;

(F4) γ−1 = 1/3+(1−2α/3)/9
1−4α/27

, γ0 = 1/9+2(1−α/3)/9
1−4α/27

, and γ1 = 2/9
1−4α/27

.

Proposition 7. There exists α large enough such that strategy profile (F) (and its

mirror image) is an equilibrium.

Proof. See Appendix.

What happens in the asymmetric equilibrium is that while two types of experts

always tell the truth, the other type misrepresents the states whenever possible. A

right-biased expert finds it not in her best interest to overstate the states. This

is because the decision made by the decision maker is so close to the right-biased

expert’s most preferred action when she tells the truth, that she finds it unfavorable

for her to make a biased report taking into account the possibility of being rejected.
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This effect is enforced by large α values. However for a left-biased expert, the effect

is in the reverse direction. Now she has extra incentives to lie since lying induces a

much more favorable decision than telling the truth. When the true state is 0, type

−1 expert’s most preferred action is −b, however if she reports it as 0 the induced

action would be positive. So she reports −1, which brings the decision much closer

to her most preferred action, although it runs the risk of being rejected.

When α = 1, by Proposition 5, the decision maker’s payoff under the asymmetric

equilibrium as prescribed by Proposition 7 is

−2

3
+

∑
m

γmy2
m = −2

3
+ (1− 4

27
)(

2

9
+

1

9
·

1
9

1
9

+ 2
9
· 2

3

− 1

3
·

−1
3

1
3

+ 1
9
· 1

3

) = − 3083

17010
,

which is higher than his payoff −194/567 = − 5820
17010

under the symmetric equilibrium.

When receiving 0, the decision maker actually takes a positive action. This means

the “middle ground” is not exactly in the middle, but tilted towards one direction.

The gain from having this message instead of an impartial one is that it reduces

the amount of (in this case eliminates) misrepresentation by right-biased experts and

it also reduces the loss from left-biased experts reporting state 1 as 0. The loss

from having a biased 0 is more than offset by the reduction in the loss from experts

misrepresenting the states. Thus the decision maker is better off under the above

asymmetric equilibrium than he is under the symmetric equilibrium.

Morgan and Stocken (2003) show that analysts’ stock recommendations are

asymmetrically distributed on “sell,” “hold,” and “buy”. However, in their model

analysts have preferences that are biased towards pumping up stock prices.11 In

my model, biases of experts are evenly distributed around zero. This makes the

equilibrium more counterintuitive. However, asymmetric equilibria are widespread

in reality. If a movie is rated “average” by critics, normally people would think the

movie is probably not very good. If it is rated downright “awful” then the movie is

likely to be so. However, people tend to discount “two thumbs up” recommendations.

There is no obvious reason to believe that on average critics have upward biases about

the quality of movies or that movie quality is unevenly distributed. In light of the

result of this section, people may actually benefit from this seemingly uninformative

recommendation scheme even if the underlying distributions are symmetric.

11In their model, there do exist unbiased analysts. However, there do not exist analysts biased
towards making stock prices lower.
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Would a Decision Maker Prefer to Know the Bias of an Expert?

In this paper I have assumed throughout that the decision maker does not know

experts’ biases. An interesting question to ask is, were a decision maker given the

option to discover the bias of an expert, would he like to know the bias of the expert?

Assume that the decision maker cannot conceal his knowledge of the expert’s bias.

Again, I discuss biases within the range [17
21

, 6
7
] to make a comparison. Once a decision

maker discovers an expert to be unbiased, then there will not be any communication

problems. If a decision maker discovers that the expert is biased, the situation changes

into one of the classic cheap talk model. Consider a positive-biased expert. I shall

argue that there could be no information transmission between the expert and the

decision maker. There could not be more than one message inducing a positive action,

since the expert would always prefer to send the higher message in state 1, making

that message the only message that could induce a positive action. This unique

positive message must be strictly preferred by the expert in state 0 to any other

message since her bias is greater than 1
2
. Thus this positive message must induce an

action not more than 1
2
. Now in state −1, between reporting this “positive” message

and an alternative message that ensures the action −1 be taken, the expert prefers

to send this “positive” message. Hence there could not be any informative equilibria.

Thus the decision maker’s expected utility if he chooses to discover the bias of the

expert is 2 · 1
3
· (−2

3
) = −4

9
, which is lower than his expected utility −10

27
from strategy

profile (A), in which he does not know the expert’s bias. Hence even if he could

discover the bias of the expert at zero costs, he would still prefer not to do so. In

fact, this phenomenon is true in other settings. Li (2003) shows this is the case when

the decision maker is uncertain about the direction of an expert’s bias, regardless of

the degree of uncertainty.

VI. Related Literature

My work is closely related to research using the cheap talk model to study one de-

cision maker obtaining advice from multiple experts. They are usually applications

and extensions of Crawford and Sobel (1982). Gilligan and Krehbiel (1989) study

a model in which a committee of two experts with opposing biases simultaneously

communicate with the decision maker. They are interested in comparing the “closed

rule” and the “open rule” of making legislations. In the closed rule, bills cannot be

amended after being submitted and other members can only make statements about

the underlying state, while in the open rule the other committee members can submit
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their own amendments. They find that “closed rule” is information superior when the

committee is composed of experts with heterogeneous preferences. For homogeneous

committees, the result is mixed depending on the degree of preference divergence.

Krishna and Morgan (2001a) show that with experts of heterogeneous preferences,

full efficiency is attainable under the open rule but not under the closed rule. For

homogeneous committees, closed rule is always information superior. The difference

between the above two papers are that the latter select the most informationally ef-

ficient equilibria (among the equilibria they find) for each rule while the former does

not. Austen-Smith (1993) also studies a model with two experts. He is concerned

with comparing sequential consultation and simultaneous consultation. The state

and signal spaces are binary and the experts are imperfectly informed. He finds that

sequential consultation is superior to simultaneous consultation. Krishna and Mor-

gan (2001b) examine sequential consultation with two experts with like biases and

opposing biases and conclude that the latter conveys more information than having

just one expert, but the former is not more informative than having one expert. But

the order in which the experts speak also matters to the outcome. In particular, when

a moderate is paired with an extremist, the moderate should be consulted second.

This paper is closest in spirit to the last paper cited above. However, biases of

the expert and the reviewer are unknown to the decision maker in this paper. This

paper extends the literature to cases in which the decision maker does not know the

experts’ biases, but would like to maximize expected utility based on his knowledge

of the distribution of biases of the experts.12 I also introduce a mechanism in which

interactions between experts take the “expert-reviewer” form, and the interactions

are unobservable to the decision maker.

Another line of research is concerned with the problem how reputation concerns

of experts affect information transmission behavior. Sobel (1985) was the first to

study the reputation building motives of informed experts when their interests may

contradict the decision maker’s. Morris (2001) studies an expert’s instrumental con-

cern for reputation, in the sense that reputation only matters because the expert

wants to take part in the discussion of future decisions. In his model, experts are

either biased (bad) or unbiased (good). There is only one possible direction of bias.

In order to be perceived as a good advisor tomorrow, the expert chooses not to re-

port the true state when reporting it hurts her reputation as an unbiased advisor.

