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Abstract
The paper considers approval voting for a large population of vot-

ers. It is proven that, based on statistical information about candi-
date scores, rational voters vote sincerly. It is also proven that if a
Condorcet-winner exists, this candidate is elected.

1 Introduction

Approval Voting (AV) is the method of election according to which a voter
can vote for as many candidates as she wishes, the elected candidate beeing
the one who receives the most votes. In this paper two results are established
about AV in the case of a large electorate when voters behave strategically:
the sincerity of individual behavior (rational voters choose sincere ballots)
and the Condorcet-consistency of the choice function defined by Approval
Voting (whenever a Condorcet winner exists, it is the outcome of the vote).

Under AV, a ballot is a subset of the set candidates. A ballot is said
to be sincere, for a voter, if it shows no “hole” with respect to the voter’s
preference ranking: if the voter sincerely approves of a candidate x she also
approves of any candidate she prefers to x. Therefore, under AV, a voter has
several sincere ballots at her disposal: she can vote for her most preferred
candidate, or for her two, or three, or more most preferred candidates.1

∗Thanks to Steve Brams, Nicolas Gravel, Remzi Sanver and Karine Van der Straeten
for their remarks. Errors are mine.

1While some scholars see this feature as a drawback (Saari and Van Newenhizen, 1988),
observation shows that people appreciate to have this degree of freedom: see Balinski et
al. (2003) and Laslier and Van der Straeten (2004) for an experiment, and the survey
Brams and Fishburn (2003) on the practice of AV.
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It has been found by Brams and Fishburn (1983) that a voter should
always vote for her most-preferred candidate and never vote for her least-
preferred one. Notice that this observation implies that strategic voting is
sincere in the case of three candidates. The debate about strategic voting
under AV was made vivid by a paper by Niemi (1984). Niemi argued that,
because there is more than one sincere approval ballot, the rule “almost
begs the voter to think and behave strategically, driving the voter away
from honest behavior” (Niemi’s emphasis, p. 953). Niemi then gave some
examples showing that an approval game cannot be solved in dominant
strategies. Brams and Fishburn (1985), responded to this view, but the
debate was limited by the very few results available about equilibria of voting
games in general and strategic approval voting in particular.

For instance in one chapter of their book, Brams and Fishburn discuss
the importance of pre-election polls. They give an example to prove that,
under AV, adjustment caused by continual polling can have various effect
and lead to cycling even when a Condorcet winner exists (example 7, p.120).
But with no defined notion of rational behavior they have to postulate spe-
cific (and changing) adjustment behavior from the voters.

With the postulate that voters use sincere and undominated (“admissi-
ble”) strategies but can use any of these, Brams and Sanver (2003) describe
the set of possible winners of an AV election. They conclude that a plethora
of candidates pass this test.

None of the above approaches uses an equilibrium theory of approval
voting. The rationality hypothesis in a voting situation may have odd im-
plications. For instance it implies that a voter is indifferent between all her
strategies as soon as her votes cannot change the result of the election. As a
consequence, in an election held under plurality or AV rule, any situation in
which one candidate is slightlly (three votes) ahead of the others is trivially
a Nash equilibrium.

A breakthrough in the rational theory of voting occurred when it was
realized that considering large numbers of voters was technically possible
and offered a more realistic account of political elections. This approach was
pioneered by Myerson and Weber (1993). In the same paper, AV and other
rules are studied on an example with three types of voters and three can-
didates (a Condorcet cycle). Subsequent papers by Myerson improved the
techniques and tackled several problems in the Theory of Voting (Myerson
1998, 2000, 2002). The present paper applies similar techniques to approval
voting with no restriction on the number of candidates or voter types.

Rationality implies that a voter can decides of her vote by limiting her
conjecture on those events in which her vote is pivotal. In a large electorate,

2



this is a very rare event, and it may seem unrealistic that actual voters
deduce their choices from implausible premisses. This might be a wise remark
in general, but in the case of approval voting, the rational behavior turns
out to be very simple. It can be described as follows. For a rational voter,
let x1 be the candidate who she thinks is the most likely to win. This voter
will approve of any candidate she prefers to x1. To decide wether she will
approve of x1 or not, she compares x1 to the second most likely winner (the
“most serious contender”). She will never votes for a candidate she prefers
x1 to. This behavior recommends a sincere ballot and its implementation
does not require sophisticated computations.

