
Boundedly complex Turing machines play the repeated
prisoner’s dilemma : some results

Guillaume Lacôte
1

Preliminary discussion paper - please do not circulate.

Abstract : Bounding the complexity of strategies in a repeated game tremendously affects
the set of Nash equilibria : this has been studied extensively when the complexity of a strategy
is defined in terms of finite state automata or of bounded recall. We consider the more general
model of computable strategies (those which can be implemented by a Turing machine). To
define complexity we depart from structural parameters like number of states and symbols
and consider the Kolmogorov-Smirnov complexity of a strategy : it is its shortest constructive
description (provided a fixed language).

We consider the finitely repeated Prisoner’s Dilemma where each player has to chose a pure
strategy of bounded Kolmogorov complexity. We discuss on the length of the game and the
respective bounds on complexity to identify wether cooperation is a Nash equilibrium. We
show that cooperation is indeed sustainable if and only if the complexity of at least one player
is significantly smaller than the length of the game.

Keywords : Repeated games, bounded rationality, Turing macines, Kolmogorov complexity

1 Introduction

A number of arguments suggest that economic agents do not enjoy the unbounded com-
putational power hypothesized by well-known results of game theory. A wide litterature has
shown that these results are deeply affected if this assumption is relaxed (see [1], [2] or [7]
for surveys). For example in the finitely repeated prisoner’s dilemma played by finite state
automata of fixed number of states, cooperation is a path of Nash equilibrium provided that
at least one automaton has sufficiently few states (see [5] for a detailed study).

In this paper we consider the more sophisticated model of Turing machines and focus on
the repeated Prisoner’s Dilemma played by to machines of bounded complexity. It is arguable
that the class of Turing machines encompasses all effective pure strategies as any effectively
constructible function is implemented by at least one Turing machine. Other functions can not
possibly be implemented by a human even with the help of any deterministic computational
device.

We consider the definition of complexity suggested by Kolmogorov and Smirnov. We discuss
on the relative complexity bounds of each player and on the size of the game to determine if
some kind of cooperation is a path of Nash equilibrium in pure strategies. We show that it is
the case if, and only if the complexity of at least one player is significantly smaller than the
length of the game.

1
Ensae. 3 av. P. Larousse, F-92240 Malakoff France. Mail: Games@glacote.com

Draft of 09/07/2005-20h07 1

This paper intends to present preliminary results. The next section recalls standard concepts
of game theory and of computational models. Readers familiar with repeated games or compu-
tational models may want to skip this section. Section three presents the specific setting and
the main result, which is proved in section four.

2 The setting

2.1 The repeated prisoner’s dilemma

We consider the two players one-stage Prisoner’s Dilemma G = ({0, 1} × {0, 1}, r) where
each player plays either 0 (he defects) or 1 (he cooperates) and with payoff matrix

r =

0 1
0 (1, 1) (4, 0)

1 (0, 4) (3, 3)

For example if player one plays 0 and player two plays 1 then player one gets a payoff of 4
while player two receives 0.

For T ∈ N
∗ we define GT be the finitely repeated game induced by the repetition of G T

times, and G∞ the infinitely repeated game . First for t ∈ N
∗ let Ht = ({0, 1}2)

t−1
be the set of

all possible histories at stage t, with the convention ({0, 1}2)
0

= {∅} where ∅ denotes the empty
history. LetHT =

⋃
t∈[1,T] ({0, 1}

2)
t−1

the set of histories up to stage T , H∗ =
⋃
t∈N∗ ({0, 1}2)

t−1

the set of all finite histories. H∞ = ({0, 1}2)
N
∗

the set of infinite histories.
A pure strategy for player i in GT is any σi : HT → {0, 1} ; let SiT = ({0, 1})HT the set

of (pure) strategies. Similarly a strategy for player i in G∞ is any σi : H∞ → {0, 1} and let
Si∞ = ({0, 1})H∞ be the set of infinite strategies.