Ottaviani and Sørensen (2001b) study the reputation concerns of experts in the sense

12Cheap talk with uncertain biases is discussed by de Garidel-Thoron and Ottaviani (2000). But
multiple experts with unknown biases have not been well studied.
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that they want to be perceived as talented predictors of the true state. They con-

clude that full revelation of information is never an equilibrium. In the equilibrium

at most two messages get sent, although agents are free to choose from a rich message

space. Ottaviani and Sørensen (2001a) consider the problem of choosing the order

for multiple experts to speak to optimize information transmission when experts have

reputation concerns. They also address the problem of the order of speech, but the

setting is different from Krishna and Morgan’s.

There is also a literature on eliciting opinions under more general settings. Glazer

and Rubinstein (1998) study how to implement the policy target based on the motive

structure of experts. The conclusion is that when experts care only about the the

correctness of the decision, the public target (minimizing the possibility of mistakes)

cannot be implemented, while if experts care both about the correctness of the de-

cision and whether their recommendations coincide with the final decision, then the

public target can be implemented. Dewatripont and Tirole (1999) study the case

when information collection is costly for the experts. They argue that having ad-

vocates of opposing causes is superior to having one impartial information collector

working for both causes. Szalay (2002) is concerned with the design of contracts when

the agent has to spend effort collecting information. He shows limiting the agent’s

freedom of choice may benefit the principal.

There has also been research showing the disadvantages of peer review under

different contexts from this paper. For example, Föster (1995) uses an experiment to

show the negative effect peer review has on the introduction of new research methods

in academic publication, when the reviewer status depends on whether one performs

well as a reviewee. Baliga and Sjostrom (2001) show self assessment is better than

peer review at transmitting information about innovation projects when there are

conflicts of interest between the reviewer and the reviewee.

VII. Concluding Remarks

In this paper, I have studied situations in which the decision maker consults multiple

experts with uncertain biases. I compare three mechanisms: simultaneous consulta-

tion, sequential consultation, and peer review. Simultaneous consultation does better

than the other two mechanisms. Peer review is a simple and less costly mechanism for

the decision maker. It does achieve significant information transmission, sometimes

better than sequential consultation.

In this paper, the state space and the expert type space are both discrete and the

prior distributions are symmetric. However it is also interesting to see what happens
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if all experts have biases in the same direction. Which mechanism brings about more

effective communication?

Another extension is the possibility of reviewers and experts having different

distribution of biases. Suppose there are two populations of experts with the same

information, but one population has higher variance in bias. An interesting question

is to see which population should serve as reviewers, and which population as experts.

In reality, decision makers may have better information about types of reviewers, but

it is not clear whether it is optimal to assign those who have lower variances in biases

as reviewers.
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Appendix: Proofs

Proof. (of Proposition 1) Suppose there exists a fully revealing equilibrium. That is,

in equilibrium P (y = s|s) = 1 for all s ∈ S. The informativeness assumption implies

that for all s ∈ S,

P (m = s|s) = 1. (3)

and for all m ∈ S,

ym = m. (4)

This implies that for all s ∈ S and x ∈ X,

mx(s) = s. (5)

If mx0(s0) 6= s0 for some x0 ∈ X and s0 ∈ S, then P (m 6= s0|s0) ≥ P (x = x0)(1 −
2α/3) = 1/3 − 2α/9. So P (m = s0|s0) < 1, and we find a contradiction. We

also have that rv(s, s) = 0 for all v ∈ X and s ∈ S. Otherwise, Equation 3 will

not hold either. Observe also that given Equation 4, rv(s, 0) = 0 for all v ∈ X

and s ∈ S. The utility −(0 − (s + bv))
2 from acceptance is always higher than the

utility −[(1 − α)(0 − (s + bv))
2 + α

∑
m∈S (ym − (s + bv))

2] from rejection. Hence

the message 0 is never rejected. Given this, if s = 1 type −1 expert’s utility is

−(0− (1−2/3))2 = −1/9 from sending 0, and −(1− (1−2/3))2 = −4/9 from sending

1. Thus m−1(1) = 1 cannot be part of the equilibrium, contradicting Equation 5.

Hence there is no fully revealing equilibrium.

Proof. (of Proposition 2) Since we consider symmetric equilibria, y−1 = −y1 and

y0 = 0. It must be that y1 > 0 otherwise the equilibrium is uninformative. Let y = y1

to save notation. Since an expert’s utility function is as defined in Equation 1, we

have m∗
0(s) = s for all s ∈ S. This is because that ys and s have the same sign implies

−(ys − s)2 < −(ys′ − s)2 for all s, s′ ∈ S, s 6= s′.

I calculate m∗
1(s) only and m∗

−1(s) follows from symmetry. Note that b1 = b ∈ [17
21

, 6
7
]

First, m∗
1(1) = 1 since u(1, 1, b) = −(y−(1+b))2 > −(0−(1+b))2 > −(−y−(1+b))2.

Second, m∗
1(0) = 1. Since |0− (0 + b)| > |y − (0 + b)|, and |−y − (0 + b)| > |0− (0 + b)|

for all b > 1
2

and y ∈ (0, 1], we have u(1, 0, b) = −(y − (0 + b))2 > −(0− (0 + b))2 >

−(−y − (0 + b))2.

Finally, m∗
1(−1) 6= 1 because b < 1 implies |0− (−1 + b)| < |y − (−1 + b)|. If

m∗
1(−1) = −1 (by symmetry, m∗

−1(1) = 1) then y = P (s=1)·1+P (s=0,x=1)·0
P (s=1)+P (s=0,x=1)

= (1/3)/(1/3+

1/3 × 1/3) = 3/4. Thus |0− (−1 + b)| = 1 − b < b − 1
4

= |−y − (−1 + b)|,
which makes m1(−1) = −1 not optimal. The inequality comes from the fact that

35



b ≥ 17
21

> 5
8
. So only m∗

1(−1) = 0 can be part of the equilibrium strategy. In this

case, y = P (s=1,x 6=−1)·1+P (s=0,x=1)·0
P (s=1,x 6=−1)+P (s=0,x=1)

= (1/3× 2/3)/(1/3× 2/3 + 1/3× 1/3) = 2/3, thus

|0− (−1 + b)| = 1 − b < b − 1
3

= |−y − (−1 + b)|. Again the inequality comes from

the fact that b ≥ 17
21

> 2
3
. Hence m∗

1(−1) = 0 is optimal. To summarize, m∗
1(s) = s+1

if s 6= 1, and m∗
1(1) = 1, and by symmetry m∗

−1(s) = s− 1 if s 6= −1, m∗
−1(−1) = −1.

In the above paragraph, I have shown that y∗1 = 2/3. Furthermore the decision

maker’s expected utility is

−[P (s = 1, x 6= −1)(y∗ − 1)2 + P (s = −1, x 6= 1)(−y∗ − (−1))2

+P (s = 1, x = −1)(0− 1)2 + P (s = −1, x = 1)(0− (−1))2

+P (s = 0, x = 1)(y∗1 − 0)2 + P (s = 0, x = −1)(−y∗1 − 0)2]

= −2[2/9× (1/3)2 + 1/9× 12 + 1/9× (2/3)2]

= −10/27

Proof. (of Lemma 2) In any pure strategy equilibrium, symmetry implies mi
0(0) = 0.

To show the other statement, it is enough to consider mA
0 (1) and mA

1 (1).