The paper is organized as follows. After this introduction, Section 2 de-
scribed all the essential features of the model. Section 3 contains the results:
the description of rational voting (theorem 1) from which we deduce sin-
cerity, and the description of equilibrium approval scores (theorem 2) from
which we deduce Condorcet consistency. Section 4 is a short conclusion.
Some computations are provided in an Appendix.

2 The model

Candidates and voters
LetX denote the finite set of candidates. The number of voters is denoted

by n and is supposed to be large. We follow Myerson and Weber (1993) in
considering that there exists a finite number of different voter types τ ∈ T .
A voter of type τ evaluates the utility of the election of candidate x ∈ X
according to a von Neuman and Morgenstern utility index uτ (x). A prefer-
ence on X is a transitive and complete binary relation. In this paper all
preferences are supposed to be strict: no voter is indifferent between two
candidates (this is essentially for the purpose of simplicity.) Preferences are
denoted in the usual way: x Pτ y means that τ -voters prefer candidate x to
candidate y, thus:

x Pτ y ⇐⇒ uτ (x) > uτ (y).

Notice that one has to assume utility functions besides preference re-
lations, because voters take decisions under uncertainty. But it turns out
that the obtained results can all be phrased in terms of preferences. That
is: It will be proven that rational behavior in the considered situation only
depends on preferences.

The preference profile is described by a probability distribution over
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types; let pτ denotes the fraction of type-τ voters, with:X
τ∈T

pτ = 1.

The piece of notation p[x, y] will be used to denote the fraction of voters
who prefer x to y:

p[x, y] =
X

τ : x Pτ y

pτ

so that for all x 6= y, p[x, y] + p[y, x] = 1. The number of voters who prefer
x to y is np[x, y].

Voting
An approval voting ballot is just a subset of the set of candidates. If

type-τ voters choose ballot Bτ ⊆ X, the (relative) approval score s(x) of
candidate x is the fraction of the electorate that approves of x, that is the
sum of pτ over types τ such that x ∈ Bτ :

s(x) =
X

τ : x∈Bτ

pτ .

Here 0 ≤ s(x) ≤ 1, and the number of votes in favor of x is ns(x).

Errors
We consider the following perturbations. For each voter and each candi-

date there is a (small) probability µ that this vote of the voter with respect
to this candidate is not recorded properly. We suppose that these mistake
occurs independently of the voter, of the candidate, and of the voter ap-
proving or not the candidate2. Thus, given a strategy profile, the (intended)
number of votes for candidate x is ns(x), and the realized number of votes
is a random variable NV (x). Denote by i = 1, ..., ns(x) the voters who ap-
prove of x and by i = ns(x) + 1, ..., n the voters who disaprove of x. Let µi
be equal to 1 with probability µ and to 0 with the complement probability,
then:

NV (x) =

ns(x)X
i=1

(1− µi) +
nX

i=ns(x)+1

µi.

2The model here differs from Myerson’s Poisson models, in which the population of
voters is uncertain. If uncertainty about candidate scores were to arise from uncertainty
about the population of voters, then errors would be correlated.
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The expected value and the variance of NV (x) are:

E[NV (x)] = (1− 2µ)ns(x) + nµ
V [NV (x)] = nµ(1− µ).

Denote by b(x) the realized score:

b(x) =
NV (x)

n
.

For n large, the central limit theorem implies that the score b(x) is approx-
imately normal. One can write:

b(x) Ã N
³
a(x),

v

n

´
,

a(x) = (1− 2µ)s(x) + µ,
v = µ(1− µ).

Up to an affine transformation, the realized score is equal to the intended
score s(x) plus a normal noise of variance v

n .

More or less serious races
The elected candidate is the one with highest score. Ties are resolved

by a fair lottery. Given a strategy profile and its score vector s, the most
probable event is that the candidate with highest score wins, but it may be
the case that mistakes are such that another candidate does, and it may be
the case that two (or more) candidates are so close that one vote can be
decisive. In what follows, it will be needed to evaluate the probabilities of
some of these events when the number of voters is large.