A profile of strategy σ = (σ1, σ2) in GT (respectively in G∞) induces a play ω(σ) in HT

(respectively in H∞) defined recursively in the following way : first let ω(σ)1 = (σ1
0(∅), σ

2
0(∅)),

and then set
ω(σ)t =

(
σ1
t−1 (ω(σ)t−1) , σ

2
t−1 (ω(σ)t−1)

)

for any t ∈ [2, T] (respectively for any t ≥ 2). Two strategies σi and τ i for player i are
equivalent if ∀σ−i ω(σi, σ−i) = ω(τ i, σ−i). A strategy σi of player i is compatible with the play
ω = ((a1

1, a
2
1), . . . , (a

1
t , a

2
t)) (which will be denoted by σi ; ω) if

∀l ∈ [1, t] , σi
(
(a1

1, a
2
1), . . . , (a

1
l−1, a

2
l−1)

)
= ail

Finally let rT (σ) = 1
T

∑T

t=1 r (ω(σ)t) be the payoff inGT , and r∞(σ) = lim supT→+∞
1
T

∑T

t=1 r (ω(σ)t)
the payoff in G∞. r∞(σ) may not be finite.

2.2 Turing machines and Kolmogorov complexity

A Turing machine is a computational device introduced by Alan Turing. It consists on
a deterministic finite state automaton with one infinite tape. The tape has cell boundaries

Draft of 09/07/2005-20h07 2

2.2 Turing machines and Kolmogorov complexity

and on each cell symbols from a given finite alphabet A might be stored ; cells can be read
or written one at a time. A finite sequence of symbols is written initially on the tape. The
machine then proceeds a succession of computational steps : it transitions from one state
to another according to the current state and symbol, and may also write to the tape and
shift it to access the adjacent cell. The machine may eventually reach a dedicated state called
the “finish” state in which case the sequence of symbols written on the tape is called the
“output sequence”. Although this description looks ground-level any modern computer could
be simulated by a Turing machine. Moreover Turing showed among other results that the set
of recursive functions as defined by Church is actually equal to the set of functions that can be
computed by Turing machines. This means that any constructive 2 function or program can
be implemented by a Turing machine. This justifies the use of Turing machines as an abstract
computantional model. A complete study is done in [4].

Let A be the finite set of tape symbols. Let |A| be its cardinality. Let A∗ =
⋃
t∈N
At the set

of words, i.e. of finite sequence of symbols. For ω ∈ At ⊂ A∗ we note |ω| = t its length. The
concatenation of two words x, y ∈ A∗ is denoted simply by xy = x1, . . . , x|x|, y1, . . . , y|y|.

Each Turing machine runs a specific program which may or may not ever terminate its
computation. For any Turing machine M and any finite input sequence ω ∈ A∗ we note
M(ω) ∈ A∗ the (possibly empty) finite 3 sequence of symbols written on the output tape if
the computation ever ends, or ⊥ if the computation never ends. Note that the actual time
required to compute M(ω) does not matter provided it is finite.

Any word ω ∈ Σ∗ on any non-empty finite alphabet Σ is uniquely encoded to a number
through the following mapping :

〈·〉Σ :

(
Σ∗ → N

ω 7→ |Σ||ω|+1 − 1 +
∑|ω|

t=1 |Σ|
t ∗ ord(ωt)

)

where ord(l) denotes the order of the letter l in Σ. 〈·〉Σ is bijective and implements and
enumeration of all finite words over Σ. Moreover 〈0〉Σ = 0 and 〈·〉Σ enumerates words in
increasing lengths : 〈ω〉Σ < 〈ω

′〉Σ ⇒ |ω| ≤ |ω
′|. In the case where Σ = {0, 1} we simply have

〈·〉{0,1} :

(
{0, 1}∗ → N

ω 7→ 2|ω|+1 − 1 +
∑|ω|

t=1 2t ∗ ωt

)