First mA
1 (1) = 1 by informativeness and monotonicity. For an expert of type 0, it is

always true that u(y(s, mB
x (1)), 1, 0) ≥ u(y(t,mB

x (1)), 1, 0) for all s, t ∈ S, s ≥ t and

x ∈ X. Thus

(*) 1
3

∑
x∈X u(y(s, mB

x (1)), 1, b1) ≥ 1
3

∑
x∈X u(y(t,mB

x (1)), 1, b1), for all s, t ∈
S, s ≥ t,

making mA
0 (1) = 1 a best response no matter what the other does. Now we check

that this is the only possible best response in equilibrium.

First mA
0 (1) = −1 would violate monotonicity.

Suppose mA
0 (1) = 0. Due to symmetry and anonymity, y(1,−1) = y(−1, 1) =

−y(1,−1), thus they must both be 0. Informativeness gives us y(1, 1) > 0 = y(−1, 1),

which in turn implies that either y(1, 1) > y(0, 1) or y(1, 0) > y(0, 0) must be true.

Thus (*) holds strictly for s = 1 and t = 0, since mB
1 (1) = 1 and mB

0 (1) = 0. This

contradicts mA
1 (1) = 0.

The above arguments prove the lemma.

Proof. (of Proposition 3) Given Lemma 2, the only strategies left to be determined

are mi
s(−s) and mi

s(0). Once they are determined, y can be derived from (EQ3). By

symmetry and anonymity, it is enough to discuss mA
1 (−1) and mA

1 (0).

First I consider mA
1 (0).
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(a) mA
1 (0) = −1. This would violate monotonicity.

(b) mA
1 (0) = 0. By symmetry mA

−1(0) = 0. Thus 1
3

∑
x∈X u(y(0, mA

x (0)), 0, b1) =

u(y(0, 0), 0, b1). Thus we have
1
3

∑
x∈X u(y(1, mA

x (0)), 0, b1) > 1
3

∑
x∈X u(y(0, mA

x (0)), 0, b1),

unless y(1, 0) = y(0, 0). But if y(1, 0) = y(0, 0) = 0, then it must be that

mA
−1(1) 6= 0, otherwise by Lemma 2 y(1, 0) = 1. As shown above y(1,−1) = 0.

But mA
1 (−1) = 1 and mA

1 (−1) = −1 would be worse responses than mA
1 (−1) =

0.

When mA
1 (−1) = 1, y(1, mA

−1(−1)) = y(1, mA
0 (−1)) = y(1,−1) = y(0,−1),

while y(1, mA
1 (−1)) = y(1, 1) > y(0, 1) > −1+ b. Since −1+ b is type 1 expert’s

most preferred action, mA
1 (−1) = 0 is better than mA

1 (−1) = 1.

When mA
1 (−1) = −1, y(1, 1) = 1. Thus y(−1, mA

x (−1)) = y(−1,−1) = −1 and

y(0,−1) = 0, and the latter is closer to a type 1 expert’s most preferred action

−1 + b since b > 1
2
.

(c) mA
1 (0) = 1. Now we discuss mA

1 (−1).

(i) mA
1 (−1) = −1. Given this, we can calculate the eventual probability

distribution over signal pairs and the decision maker’s optimal strategy.

The following is a list:13 The probabilities are calculated according to

(mA, mB) Prob(mA, mB, s = −1 + 0 + 1) y(mA, mB)

(1, 1) 0 + 1
3
× 1

3
× 1

3
+ 1

3

9

10
(0, 1) 0 + 1

3
× 1

3
× 1

3
+ 0 0

(1,−1) 0 + 1
3
× 1

3
× 1

3
+ 0 0

(0, 0) 0 + 1
3
× 1

3
× 1

3
+ 0 0

the experts’ strategies. For example, Prob(0, 1, s = 0) = P (s = 0) ×
P (xA = 0) × P (xB = 1), because in state 0, only type 0 experts report

0 and only type 1 experts report 1. The probabilities and decisions for

the omitted pairs can be inferred from symmetry and anonymity. Take

(−1,−1) for example. The probabilities should be derived from (1, 1),

13The notation Prob(mA,mB , s = −1 + 0 + 1) means that in that column, probabilities of
(mA,mB , s) are separated by “+” according to different s.
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which are 1
3

+ 1
3
× 1

3
× 1

3
+ 0, and the decision should be −y(1, 1) = − 9

10
.

Given these we may check the optimality of strategies of experts. Now

given s = −1, an expert of type 1 would earn u(− 9
10

,−1, b1) if she chooses

mA
1 (−1) = −1, or u(0,−1, b1) if she chooses mA

1 (−1) = 0. The latter is

higher since 0 is closer to −1 + b (her most preferred action when s = −1)

than −9/10 is. So mA
1 (−1) = −1 is not optimal.

(ii) mA
1 (−1) = 0. Again, the following is the table of probabilities and deci-

sions: Now we check the optimality of mA
1 (−1) = 0. I omit the calculation

(mA, mB) Prob(mA, mB, s = −1 + 0 + 1) y(mA, mB)

(1, 1) 0 + 1
3
× 1

3
× 1

3
+ 1

3
× 2

3
× 2

3

4

5

(0, 1) 0 + 1
3
× 1

3
× 1

3
+ 1

3
× 1

3
× 2

3

2

3
(1,−1) 0 + 1

3
× 1

3
× 1

3
+ 0 0

(0, 0) 1
3
× 1

3
× 1

3
+ 1

3
× 1

3
× 1

3
+ 1

3
× 1

3
× 1

3
0

here, but it turns out for t = −1 and 1
1
3

∑
x∈X u(y(0, mA

x (0)),−1, b1) > 1
3

∑
x∈X u(y(t,mA

x (0)),−1, b1).

Thus mA
1 (−1) = 0 is optimal. Note that this is exactly strategy profile

(A). The expected payoff of the decision maker when s = −1 or s = −1 is

−[P (xA = 1or0, xB = 1or0)× (y(1, 1)− 1)2

+2× P (xA = −1, xB = 1or0)× (y(0, 1)− 1)2

+P (xA = −1, xB = −1)× (y(0, 0)− 1)2]

= −[
2

3
× 2

3
× (

4

5
− 1)2 + 2× 1

3
× 2

3
× (

2

3
− 1)2 +

1

3
× 1

3
× (0− 1)2]

= − 361

2025
.

His expected payoff when s = 0 is

−[2× P (xA = 1, xB = 1)× (y(1, 1)− 0)2

+2× P (xA = 0, xB = 1or − 1)× (y(0, 1)− 1)2

= −[2× 1

3
× 1

3
× (

4

5
− 0)2 + 2× 1

3
× 2

3
× (

2

3
− 0)2]

= − 688

2025
.

Thus his expected payoff is −1
3
( 361

2025
+ 688

2025
+ 361

2025
) = − 94

405
.
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(iii) mA
1 (−1) = 1. The following is the table of probabilities and decisions:

(mA, mB) Prob(mA, mB, s = −1 + 0 + 1) y(mA, mB)

(1, 1) 1
3
× 1

3
× 1

3
+ 1

3
× 1

3
× 1

3
+ 1

3
× 2

3
× 2

3

1

2
(0, 1) 0 + 1

3
× 1

3
× 1

3
+ 0 0

(1,−1) 1
3
× 1

3
× 2

3
+ 1

3
× 1

3
× 1

3
+ 1

3
× 2

3
× 1

3
0

(0, 0) 0 + 1
3
× 1

3
× 1

3
+ 0 0

Now we check the optimality of mA
1 (−1) = 1. Note that u(y(0, 1),−1, b1) =

u(0,−1, b1) > u(1/2,−1, b1) = u(y(1, 1),−1, b1) and u(y(0,−1),−1, b1) =

u(0,−1, b1) = u(y(1,−1),−1, b1). Thus mA
1 (−1) = 0 is strictly better than

mA
1 (−1) = 1. Hence mA

1 (−1) = 1 is not optimal.