With n voters, one ballot may have consequences on the result of the
election only if the two (or more) first ranked candidates have scores that
are within 1/n of each other. The probability of such a pivotal event is
small if n is large, but some of these events are even much less probable
than others. It will be proved that three (or more)-way ties are negligible
in front of two-way ties, and that different two-way ties are negligible one
in front of the other in a simple manner: The most probable one is a tie
between candidates x1 and x2: that is the most “serious race”, the second
most serious race is x1 against x3, which is less serious than x1 against x4,
etc. (The lemma 1 states this point precisely.)

This observation turns out to be sufficient to infer rational behavior. A
rational voter will obey a simple heuristic and consider in a sequential way
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the different occurrences of her being pivotal, according to the magnitude
of these events.

Rational behavior and the Law of Lexicographic Maximization:
The heuristic that allows voters to compute their optimal behavior can be

described in very general terms. Let D be a finite set of possible decisions
and Ω = {ω1, ...,ωN} a finite partition of events, with π the probability
measure on Ω and u a von Neuman-Morgenstern utility. The maximization
problem can be written

max
d∈D

NX
k=1

π(ωk) Eu(d,ωk),

where Eu(d,ωk) denotes the expected utility of decision d conditional on
event ωk. Suppose that π is such that, for 1 ≤ k < k0 ≤ N , the probability
π(ωk) is large compared to the probability π(ωk0):

π(ω1)À π(ω2)À ...À π(ωN).

Then the above maximization problem is solved recursively by the following
algorithm:

• D0 = D.

• For k = 1 to N , Dk = argmaxd∈Dk−1 Eu(d,ωk).

For instance, if the utility Eu(d,ω1) in the most probable event ω1 is
maximized at a unique decision, that is to say if D1 is a singleton, then this
decision is the right one. And if D1 contains several elements, then searching
for the best decision can proceed by going to the next most probable event
and neglecting all decisions which are not in D1. The algorithm proceeds
until a single decision is reached, or until all events have been considered
and thus the remaining decisions give the same utility in all events.

With the above noisy announcement model and a large enough number of
voters, it will be proved that the law of lexicographic maximization applies to
any voter, so that the voter’s rational behavior can be described as follows.
Let x1 be the candidate with highest announced score. A rational voter
votes for all the candidates that she prefers to x1, she votes against all the
candidates she prefers x1 to, and she votes for x1 if and only if she prefers x1
to the candidate with the second highest announced score. In other words:
all candidates are judged in comparison with the announced winner, and
the announced winner himself is judged in comparison with the announced
second-place winner. (This is the content of theorem 1.)
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3 Results

We start by the lemma which describes how small the probability of a pivotal
event is. To do so, some notation is helpful.

Definition 1 For each non-empty subset Y of candidates, denote by pivot(n, Y )
the event:

∀ y ∈ Y, b(y) ≥ max
x∈X

b(x)− 1
n

∀ y /∈ Y, b(y) < max
x∈X

b(x).

Given a score vector s, denote by xi, for i = 1, ...,K the candidates ordered
so that s(x1) ≥ s(x2) ≥ ... ≥ s(xK); for i 6= j, the magnitude of the race
{xi, xj} is:

βi,j = lim
n→+∞

1

n
log Pr[pivot(n, {xi, xj})].

Lemma 1 Suppose that there are no ties in the score vector s, then the
magnitudes of the two-candidate races involving a given candidate xi are
ordered:

βi,K < βi,K−1 < ... < βi,i+1 < βi,i−1 < ... < βi,1.

Moreover, if Y contains three or more candidates then

lim
n→+∞

1

n
log Pr[pivot(n, Y )] < βi,j

for xi, xj two of them.

(The lemma is proved in the appendix.) Remark that the lemma does
not say, for instance, which of the two races {1, 4} and {2, 3} has the largest
magnitude, but this point will not be needed in the sequel. The next lemma
describes a voter’s best responses without uncertainty.

Lemma 2 Suppose a given voter knows how the (n− 1) other voters votes.
Let s∗ be the highest score, let Y1 be the set of candidates with score s∗, and
let Y2 be the set of candidates with score s∗− 1 (Y2 can be empty). The best
responses for this voter only depend on Y1 and Y2. Denoting by B = 2X the
set of ballots B ⊆ X, let φ(Y1, Y2) ⊆ B be set of best responses.