Thus 〈·〉{0,1} enumerates the words ∅, 0, 1, 00, 01, 000, . . . in this order.
For the sake of simplicity we now assume that each Turing machine takes a number in N as

input and either computes forver or outputs a number in N :

M̃ :

N → N
⋃
{∞}

n 7→

{ 〈
M

(
[x]{0,1}

)〉
{0,1}

if φi

(
[x]{0,1}

)
6= ⊥

∞ otherwise

2This includes arbitrarly large closed-formulae or any computer program. This specifically excludes any
definition which relies on the existential symbol : “find the zero of this 5-th degree polynom” is not Turing-
computable. “give an approximation of a zero of this 5-th degree polynom with 3 significant digits” is Turing-
computable (through the constructive Newton-Raphson method for example).

3Since the initial sequence on the tape is finite, a machine could not write an infinite sequence in a finite
number of steps.

Draft of 09/07/2005-20h07 3

2.2 Turing machines and Kolmogorov complexity

Since the description of a Turing machine is finite the set of Turing machines is countable.
We call [i]{0,1} a description of the Turing machine φi. For any enumeration (φi)i∈N

of Turing
machines we define its associated Kolmogorov-Smirnov complexity for any x ∈ N as the shortest
description of a Turing machine which outputs x on empty input :

Kφ :

(
N → N

x 7→ min {|[n]A| /φn(∅) = 〈x〉A}

)

It is the length of the “shortest description” or “most-compressed representation” of x ; For any
x ∈ N we note x = min{n ∈ N / φn(∅) = 〈x〉A} the smallest number of a Turing description of
x. Note that since 〈·〉A enumerates words in increasing length this ensures that |[x]A| = Kφ(x) :
x is a shortest description of x.

These definitions depend on the particular enumeration φ of Turing machines. However for
any other enumeration (ψi)i∈N

there exists a fixed cφ,ψ ∈ N such that ∀x ∈ N, |Kφ(x)−Kψ(x)| ≤
cφ,ψ. Thus Kolmogorov complexity is usually referred to an universal quantity “up to a fixed
constant” and deemed useful for asymptotic results.

As will be clear later on such asymptotic results are inadequate in a game-theoretic context ;
instead we shall fix a particular enumeration of Turing machines which suits our needs well.

A wide litterature is devoted to exhibiting the properties Kolmogorov complexity ; this is
outside the scope of this paper. We recall two important properties though : the first is that
Kolmogorov complexity is not computable : there exists no Turing machine which outputs
Kφ(x) for any input x ∈ N. In particular there exists no closed-formula expressing Kφ.

The second property is the the following approximation of Kφ. Let p = |A| be the number of
symbols of our model of Turing machines. For E ⊂ N let d (E) = lim infN→+∞

1
N
|E

⋃
[1, N]|

be its lower density in N.

Proposition 1 (i)
∃m ∈ N / ∀x ∈ N

∗, Ku(x) ≤ dlogp (x)e+m

(ii)

∀f : N→ N, f(∞) =∞ , ∀ε > 0 , ∃Ef,ε ⊂ N
∗ / d (Ef,ε) ≥ 1− ε

et ∀x ∈ Ef,ε, Ku(x) ≥ dlogp (x)e − f
(
dlogp (x)e

)
− 1

The complexity of most numbers is roughly equal to the length of their representation. An
elementary proof is provided in appendices.

In this paper we face two main issues. Firstly the notion of Kolmogorov complexity is widely
distinct from the complexity in speed or space. Define instead the complexity of a machine
as the number of processing steps required to produce its result. Then there exists problems
whose answer is “easy” to verify but lengthy to compute. 4 This property is widely used in the
litterature to elaborate path of plays which are complex for one player but not for the other.
5 However in terms of Kolmogorov complexity there is no “simple” question whose answer

4This is the case with any NP-complete problem, under the standard assumption that P 6= NP .
5Devise a path of play composed of cycles where player one plays the product p ∗ q of two large prime

numbers and checks that player two correctly plays p then q in the next cycle.