Summarizing the above arguments proves us the proposition.

Proof. (of Lemma 3) By symmetry mA
0 (0) = 0, mB

0 (0, 0) = 0 and y(0, 0) = 0. Due

to monotonicity and the rationalizability requirement for y (that is y ∈ [−1, 1]), I

have mB
0 (1, mA), mB

1 (1, mA) ∈ arg maxmB y(mA, mB). By monotonicity mA
1 (1) = 1,

otherwise mA
x (s) = 0 for all x ∈ X and s ∈ S, making the first expert’s reports

uninformative, violating the informativeness condition.

Now I show Part 3. Note that by monotonicity y(1, 1) ≥ y(1, 0) ≥ y(0, 0) = 0

yet in state 0 the most preferred action for an expert of type −1 is −b. Thus

y(1,−1) is as good as or better than y(1, 0) and y(1, 1) for her. Hence mB
−1(0, 1) ∈

argminmBy(1, mB). To show that mB
1 (0, 0) ∈ arg maxmB y(0, mB), note that y(0, 1) ≥

y(0, 0) = 0 ≥ y(0,−1). Thus y(0, 1) is closer to b than y(0, 0) and y(0,−1) since b > 1
2
.

Hence mB
1 (0, 0) ∈ arg maxmB y(0, mB).

To show that mA
0 (1) = 1 I show that the other two messages are impossible.

First, mA
0 (1) = −1 would violate monotonicity.

Second, mA
0 (1) = 0 (hence mA

0 (−1) = 0 by symmetry). Then by monotonicity

mA
1 (−1) = 0 or 1.

1. Now consider the case mA
1 (−1) = 0.

• mA
1 (0) = 0. Then y(1, mB) = 1 for all (1, mB) that are sent in equilibrium

since mA = 1 only when s = 1. Given this mA
0 (1) = 0 could be optimal

only if y(0, 1) = 1 and mB
−1(1, 0) = 1. But the latter is impossible since

y(0, 0) is closer to 1− b than y(0, 1) = 1.
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• mA
1 (0) = 1. First mB

1 (−1, 0) = 1 only if y(0, 1) = y(0, 0) = 0, since in state

−1 a type 1 expert’s most preferred action is −1 + b < 0. By symmetry

y(0,−1) = 0. Monotonicity implies y(1,−1) ≥ 0. Thus mA
0 (1) = 0 guar-

antees an action of 0 from the decision maker, while mA
0 (1) = 1 guarantees

nonnegative actions from the decision maker and strictly positive action

some of the time due to informativeness. This implies that mA
0 (1) = 1 is

better than mA
0 (1) = 0.

If y(0, 1) > y(0, 0) then mB
1 (−1, 0) = 0 or −1. We need mB

1 (1, 0) =

mB
0 (1, 0) = 1, thus y(0, 1) ≥ 4/5. This has two implications. The first one

is mB
1 (−1, 0) = 0 since b > 3

5
, which implies y(0, 1) = 4

5
. The second one

is that by monotonicity y(1, 1) ≥ 4/5. On the other hand, y(1, mB) ≤ 3
4

for any mB if mB
v (0, 1) = mB for some v ∈ X. But as proven above

mB
0 (1, 1), mB

1 (1, 1) ∈ arg maxmB y(1, mB). Thus y(1, m) ≥ 4
5

for all m ∈
arg maxmB y(1, mB), which leaves the only possibility maxmB y(1, mB) = 1.

Hence mA
0 (1) = 0 induces actions y(0, 1) = 4

5
with probability 2

3
and 0 with

probability 1
3
, while mA

0 (1) = 1 induces actions maxmB y(1, mB) = 1 with

probability 2
3

and another nonnegative action with probability 1
3
. This

means that mA
0 (1) = 1 is a better response.

2. Now we consider the case mA
1 (−1) = 1. We get mA

1 (0) = 1 by monotonicity.

Thus ∑
mB

P (mB|mA = 0)y(0, mB) =
∑
mB

P (mB|mA = 0)y(0, mB) = 0.

Since mA = 1 happens in state−1, by monotonicity y(1,−1) < 0 and y(0,−1) <

0. Thus mB
−1(−1, 1) = mB

0 (−1, 1) = −1 and mB
1 (0,−1) = 1. We can also

conclude that mB
1 (−1, 0) = 0 or −1 since y(0, 1) is positive and hence farther

from −1 + b than y(0, 0) = 0.

If mB
1 (−1, 0) = −1 then by the proven parts of this lemma y(0,−1) = −3/4,

which makes mB
1 (−1, 0) = −1 not optimal since y(0, 0) = 0 is closer to −1 + b.

So mB
1 (−1, 0) = 0 and y(0,−1) = −2/3. But this implies y(1,−1) ≥ −2/3 and

y(−1,−1) ≤ −2/3 by monotonicity. These imply mB
1 (−1, 0) = 0 since a type 1

expert’s most preferred action in state −1 is −1 + b, which lies in the interval

(−1
3
, 0). We can also conclude mB

1 (1,−1) = mB
0 (1,−1) = 1.

As proven above mB
1 (1, 1), mB

0 (1, 1) ∈ arg maxmB y(1, mB). We separate our

discussion into two different cases.

Case 1. y(1, 0) = y(1, 1) ≥ 2
3
.
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We claim mB
0 (0, 1) = −1. Suppose to the contrary mB

0 (0, 1) = 0 or 1. We

have proved that mB
1 (0, 1) = 0 or 1. This would cause P (s = 1|(mA, mB) =

(1, 0) or (1, 1)) ≤ 2
5
, contradicting the assumption y(1, 0) = y(1, 1) ≥ 2

3
.

We also need mB
1 (−1, 1) = −1, otherwise y(1, 0) ≤ 2

5
.

Now if mB
−1(1, 1) = 0 or 1, then mA

0 (1) = 1 is a better response than

mA
0 (1) = 0. Since the former ensures that the decision maker takes the

action y(1, 0) = y(1, 1) ≥ 2
3
, while the latter induces actions y(0, 0 = 0)

with probability 1
3

and y(0, 1) = 2
3

with probability 2
3
.

If mB
−1(1, 1) = −1 then y(1,−1) = −1

3
, and y(1, 0) = y(1, 1) = 2

3
. But

in this case mA
1 (1) = 1 would be a worse response than mA

1 (1) = 0, a

contradiction. The former induces actions y(1,−1) = −1
3

with probability
1
3

and y(1, 0) = y(1, 1) = 2
3

with probability 2
3
, while the latter induces the

same distribution of actions described in the previous paragraph.