• If Y1 = {xi} and Y2 = ∅: φ(Y1, Y2) = 2B.
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• If Y1 = {xi, xj}, Y2 = ∅ and the voters prefers xj to xi:
φ(Y1, Y2) = {B ∈ B : xi /∈ B, xj ∈ B} .

• If Y1 = {xi}, Y2 = {xj} and the voters prefers xj to xi:
φ(Y1, Y2) = {B ∈ B : xi /∈ B, xj ∈ B} .

• If Y1 = {xi}, Y2 = {xj} and the voters prefers xi to xj:
φ(Y1, Y2) = B \ {B ∈ B : xi /∈ B, xj ∈ B} .

Proof. Clearly the voter’s behavior only depends on the scores of the
candidates that can get elected, thus the voter can condition her decision
on the different possibilities for Y1 and Y2.

If Y1 contains a single candidate and Y2 is empty, then the voter can
have no effect on who is elected so that all ballots are identical for him. One
can write φ(Y1, Y2) = 2B. Consider now the cases with two candidates.

If Y1 = {xi, xj} and Y2 = ∅, then the voter should vote for the candidate
she prefers among xi and xj , say xj , and not for the other one. It does not
matter for her wether she votes or not for any other candidate since they
will not be elected: φ(Y1, Y2) = {B ∈ B : xi /∈ B, xj ∈ B}.

If Y1 = {xi} and Y2 = {xj}, then the voter can have either xi elected or
produce a tie between xi and xj . (1) If she prefers xj to xi, she also prefers
a tie between them to xi winning, so that a best response for her is any
ballot that contains xj and not xi: φ(Y1, Y2) = {B ∈ B : xi /∈ B, xj ∈ B}.
(2) If she prefers xi to xj , she should either vote for both xi and xj , or
not vote for xj and it does not matter wether or not she votes for any
other candidate. This means that she must avoid ballots that contain xj
and not xi. Her set of best responses is the complement of the previous set:
φ(Y1, Y2) = B \ {B ∈ B : xi /∈ B, xj ∈ B}.

If Y1∪Y2 contains three or more candidates then φ(Y1, Y2) is some subset
of B that we do not need to specify. Notice that, in all cases, the set of best
responses φ(Y1, Y2) does not depend on n.

We can now state and prove the key result in this paper.

Theorem 1 Let s be a score vector with two candidates at the two first
places and no tie: x1 and x2 such that s(x1) > s(x2) > s(y) for y ∈ X,
y 6= x1, x2. There exists n0 such that, for all n > n0, type-τ voter has a
unique best-response B∗τ :

• for τ such that uτ (x1) > uτ (x2), B∗τ = {x ∈ X : uτ (x) ≥ uτ (x1)} ,

• for τ such that uτ (x1) < uτ (x2), B∗τ = {x ∈ X : uτ (x) > uτ (x1)} .
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Proof. Suppose first that uτ (x1) > uτ (x2). To prove that B∗τ is the
unique best response, we prove that any other ballot B is not.

(i) Suppose that there exits x ∈ X such that uτ (x) > uτ (x1) and x /∈ B.
Let then B0 = B ∪ {x}.

To compare ballots B and B0, the voter computes the difference

∆ =
X
Y

Pr[pivot(n, Y )] E
¡
uτ (B

0, Y )− uτ (B,Y )
¢
,

where Euτ (B,Y ) denotes the expected utility for her of choosing ballot B
knowing the event pivot(n, Y ). The events pivot(n, Y ) with x /∈ Y have no
consequences therefore the sum in ∆ can run on the subsets Y such that
x ∈ Y . Among these is {x, x1}. From the lemma 2, it follows that in all
three case (Y1 = {x, x1} and Y2 = ∅, Y1 = {x} and Y2 = {x1}, Y1 = {x1}
and Y2 = {x}), the voter’s utility is strictly larger voting for x than not.
Thus E(uτ (B0, {x, x1})− uτ (B, {x, x1})) > 0.

As proved in the lemma 1, the probability of pivot(n, Y ) is exponentially
decreasing in n if #Y ≥ 2, and comparison of magnitudes shows that for all
Y ⊆ X with x ∈ Y , Y 6= {x, x1} and #Y ≥ 2,

lim
n→∞

Pr[pivot(n, Y )]

Pr[pivot(n, {x, x1})]
= 0.

One can thus factor out Pr[pivot(n, {x, x1})] in ∆ and it follows that, for n
large enough, ∆ > 0. This establish that B is not a best response.