Draft of 09/07/2005-20h07 4

is computable and “complex” (since the very question is a computable representation of the
answer). We thus need to rely on other tools to build an equilibrium path ; it appears that
there exists simple such tools.

The second issue deals with the “up to a constant” factor. Most results in the litterature
state properties of the Kolmogorov complexity where (in)equalities hold up to a fixed constant
independant of all other variables. Proposition 1-(i) is an example of such a result. In a game-
theoretic context however this uncertainty is unacceptable : each player needs to ascertain that
no machine of a given complexity can implement some defecting strategy. Let us consider the
D1
t strategy which cooperates up to stage t−1 after which it always defects. 6 An intuitive result

states that its complexity is “roughly” that of t : ∃m ∈ N , ∀t ∈ N
∗ , |Kφ (D1

t)−Kφ(t)| ≤ m.
We may want to choose t so as to saturate the complexity of player one - so that player
one may not implement D1

t−1 but may still implement D1
t for example. However both also

have “roughly” the same complexity : ∃m′ ∈ N , ∀t ∈ N
∗ ,

∣∣Kφ (D1
t)−Kφ

(
D1
t−1

)∣∣ ≤ m′. Thus
a sharper computation of the Kolmogorov complexity of D1

t with respect to the complexity
of t itself is required. We address this issue by devising a specific enumeration of Turing
machines tailored to simplify the link between the complexity of a strategy depending on some
parameters and the complexity of the parameters themselves.

3 Main results

3.1 Kolmogorv Complexity of a strategy

We consider an enumeration (φi)i∈N
of Turing machines which will be defined later.

For i ∈ {1, 2} and T ∈ N
⋃
{∞} we say that the Turing machine φx implements the strategy

si ∈ SiT for player i in GT if

∀h ∈ H∗, s
i
; h ⇒ φx

(
〈h〉{0,1}

)
=

〈
si(h)

〉
{0,1}

i.e. φx computes the action played by si after any compatible history. This implies in particular
that the computation φx(〈h〉{0,1}) ends in finite time. There exist several Turing machines which
implement the same strategy.

We define
Kφ(s

i) = min{Kφ(x) / φx implements si}

the Kolmogorov complexity of the strategy si. In particular Kφ(s
i) = +∞ if si can be imple-

mented by no Turing machine. For k ∈ N
∗ let Σi

T (k) = {si ∈ SiT /Kφ(s
i) ≤ k} be the set of

strategies for player i in GT which can be implemented by a Turing machine of complexity no
more than k. Σi

T (k) might be empty for small k and we have k ≤ l ⇒ Σi
T (k) ⊂ Σi

T (l). Let
Σi
T (∞) = SiT .

For (k, l, T) ∈ (N∗
⋃
{∞})3 let GT (k, l) = (Σ1

T (k)× Σ2
T (l), rT) be the (in)finitely repeated

prisoner’s dilemma where player one choses a strategy which can be implemented by a Turing
machine of complexity no more than k and player two no more than l.

6It is defined formally in the next section

Draft of 09/07/2005-20h07 5

3.2 Specific strategies and programs

If T = k = l = ∞ a folk theorem ensures that (1, 1), . . . is a path of Nash equilibrium. If
k = l = ∞ but T < ∞ on the other hand constant defection of both player is the only Nash
equilibrium. We consider the following question : under what conditions on (T, k, l) is some
form of cooperation sustainable in GT (k, l) ?

3.2 Specific strategies and programs

We first define some standard strategies. For t ∈ N let

Dit :

HT → {0, 1}

h 7→

{
1 if h = (1, 1), . . . , (1, 1) and |h| 6= t
0 otherwise

Di1 is the strategy of perpetual defection for player i. Di0 is the strategy which cooperates as
long as the other player does and defects forever if he ever defects once. For t ≥ 2, Di

t is the
strategy which cooperates up to stage t − 1 inclusive as long as the other player does and
defects forever afterwards.