Case 2. y(1, 1) > y(1, 0). This implies mB
1 (1, 1) = mB

0 (1, 1) = 1, mB
1 (−1, 1) 6= 1,

and mB
0 (0, 1) 6= 1. We may also conclude that mB

−1(1, 1) 6= 1 since y(1, 1) ≥
2
3
, y(1, 0) ≥ 0, and a type −1 expert’s most preferred action in state 1 is

1− b < 1
3
. Now we consider the two possibilities:

• mB
1 (0, 1) = 0. This implies that y(1, 1) = 1. If mB

−1(1, 1) = −1 then

y(1, 0) = 0 since y(1, 0) ≥ 0 by monotonicity. But then mB
−1(1, 1) = 0

is better than mB
−1(1, 1) = −1 since y(1,−1) < 0 and b < 1. Thus

mB
−1(1, 1) = 0. Now mA

0 (1) = 1 is a better response than mA
0 (1) = 0

since the former induces y(1, 0) ≥ 0 with probability 1
3

and y(1, 1) = 1

with probability 2
3
, while the latter induces y(0, 0) = 0 with probability

1
3

and y(0, 1) = 2
3

with probability 2
3
.

• mB
1 (0, 1) = 1. This implies y(1, 1) = 2

3
.

If mB
−1(1, 1) = −1 then mB

0 (0, 1) = −1, since mB
0 (0, 1) = 0 implies

y(1, 0) = 0, and mB
−1(1, 1) = 0 would be a better response than

mB
−1(1, 1) = −1. Thus y(1,−1) < 0 = y(0, 0) and y(1, 1) = y(0, 1),

and mA
1 (1) = 1 would not be optimal. A contradiction.

If mB
−1(1, 1) = 0 then mA

0 (1) = 1 is a better response than mA
0 (1) = 0

and constitutes a contradiction unless y(1, 0) = 0. To make y(1, 0) = 0

we need mB
1 (−1, 1) = 0, and y(1, 0) = 0 implies mB

0 (0, 1) = 0. Thus

the second expert’s report is completely uninformative.

The above arguments show that the only possibility is mA
0 (1) = 1.

Proof. (of Proposition 4) According to Lemma 3, the only parts of expert A’s strategy
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left to be determined are mA
1 (−1) and mA

1 (0).

I proceed by considering all possible combinations.

Case 1. mA
1 (−1) = −1 and mA

1 (0) = 0. No matter what expert B does, the

state is perfectly revealed to the decision maker. But given this mA
1 (−1) = −1 is not

optimal since 0 is closer than −1 is to her most preferred action −1 + b > −1
2
.

Case 2. mA
1 (−1) = −1 and mA

1 (0) = 1. In this case since mA = 0 only happens

when s = 0, y(0, mB) = 0 for all mB such that mB
v (0, 0) = mB for some v ∈ X. Now

in order for the second expert’s report to be informative, we need y(1, 1) > y(1,−1).

This implies mB
0 (0, 1) 6= 1. Note that y(1, 1) ≥ 3

4
since P (s = 1|mA = 1) = 3

4
and

s ≥ 0 when mA = 1. Thus y(−1,−1) ≤ −3
4
.

Now we find a contradiction since mA
1 (−1) = 0 is a better response than mA

1 (−1) =

−1. The former induces action 0 by the decision maker, while the latter induces

y(−1,−1) ≤ −3
4

with probability 2
3
. The difference in expected utility is thus greater

than

−(0− (−1 + b))2 − [−2

3
(−3

4
− (−1 + b))2] = −1

3
(b2 − 5b +

23

8
) > 0

for all b ≥ 2
3
. Hence mA

1 (−1) = 0 is better.

Case 3. mA
1 (−1) = 0 and mA

1 (0) = 0. In this case y(1, mB) = 1 for all mB such

that mB
v (1, 1) = mB for some v ∈ X. In order for the second expert’s report to be

informative, we need y(0, 1) > y(0, 0) > y(0,−1). Thus mB
1 (0, 0) = 1 since b > 1

2
. We

may also conclude mB
−1(−1, 0) = mB

0 (−1, 0) = −1.

Now we only need to determine mB
1 (−1, 0). First mB

1 (−1, 0) 6= 1 since y(0, 1) >

y(0, 0) > 0 > −1 + b. If mB
1 (−1, 0) = −1, then y(0,−1) = −1

2
. But mB

1 (−1, 0) = −1

would not be optimal since b > 3
4

implies −1 + b is closer to y(0, 0) than y(0,−1).

If mB
1 (−1, 0) = 0, then y(0,−1) = −2

5
. Thus mB

1 (−1, 0) = 0 is optimal if b ≥ 4
5
,

which is satisfied by our assumed values of b. Now we compare the expected utility of

a type 1 expert from mA
1 (0) = 0 and mA

1 (0)=1. By reporting the former, the expert

induces actions y(0,−1) = −y(0, 1), y(0, 0), and y(0, 1) with equal probabilities.

By reporting the latter, she induces actions y(1, mB
v (0, 1)) with equal probabilities for

v = −1, 0, 1. In order for mA
1 (0) = 0 to be optimal, we need the difference in expected

utility to be nonnegative. That is,

−1

3
[(b− y(0, 1))2 + (b− 0)2 + (b− (−y(0, 1)))2]− (−1

3
)
∑

v

(b− y(1, mB
v (0, 1)))2 ≥ 0.

We need appropriate off-equilibrium behavior by the second expert and the decision
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maker in order for the above condition to be satisfied. Note that∣∣b− y(1, mB
1 (0, 1))

∣∣ ≤ |b− y(1, 1)| = 1− b,

and that ∣∣b− y(1, mB
v (0, 1))

∣∣ ≤ max
mB

∣∣b− y(1, mB)
∣∣ ≤ max{b, b− y(1,−1)}.

Thus it is necessary that either

−1

3
[3b2 + 2y(0, 1)2]− (−1

3
)[(1− b)2 + 2b2] ≥ 0 and y(1,−1) ≥ 0

or

−1

3
[3b2 + 2y(0, 1)2]− (−1

3
)[(1− b)2 + 2(b− y(1,−1))2] ≥ 0 and y(1,−1) ≤ 0.

The first inequality is impossible since b > 1 − b > 0. The second inequality on the

other hand would imply y(1,−1) ∈ [−2
5
, 0] since y(0,−1) ≤ 0. But an expert B of

type −1 would prefer y(1,−1) to y(1, 1) = 1 in state 1 since it is closer to her most

preferred action 1 − b, due to our assumption b ∈ [17
21

, 6
7
]. It is now a contradiction

since I have shown above that y(1, mB) = 1 for all mB such that mB
v (1, 1) = mB for

some v ∈ X.

Case 4. mA
1 (−1) = 0 and mA

1 (0) = 1. In this case y(1, mB) ≥ 0 for all mB such

that mB
v (s, 1) = mB for some v ∈ X and s ∈ S.

In order to ensure that the second expert’s reports be informative we must have

y(0,−1) < y(0, 0) (which implies y(0, 0), y(0, 1) by symmetry) or y(1,−1) < y(1, 1).

1. y(0,−1) < y(0, 0).

This immediately implies mB
1 (0, 0) = 1, mB

1 (1, 0) = 1, and mB
0 (1, 0) = 1. We

also know mB
1 (−1, 0) 6= 1 since y(0, 0) is better than y(0, 1) in state −1 for an

expert of type 1. From these facts we conclude y(0, 1) ≥ 2
3
. Hence mB

1 (−1, 0) =

0 since a type 1 expert’s most preferred action in state −1 is −1 + b > −1
3
,

which is closer to y(0, 0) = 0 than to y(0,−1). We conclude y(0, 1) = 2
3
.