(ii) Suppose that there exists x ∈ X such that uτ (x) < uτ (x1) and x ∈ B.
Let then B0 = B \ {x}. The reasoning is the same as in the previous case:
The relevant events are again pivot(n, Y ) for x ∈ Y, the voter’s utility is
strictly larger not voting for x, and the relevant race is again {x, x1}.

(iii) Suppose that x1 /∈ B. The conclusion follows considering B0 =
B ∪ {x1}, the race {x1, x2} is here relevant and has the highest magnitude.

From items (i), (ii) and (iii) it follows that the voter’s best response must
satisfy (i) uτ (x) ≥ uτ (x1) if x ∈ B, (ii) uτ (x) ≤ uτ (x1) if x /∈ B, and (iii)
x1 ∈ B. Therefore B∗τ = {x ∈ X : uτ (x) ≥ uτ (x1)} as stated. The argument
is identical in the case uτ (x1) < uτ (x2).

Notice that the previous result implies that, for n large enough, all voters
of a given type use the same strategy when responding to a score vector
that satisfy the mentionned properties. The next definition is standard in
the study of approval voting.

Definition 2 A ballot B is sincere for a type-τ voter if uτ (x) > uτ (y) for
all x ∈ B and y /∈ B.
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As a direct consequence of the previous theorem, one gets the following
corollary.

Corollary 1 In the absence of tie, rational behavior is sincere.

It should be emphasized that the previous theorem and corollary are
true even if the announcement is not an equilibrium, they actually describe
the voter’s response to a conjecture she holds about the candidate scores.

Theorem 2 Let s be a score vector with two candidates at the two first
places and no tie: x1 and x2 such that s(x1) > s(x2) > s(y) for y ∈ X,
y 6= x1, x2. There exists n0 such that, for all n > n0, if s is the score vector
of an equilibrium of the game with n voters, then

• the score of the first-ranked candidate is his majoritarian score against
the second-ranked candidate:

s(x1) = p [x1, x2] ,

• the score of any other candidate is his majoritarian score against the
first-ranked candidate:

x 6= x1 ⇒ s(x) = p [x, x1] .

Proof. This is a direct consequence of theorem 1. Each voter approves
of x1 if and only of she prefers x1 to x2. For x 6= x1, she approves of x if
and only if she prefers x to x1.

Definition 3 A Condorcet winner at profile p is a candidate x∗ such that
p [x∗, x] > 1/2 for all x 6= x∗.

Corollary 2 If there is an equilibrium with no tie, the winner of the election
is a Condorcet winner.

Proof. Notice that, as a consequence of theorem 1, no voter votes
simultaneously for x1 and x2, and all of them vote for either x1 or x2. Here,

s(x2) = 1− s(x1) < s(x1)

implies s(x2) < 1/2, thus, for x 6= x1

p [x, x1] = s(x) ≤ s(x2) <
1

2
.
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4 Concluding remarks

Notice that the corollary 2 implies that for a preference profile with no Con-
dorcet winner, there can be no equilibrium no-tie announcement. Approval
voting is by no mean a solution to the so-called Condorcet paradox. Indeed,
approval voting retains the basic disequilibrium property of majority rule: if
there is no Condorcet winner then any announced winner will be defeated,
according to approval voting, by another candidate, preferred to the former
by more than half of the population.

The key to this result is that, with a large population of voters, voters
strategic thinking has to put special emphasis on pairwise comparisons of
candidates, even if the voting rule itself is not defined in terms of pairwise
comparisons. Therefore a natural avenue of research is to check wether the
arguments here provided in the case of approval voting can be extended to
other voting rules.
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A Appendix: magnitude of pivotal events

Let bk, for k = 1, ...,K, independent normal random variables. The mean
value of bk is denoted by ak and one supposes a1 ≥ a2 ≥ ... ≥ aK . The
variance of bk is v/n, where v is a fixed parameter and n is a (large) number.
All variables bk have the same variance. For convenience we denote

aij =
ai + aj
2

.

The computations are explained in this appendix under the assumption that
for no i 6= j there exists k such that ak = aij . It is not more difficult to arrive
at the conclusion through the same type of computations in the case where
for some i 6= j there exists k such that ak = aij .