For t ≤ T and x ∈ H∗ let

EDix,:

HT → {0, 1}

h 7→

xn+1 if n = |h| < |x| and h = (x1, x1), . . . , (xn, xn)
1 if |x| ≤ |h| < t and h = x, (1, 1), . . . , (1, 1)
0 otherwise

Let E ix = EDix,∞.
E ix is the strategy for player i which plays x 1 · · ·1 as long as the other player does so (and

defects forever otherwise). EDix,t does the same except that it always defects starting at stage
|x|+ t.

We now define programs which will be useful later. For reasons apparent in hte next para-
graph on we consider octal symbols 7 and set A = {0, . . . , 7}. Let (ψi)i∈N

be some arbitrary
enumeration of Turing machines. Let ψu be some universal Turing machine. 8 Now for p ∈ N

we consider the following program :

CountDefectionp :
h← ∅
t← 0
while ψu(p, h) = 1 do

h← h, (1, 1)
t← t+ 1

return t

7See the enumeration φ of Turing machines below. A side effect is that any length or Kolmogorov complexity
translates easily to its binary counterpart through a division by three.

8That is ∃u ∈ N / ∀i ∈ N, ∀x ∈ N, ψu(i, x) = ψi(x).

Draft of 09/07/2005-20h07 6

3.2 Specific strategies and programs

This program takes no input and looks for the first stage at which ψp would defect from
(1, 1), . . . , (1, 1), if any such stage exists. Moreover it never ends its computation if ψp is not
an implementation of a strategy compatible with x, (1, 1), . . . , (1, 1), or if it never defects
from it before the end of the game. On the other hand for t ≥ 1 if ψk implements Dit then
CountDefectionk computes in finite time and returns t.

We now consider the following program :

GetPathAndDefectionp,T :
(First build the whole history up to stage T)
h← ∅
t← 0
while t <= T do

a1 ← φu(p, h) h← h, (a1, a1)
t← t+ 1

(Here h =

(
x 0 1 · · ·1 0 · · · 0
x 0 1 · · ·1 0 · · · 0

)
provided φp is an impemention of some EDix,t)

(Now extract t)
b← T
while h1

b = 0 do
b← b− 1

a← b
while h1

a = 1 do
a← a− 1

t← b− a
(Eventually extract x)
x← (h1, . . . , ha−1)
if t = 0 then return x otherwise return (x, t)

This program (which takes no input) simulates ψp and builds the whole history up to stage
T from which it extracts t and x. 9 If ψl implements EDix,t for some t ≥ 1 and x ∈ H∗ then
GetPathAndDefectionl,T computes in finite time and returns (x, t). Similarly if ψl implements
E ix for some x ∈ H∗ then GetPathAndDefectionl,T computes in finite time and returns x. It
may not ever terminate its computation for some other ψl.

We now fix a specific enumeration of Turing machines :
– 〈0〉A is the number of some implementation of the constant defection D1

1.
– 〈1〉A is the number of some implementation of the cooperative strategy D1

0.
– For t ∈ N

∗ let
〈
2t

〉
A

be the number of some implementation of D1
t .

– For x ∈ H∗ let 〈3x〉A be the number of some implementation of E1
x.

– For x ∈ H∗ and t ∈ N
∗ let

〈
4(x, t)

〉
A

be the number of some implementation of ED1
x,t.

Note that the implementation of any of the aforementioned strategies for player one is
also a valid implementation for player two.

9This works because (x, t) 7→

x 0 1 · · · 1︸ ︷︷ ︸

t

0 · · · 0

 is injective. This is why we need to insert a 0 between x

and 1 · · · 1.

Draft of 09/07/2005-20h07 7

3.3 Main proposition

– For p ∈ N
∗ let 〈5p〉A be the number of some implementation of CountDefectionp.