If y(1,−1) = y(1, 0) = y(1, 1), they must all be equal to 2
3
. Thus it does not

matter what the mB
v (s, 1) are as long as they are such that y(1, mB) = 2

3
for

all mB such that mB
v (s, 1) = mB for some s ∈ S and v ∈ X. It remains

to check whether mA
1 (−1) = 0 and mA

1 (0) = 1 are optimal. The strategy

mA
1 (−1) = 0 is optimal since mA

1 (−1) = 0 induces actions y(0,−1) = −2
3

with

probability 2
3

and y(0, 0) = 0 with probability 1
3
, while mA

1 (−1) = −1 induces

action y(−1, mB) = −2
3

for sure, and 0 is closer than −2
3

to the expert’s favorite
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action −1 + b in state −1. The strategy mA
1 (−1) = 1 is even worse since it

induces action 2
3

for sure, which is worse than all the actions mentioned above.

The strategy mA
1 (0) = 1 is optimal since mA

1 (0) = 1 induces action y(1, mB) = 2
3

for sure, while mA
1 (0) = 0 induces actions y(0,−1) = −2

3
, y(0, 0) = 0, and

y(0, 1) = 2
3

with equal probabilities, and 0 and −2
3

are farther than 2
3

from

her most preferred action b in state 0. This strategy profile thus constitutes

an equilibrium since every player is playing his or her best responses. Note

that this is exactly strategy profile (B). In any strategy profile, the decision

maker’s expected payoff can be written∑
s

∑
mA

∑
mB

P (s, mA, mB)u(y(mA, mB), s, 0),

where P (s, mA, mB) is the probability of the state-messages triple (s, mA, mB)

occurring in equilibrium. Thus the decision maker’s payoff in strategy profile

(B) is

−2 · 1
3
{2

3
(2

3
− 1)2 + 1

3
[2
3
(2

3
− 1)2 + 1

3
(0− 1)2]}

−1
3
{2 · 1

3
(2

3
− 0)2 + 1

3
[2 · 1

3
(2

3
− 0)2 + 1

3
· 0]}

= −26
81

Now we consider the possibility y(1,−1) < y(1, 1). Note that y(1, 1) = y(1, 0)

if the message pair (1, 1) is not sent in equilibrium, since otherwise we would

have mB
1 (1, 1) = 1. Similarly y(1,−1) = y(1, 0) if the message pair (1,−1) is

not sent in equilibrium, since otherwise we would have mB
−1(0, 1) = −1. Now

we separate our discussion into two cases according to the number of different

actions y(1, mB).

• y(1, 1) = y(1, 0) or y(1,−1) = y(1, 0) (but not both).

If y(1, 1) = y(1, 0), it is possible that (1, 1) or (1, 0) is never sent, but it does

not matter to our discussion since we may replace them with each other

without changing the essential strategy profile. Now we have mB
−1(1, 1) =

−1 and mB
−1(0, 1) = mB

0 (0, 1) = −1. Hence y(1,−1) ≤ 1
2
, which implies

mB
1 (0, 1) 6= −1 since y(1, 1) is closer than 1

2
is to a type 1 expert’s most

preferred action b in state 0. Thus we get y(1, 1) = y(1, 0) = 4
5
, y(1,−1) =

1
2
. The case y(1, 0) = y(1,−1) is similar. Now we need to check the

optimality of mA
1 (−1) = 0 and mA

1 (0) = 1. Note that mA
1 (−1) = 0 induces

actions y(0,−1) = −2
3

with probability 2
3

and y(0, 0) with probability 1
3
,

that mA
1 (−1) = −1 induces actions y(−1,−1) = −4

5
with probability 2

3
and

y(−1, 1) = −1
2

with probability 1
3
, and that mA

1 (−1) = 1 induces action
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y(1,−1) = 1
2

for sure. Thus mA
1 (−1) = 0 is better than mA

1 (−1) = −1

since a type 1 expert prefers −2
3

to −4
5

and 0 to −1
2

in state −1, due

to our assumption b ∈ [17
21

, 6
7
]. The difference in expected utility between

mA
1 (−1) = 0 and mA

1 (−1) = 1 is

−1

3
[2(−2

3
− (−1 + b))2 + (0− (−1 + b))2]− (

1

2
− (−1 + b))2 =

199

36
− 17

3
b,

which is positive as long as b < 199
204

. Thus mA
1 (−1) = 0 is better than

mA
1 (−1) = 1. Second, mA

1 (0) = 1 induces actions y(1, 1) = 4
5

with prob-

ability 1
3

and y(1,−1) = 1
2

with probability 2
3
, while mA

1 (0) = 0 induces

actions y(0, 1) = 2
3
, y(0, 0) = 0, and y(0,−1) = −2

3
with equal probabil-

ities. Thus mA
1 (0) = 1 is a better response than mA

1 (0) = 0 since a type

1 expert prefers 4
5

to 2
3

and 1
2

to any nonpositive action, due to our as-

sumption b ∈ [17
21

, 6
7
]. Thus the strategy profile constitutes an equilibrium.

Note that it is strategy profile (C). In this strategy profile, the decision

maker’s expected payoff is

−2 · 1
3
{2

3
[2
3
(4

5
− 1)2 + 1

3
(1

2
− 1)2] + 1

3
[2
3
(2

3
− 1)2 + 1

3
(0− 1)2]}

−1
3
{2 · 1

3
[2
3
(1

2
− 0)2 + 1

3
(4

5
− 0)2] + 1

3
[2 · 1

3
(2

3
− 0)2 + 1

3
· 0]}

= −104
405

• y(1, 1) > y(1, 0) > y(1,−1).

This implies mB
1 (1, 1) = mB

0 (1, 1) = 1 and mB
−1(0, 1) = mB

0 (0, 1) = −1.

Therefore y(1,−1) ≤ 1
2
, which implies that mB

1 (0, 1) 6= −1.

If mB
1 (0, 1) = 0 then we need |y(1, 0)− b| ≤ |y(1, 1)− b|, which implies

y(1, 0) ≥ 2b − y(1, 1) ≥ 2b − 1 > 1
2
. The last inequality sign is due

to our assumption that b ∈ [17
21

, 6
7
]. This requires mB

−1(1, 1) = 0, since

mB
1 (1, 1) = mB

0 (1, 1) = 1. But given y(1, 0) > 1
2
, mB

−1(1, 1) = 0 is not

optimal since y(1,−1) ∈ [0, y(1, 0)).

If mB
1 (0, 1) = 1, then y(1, 0) = 1 as long as (1, 0) is sent in equilibrium,

which would violate y(1, 0) < y(1, 1).

Thus (1, 0) is never sent in equilibrium, and this case collapses into strategy

profile (C).

2. y(0, 0) = y(0, 1) = 0 and hence y(1,−1) < y(1, 1) by informativeness. The

analysis is similar to that above, and the only possible equilibrium involves

y(1, 1) = 4
5

and y(1,−1) = 1
2
.