Consider the event pivot(n, {i, j}) of a race between two candidates:

bj ∈ [bi − 1/n, bi + 1/n[ ,
∀k 6= i, j , bk + 1/n < bi, bj

We will prove that

lim
n→+∞

1

n
log Pr [pivot(n, {i, j})] = −

kijX
k=1

1

2v
(ak − aij)2 −

(ai − aj)2

4v
, (1)

where kij is the last integer k such that ak > aij .

Tie between the two first candidates
To start by the simplest case, consider the event pivot(n, {x1, x2}): It is

the disjoint union of the two events

∀k = 3, ...,K , bk < b1 − 1/n < b2 < b1
and

∀k = 3, ...,K , bk < b2 − 1/n < b1 < b2
The probability of the former writes :Z +∞

b1=−∞
f(b1; a1,

v

n
)

Z b1

b2=b1−1/n
f(b2; a2,

v

n
)

KY
k=3

F (b1 −
1

n
; ak,

v

n
) db2 db1,

where f and F denote the normal density and cumulative functions

f(t;µ, v) =
1√
2vπ

exp− 1
2v
(t− µ)2,

F (t;µ, v) =

Z t

u=−∞
f(u;µ, v) du.
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Because the integral Z b1+1/n

b2=b1−1/n
f(b2; a2, v/n) db2

on b2 is close to 1
nf(b1; a2, v/n), the probability of the former event is close

to A12/2, with:

A12 =
2

n

Z +∞

b1=−∞

KY
k=3

F (b1 − 1/n; ak, v/n) f(b1; a1, v/n) f(b1; a2, v/n) db1.

The same approximation is valid for the complementary event, so that the
probability of the race {i, j} is approximately

Pr [pivot(n, {i, j})] ' A12

The product of two normal densities can be written

f(b1; a2, v/n) f(b1; a1, v/n)

=
n

2vπ
exp− n

2v

£
(b1 − a1)2 + (b1 − a2)2

¤
=

n

2vπ
exp−n

v

"
(b1 − a12)2 +

(a1 − a2)2

4

#

=
1

2

r
n

vπ

Ã
exp−n (a1 − a2)

2

4v

!
f(b1; a12,

v

2n
)

so that one gets:

A12 = α12

Z +∞

b1=−∞

KY
k=3

F (b1 − 1/n; ak, v/n) f(b1; a12,
v

2n
) db1,

with

α12 =
1√
nvπ

exp−n (a1 − a2)
2

4v
.

For n large, F (b1 − 1/n; ak, v/n) tends to 1 if b1 > ak and to 0 if b1 < ak,
and the density f(b1; a12, v2n) db1 tends to a Dirac mass at point b1 = a12.
Here ak < a12, so that the integral in A12 tends to 1 and one finally gets:

logA12 ' − n
(a1 − a2)2

4v
.
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General case
More generally, consider i and j such that 1 < i < j. The probability of

the event pivot(n, {i, j}) is approximately

Aij = αij

Z +∞

bi=−∞

Y
k 6=i,j

F (bi − 1/n; ak, v/n) f(bi; aij ,
v

2n
) dbi,

with

αij =
1√
nvπ

exp−n (ai − aj)
2

4v
.

One still has that the density f(bi; aij , v2n) dbi tends to a Dirac mass at
point bi = aij , but now F (aij ; ak, v/n) tends to 1 only for those k such that
ak < aij . Denote them by k = kij + 1, kij + 2, ...,K. For k = 1, ..., kij ,
one uses the standard approximation of the tail of the normal distribution.
Recall that, for t >> 1,

1√
2π

Z +∞

t
e−

1
2
u2 du ' 1√

2π

Z +∞

t
e
1
2
t2−tu du

=
1√
2π
e
1
2
t2
Z +∞

t
e−tu du

=
1

t
√
2π
e−

1
2
t2 .

One so gets that for k = 1, ..., kij ,

F (aij ; ak, v/n) =
1

(ak − aij)

r
v

2nπ
exp− n

2v
(ak − aij)2 .

Then

logAij ' −
kijX
k=1

n

2v
(ak − aij)2 −

n (ai − aj)2

4v

and the expression (1) follows. The first part of lemma 1 is easily deduced
from these formulae. The second part of the lemma (about three way ties
or more) is easily obtained by the same kind of arguments.
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