– For p ∈ N
∗ let 〈6p〉A be the number of some implementation of GetPathAndDefectionp,T .

Note that this numbering implicitely depends on the length T of the game.
– For n ∈ N let 〈7n〉A be the number of the n-th Turing machine ψn in the enumeration ψ.

This ensures that (ψn)n∈N is a (non-injective) exhaustive enumeration of Turing machines
(since ∀n, ψn = φ〈7n〉A

). We have explicitely reordered some of them so as to ensure that we
know their Kolmogorov complexity. 10 In particular we have Kφ(D

i
0) = Kφ(D

i
1) = 1.

3.3 Main proposition

Proposition 2 For most T ∈ N
∗ in GT (k, l) some form of cooperation is sustainable if, and

only if the complexity of at least one player is smaller than the length of the game. In particular
there exists a path of Nash equilibrium with at least (T −k)+ consecutive stages of cooperation.

That is, if the complexity of at least one player (assume the first) is smaller than the length T

of the game then

(
x 1 · · ·1 y
u 1 · · ·1 v

)
is a path of play of Nash equilibrium for some x, y, u, v.

Conversely if the complexity of both players is larger than the length of the game then constant
defection is the only path of Nash equilibrium. Note that the enumeration φ of Turing machines
implicitely depends on T (since the code 〈6p〉A doesn’t include T) ; of course it does not depend
on k nor on l.

4 Proofs

We discuss on T first, and then on k, l.
If T = +∞ we show that (D1

0,D
2
0) is a Nash equilibrium. First note thatKφ(D

1
0) = Kφ(D

2
0) =

1 ≤ min k, l such that both strategies can be implemented. Moreover the very structure of r
ensures that there is no profitable single-stage deviation from (1, 1), . . . , (1, 1). Hence no player
has any profitable deviation (whatever the complexity to implement it) and (D1

0,D
2
0) is a Nash

equilibrium.
We now assume that T < +∞.

Lemma 1 For t ≥ 2, Kφ (Dit) = Kφ(t).

Lemma 1 states that to cooperate but to defect at stage t is of the same complexity as to
write down the number t itself. This would be intuitively true up to a uniform constant for
any enumeration of Turing machines ; our enumeration ensures that the constant is zero.

We now discuss on k, l.

If k < Kφ(T) and l < Kφ(T) then both players are so restricted that they can not even
“count” up to the length T of the game. We show that the cooperative profile (D1

0,D
2
0) is a

Nash equilibrium. The payoff matrix ensures that assuming that player two plays D2
0 player

one has no profitable deviation before the last stage T of the game (whatever the complexity

10x is the smallest description of x among the enumeration (ψi)i∈N
. It is straightforward that the smallest

description of x among (φi)i∈N
is equal or at most one bit shorter.

Draft of 09/07/2005-20h07 8

of implementing such deviation). This is a fundamental property of the prisoner’s dilemma.
Now consider the strategy D1

T for player one which implements this profitable deviation. By
lemma 1 it is of complexity Kφ(T) > k. Thus player one can not implement it. Hence player
one has no profitable deviation he could implement with a complexity no higher than k. The
conclusion follows by symetry.

If k < Kφ(T−1) and l ≥ Kφ(T) then player one is so restricted that he can not even “count”
up to the length T of the game but player two can do it. It follows that (D1

0,D
2
T) is a Nash

equilibrium : both can be implemented by hypothesis. Moreover player two has no profitable
deviation while player one can not implement his only profitable deviation D1

T−1.
We do not elaborate during the discussion on wether Kφ(T − 1) ≤ Kφ(T) or not. 11

If T < k ≤ l then both players are basically unrestricted. This is because for any full
sequence of actions x ∈ HT we have Kφ(E

i
x) = Kφ(x) ≤ |x| = T < k ≤ l. Thus each

player can implement any (oblivious) sequence of actions. It is a basic result however that
(0, 0), . . . , (0, 0)︸ ︷︷ ︸

T

is the only path without a profitable deviation. Since any profitable deviation

can be implemented in GT (k, l) it is the only path of Nash equilibrium.