It remains to check the optimality of mA
1 (0) = 1 and mA

1 (−1) = 0. The strategy

mA
1 (0) = 1 induces actions y(1, 1) = 4

5
with probability 1

3
and y(1,−1) = 1

2
with
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probability 2
3
, while mA

1 (0) = 0 induces action 0 for sure. All positive actions

are preferred to 0 since b > 1
2
. Hence mA

1 (0) = 1 is optimal. The strategy

mA
1 (−1) = 0 induces the action 0 for sure, mA

1 (−1) = −1 induces actions

y(−1,−1) = −4
5

with probability 2
3

and y(−1, 1) = −1
2

with probability 1
3
, and

mA
1 (−1) = 1 induces the action y(1,−1) = 1

2
for sure. Among all these actions

0 is a type 1 expert’s most preferred action in state −1. Thus mA
1 (−1) = 0 is

optimal.

Note that this is exactly strategy profile (D). In this strategy profile, the

decision maker’s expected payoff is

−2 · 1
3
{2

3
[2
3
(4

5
− 1)2 + 1

3
(1

2
− 1)2] + 1

3
(0− 1)2}

−1
3
{2 · 1

3
[2
3
(1

2
− 0)2 + 1

3
(4

5
− 0)2] + 1

3
· 0}

= −16
45

Case 5. mA
1 (0) = 1 and mA

1 (−1) = 1.

Again for any mB such that (0, mB) is sent in equilibrium, we have y(0, mB) = 0.

This implies that y(0, 1) = 0. Otherwise mB
1 (0, 0) = 1 would be true as b > 1

2
. Now

monotonicity requires y(1,−1) ≥ 0 since y(0,−1) = 0. In order for expert B’s opinion

to be informative, we need y(1,−1) < y(1, 1). So mB
v (−1, 1) 6= 1 for any v ∈ X since

b < 1. Now y(1,−1) ≥ 0 is impossible since mB
1 (1, 1) and mB

0 (1, 1) both belong to

arg maxmB y(1, mB).

Summarizing the above arguments gives us the proposition.

Proof. Proof (of Lemma 5) Using Equation (2), I show r∗0(1,−1) = r∗0(−1, 1) =

r∗0(0, 1) = r∗0(0,−1) = 1 and r∗1(1,−1) = r∗1(0,−1) = 1. Recall that the reviewer

wants the decision to be as close to her most preferred action as possible. In all

these cases, |y∗t − (s + bv)| = maxt′∈S |y∗t′ − (s + bv)|, and there exists t̃ ∈ S such

that |y∗t − (s + bv)| >
∣∣y∗

t̃
− (s + bv)

∣∣. For example, when v = 0, s = 0, t = 1,

|y∗1 − (0 + 0)| = |−y∗1 − (0 + 0)| > |0− (0 + 0)|.
On the other hand, I can use Equation (2) to show that r∗0(s, s) = 0 and r∗1(1, 1) =

r∗1(0, 1) = 0 because in these cases |y∗t − (s + bv)| = mint′∈S |y∗t′ − (s + bv)|
Simplifying Equation (2) further using condition (SE-3), I have r∗v(s, t) = 1 if and

only if

2γ(y∗1)
2 + (s + bv)

2 < (y∗t − (s + bv))
2. (6)

Since y∗0 = 0 and γ > 0, I get that for t = 0, L.H.S. > R.H.S. for all s, v. Thus it

must be that rv(s, 0) = 0 for all v ∈ X, s ∈ S.
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Since 0 is never rejected, I conclude m0(0) = 0. Now I argue m0(1) = m1(1) = 1.

First by Lemma 4 and the results proven above they are not equal to −1. By reporting

0 in state 1, an expert of type x ∈ 0, 1 receives an expected payoff of

(0− (1 + bv))
2.

When reporting 1 in state 1, a reviewer of type 0 or 1 would accept it, but a reviewer

of type −1 may reject it. Thus the expert’s expected payoff is greater than or equal

to
−P (v = 0, 1)(y∗1 − (1 + bv))

2 − P (v = −1)
∑

t∈S(y∗t − (1 + bv))
2

= −2
3
(y∗1 − (1 + bv))

2 − 1
3
(2γ(y∗1)

2 + (1 + bv)
2).

Now the difference in utility between reporting 1 and reporting 0 is at least

2 · 2

3
(1 + bv)y

∗
1 −

2

3
(1 + γ)(y∗1)

2.

This expression is positive since bv ≥ 0, y∗1 ∈ (0, 1], and γ < 1
2
. Hence m1(1) =

m0(1) = 1. I have thus finished the proof of part 2.

The only review decisions left to check are r1(−1, 1) and r1(−1,−1). Substituting

v = 1, s = −1, t = 1 into Equation 6, we get the condition for r1(−1, 1) = 1 to be

0 < (1− 2γ)(y∗1)
2 + 2(1− b)y∗1

This inequality is always true for any y∗1 > 0, so r1(−1, 1) = 1.

Now for r1(−1,−1), by Equation 6

0 < (1− 2γ)(y∗1)
2 − 2(1− b)y∗1

The inequality holds only if

y∗1 >
2(1− b)

1− 2γ
.

We now show that r1(−1,−1) = 0. Suppose r1(−1,−1) = 1 instead. By Lemma 4,

we have m1(−1) 6= −1. Since we have shown above r1(−1, 1) = 1, again by Lemma 4

we have m1(−1) = 0.

Now we only need discuss m1(0). By Lemma 4 it can only be either 0 or 1 since we

have shown r1(0,−1) = 1.

To make sure m1(0) = 0 we must require that an expert A of type 1 gets higher

expected utility from reporting 0 than reporting 1 in state 0. Reporting 0 guarantees

an expected utility of −(0 − b)2, while reporting 1 induces rejection from reviewers

of types 0 and −1 and acceptance from reviewers of type 1, and results an expected

utility of −2
3
[(1− α)(y∗1 − b)2 + α(2γ(y∗1)

2 + b2)]− 1
3
(y∗1 − b)2. Thus the difference in
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utility between reporting 1 and reporting 0 is 2b(1 − 2
3
α)y∗1 − [1 − 2

3
α(1 − 2γ)](y∗1)

2.

We need the above expression to be less than or equal to 0, which translates into

y∗1 ≥
2b(1− 2

3
α)

1− 2
3
α(1− 2γ)

.

In this strategy profile

γ = P (s = 1)P (x = 0 or 1)[P (v = 0 or 1) + P (v = −1)(1− α + αγ)]

+P (s = −1)P (x = 0 or − 1)P (v = 1)αγ

= 1
3
× 2

3
[2
3

+ 1
3
(1− α(1− 2γ))]

= 1
9

+ 1
9
[1− 2

3
α(1− 2γ)]

We define θ = 1− 2
3
α. Thus α = 3

2
(1− θ) and θ ∈ [1

3
, 1]. From the above expression

we derive 1 − 2
3
α(1 − 2γ) = 9γ − 1 and γ =

1
9
(1+θ)

1− 2
9
(1−θ)

. Furthermore y∗1γ = P (s =

1, m = 1) − P (s = −1, m = 1) = 1
9
(1 + θ). So in order for m1(0) = 0 to be optimal,

we need y∗1 ≥ 2bθ
9γ−1

, which simplifies into

θ ≤
2
9

2b− 7
9

<
1

3
.

The last inequality comes from our assumption that b ∈ [17
21

, 6
7
] (hence b > 13

18
). We

have found a contradiction since θ ∈ [1
3
, 1].

If m1(0) = 1, then

γ = P (s = 0)P (x = 1)[P (v = 1) + P (v = 0 or − 1)(1− α + αγ)]

+P (s = 0)P (x = −1)P (v = 0 or 1)αγ

+P (s = 1)P (x = 0 or 1)[P (v = 0 or 1) + P (v = −1)(1− α + αγ)]

+P (s = −1)P (x = 0 or − 1)P (v = 1)αγ

= 1
3
× 1

3
[1− 2

3
α(1− γ)]1

3
× 2

3
[2
3

+ 1
3
(1− α(1− 2γ))]

= 1
9

+ 2
9
[1− 2

3
α(1− 2γ)]

From this we obtain γ =
1
9
(1+2θ)

1− 4
9
(1−θ)

. Again γy∗1 = 1
9
(1 + θ). Substituting this into the

condition for r1(−1,−1) = 1, we have

θ ≤
1
3
− 2(1− b)

4(1− b)− 1
3

if θ ≤ 8
9
. But when b ∈ [17

21
, 6

7
] (hence less than 13

15
), the expression on the right hand

side is less than 1
3
, contradicting the requirement θ ∈ [1

3
, 1].

Hence r1(−1,−1) = 0 in equilibrium.

Summarizing the above arguments gives us Lemma 5.
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Proof. (of Lemma 6) The expected utility from acceptance is −(ym − (s + bv))
2, and

that from rejection is −[(1 − α)(ym − (s + bv))
2 + α(ym)

∑
m′ γm′(ym′ − (s + bv))

2,

where γm′ indicates the probability of message m′ being received in equilibrium. The

difference in expected utility between rejection and acceptance is

−α[
∑
m′

γm′(ym′ − (s + bv))
2]− (ym − (s + bv))

2 = −α[
∑
m′

γm′y2
m′ − y2

m + 2yt(s + bv)].

In deriving the above equality, I have used the fact that
∑

m′ γm′ym′ = 0. Thus holding

everything else fixed, an increase in v increases bv, which decreases the difference in

utility if ym > 0. This makes it less likely for the expert to reject the message. The

contrary is true if ym < 0. Hence the first two statements.

If ym = 0 then the difference in utility is always negative unless ym′ = 0 for all

m′ ∈ M , which is not informative and which implies rejection is meaningless. Thus

the expert should always accept a message m inducing the action 0.

Proof. (Sketch of Proof of Proposition 7) First, it is clear that (F1) and (F2) imply

(F3) and (F4). For example,

γ0 = P (s = 1)P (x = −1) + P (s = 0)[P (s = 0, 1)(P (v = 0, 1) + P (v = −1)(1− α + αγ0))

+P (x = −1)P (v = 0, 1)αγ0]

= 1
3
· 1

3
+ 1

3
[2
3
(2

3
+ 1

3
(1− α + αγ0) + 1

3
· 2

3
αγ0)]

Solving the equation for γ0 yields

γ0 =
1
9

+ 2
9
(1− 1

3
α)

1− 4
27

α
.

Then I can use γ0y0 = E(s|m = 0) = 1
9

to solve for y0. Similar procedures apply to

the messages −1 and 1. A fact worth noting is that γ1y1 = 2
9

and γ−1y−1 = −1
3
.

Now I check the optimality of the reviewer’s decisions. Consider any rv(s, m),

where v ∈ X, s ∈ S, and m ∈ M . Using the result in the proof of Lemma 6, the

difference in utility between rejection and acceptance is

−α[
∑
m′

γm′(ym′ − (s + bv))
2]− (ym − (s + bv))

2 = −α[
∑
m′

γm′y2
m′ − y2

m + 2yt(s + bv)].

Furthermore, many results can be obtained by using Lemma 6. I put down the proof

of review decisions that are crucial to the proposition, and the proof of other review

decisions follow similar procedures.
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Now I consider the optimality of r−1(1, 1) = 0. The difference in utility between

rejection and acceptance is

−α[2
9
y1 + 1

9
y0 − 1

3
y−1 − y2

1 + 2y1(1− b)]

= −αy1[
2
9

+ 1
9
·

1
9

1
9
+ 2

9
(1− 1

3
α)

+ 1
3
·

1
3

1
3
+ 1

9
(1− 2

3
α)
− (1− 4

27
α) + 2(1− b)]

Note for α = 1, the above expression is transformed into

−αy1[
2

9
+

1

9
· 3

7
+

1

3
· 9

10
− 23

27
+ 2(1− b)],

which is negative as long as b < 3247
3780

. Our assumed b values satisfy this condition

since 6
7

= 324
378

< 3247
3780

. By continuity, for α close to 1, the difference in utility must

be negative, which implies r−1(1, 1) = 0. That r0(1, 1) = r1(1, 1) = 0 comes from the

fact that y1 is the reviewer’s most preferred action in state 1. This is true irrespective

of what α is.

The proof of other review decisions can be similarly done.

Finally I check the optimality of the expert’s reports. First m0(1) = m1(1) =

1, m0(−1) = m−1(−1) = −1, and m−1(1) = 0 since the messages correspond to

the expert’s most preferred action, and are never rejected. Second, by Lemma 4,

m−1(0) = −1 and m0(0) = 0 since a reviewer of the same type as the expert rejects

the other two available messages. Last, I need to determine whether m1(0) = 0 and

m1(−1) = −1 is optimal.

I show that they are optimal at α = 1, and appeal to continuity to show that they

are optimal for large enough α. When α = 1, y1 = 23
27

, y0 = 3
7
y1, and y−1 = − 9

10
y1.

Before proceeding, m1(0) 6= −1 and m1(−1) 6= 1 due to Lemma 4 and the fact that

r1(0,−1) = r1(−1, 1) = 1.

In state 0, if an expert of type 1 reports 0, she receives utility −[2
3
(y0 − b)2 +

1
3
[(1 − α)(y0 − b)2 + α

∑
m γm(ym − b)2]], while if she reports 1, she receives utility

−[1
3
(y1 − b)2 + 2

3
[(1− α)(y1 − b)2 + α

∑
m γm(ym − b)2]]. When α = 1, the difference

in utility between sending 0 and sending 1 is

1
3
[(y1 − b)2 +

∑
m γm(ym − b)2 − 2(y0 − b)2]

= 1
3
[y2

1 − 2by1 + 2
9
y1 + 1

9
y0 − 1

3
y−1 − 2y2

0 + 4by0]

= 1
3
y1[y1 − 2b + 2

9
+ 1

9
· 3

7
− 1

3
· −9

10
− 2(3

7
)2y1 + 4b · 3

7
]

= 1
3
y1[

31
49

y1 − 2
7
b + 2

9
+ 1

21
+ 3

10
]

> 0.

The first inequality uses the fact
∑

m γmym = 0, and the last inequality uses the fact

that b ≤ 1. Thus m1(0) = 0 is optimal at α = 1.
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In state 1, following similar procedures to that of the previous paragraph, I obtain

that the difference in utility for an expert of type 1 between sending −1 and 0 in state

−1 is

1

3
y1[(

9

49
− 243

100
)y1 + (

6

7
+

27

5
)(1− b) +

4

9
+

2

21
+

3

5
]

> 0.

The inequality is gotten by substituting y1 = 23
27

and using my assumption that b ≤ 6
7
.

Hence m1(−1) = −1 is optimal at α = 1.

To conclude, there exists α large enough such that strategy profile (F) constitutes

an equilibrium.
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