If Kφ(T) < k < T < l then player one is effectively restricted in the set of sequences of
actions that he can implement whereas player two is not. We rely on the following lemmas :

Lemma 2 For any x ∈ H∗, Kφ (E ix0) = Kφ(x0).

This lemma states that playing so as to ensure the path

(
x 0 1 · · ·1
x 0 1 · · ·1

)
is of the same

complexity as writing down x itself.

Lemma 3 For any x ∈ H∗, Kφ

(
EDix0,t

)
= Kφ(x0, t).

This lemma extends lemma 2 in the case of constant defection from stage |x|+ t onwards : this
is of the same complexity as writing down x and t themselves. Both lemmas are once again
straitghforward up to a fixed constant for any enumeration of Turing machines. The specific
enumeration φ ensures that the constant can be set to zero.

Now let t ∈ [k, T − 2] and x ∈ Ht−1 such that Kφ(x0) = k. 12 We show that (E1
x0, ED

2
x0,T−t)

is a Nash equilibrium. The corresponding path of play is

(
x 0 1 · · ·1 1
x 0 1 · · ·1 0

)
. First note

that Kφ(E
1
x0) = Kφ(x0) = k and Kφ(ED

2
x0,T−t) ≤ Kψ(x 0 1 · · ·1 0) + 1 ≤ T + 1 ≤ l so that

both strategies can effectively be implemented. First note that player two has no profitable
deviation (whatever the complexity to implement it). On the other hand the only profitable

11It may happen that Kφ(T − 1) > Kφ(T) in which case our discussion is incomplete. However this occurs
for a “negligable proportion” of numbers T : m : x 7→ inf{Kφ(y)/y ≥ x} goes to infinity slower than any other
computable function which goes to infinity.

12We do not elaborate on the existence of such an x. Basically a counting argument ensures that from any
k′ ∈ N

∗ there exists y ∈ Hk′ such that Kφ(y) = k′.

Draft of 09/07/2005-20h07 9

deviation for player one is to defect at stages T and/or T − 1. 13 However by lemma 3 the
complexity for him to do so is at least Kφ(x)+1 > k. Hence neither player can implement any
profitable deviation. The fact that player one still cooperates at the last stage (while player
two doesn’t) comes from the fact that he is limited in complexity (while player two isn’t).

Note that x still remains to be defined ; by a simple couting argument there exists at least
one x of length k − 1 such that x0 is of complexity k. Longer choices for x of complexity k
may be chosen ; note however that since the ratio of cooperations and defections inside x is
directly linked to k 14 all different choices will lead to more-or-less the same average payoff. 15

If Kφ(T) < k ≤ l < T then both players are effectively restricted in the set of sequences of
actions that they can implement. Now let t ∈ [k, T − 2] and x ∈ Ht such that Kφ(x) = k. If
l ≥ k+Kφ(T − t) the same arguments as above show that (E 1

x, ED
2
x,T−t) is a Nash equilibrium

and the path of play is again

(
x 1 · · ·1 1
x 1 · · ·1 0

)
. Otherwise (E1

x, E
2
x) is a Nash equilibrium.

and the path of play is

(
x 1 · · ·1 1
x 1 · · ·1 1

)
.

We summarize the path of plays in the following way :

1...1
1...1

0...0
0...0

1...1
1...1

0
1

0 1
1.

..1
1.

..1

1...1
1...1

x
x 0

1

1...1
1...1

x
x

0
1

1...1
1...1

x
x 1

1

1

1

K(T)

T

TK(T) k

l

13Note that |x| ≤ T − 2 by construction so that there is at least one cooperation pair (1, 1) after x in the
play.

14This is because for any binary sequence x ∈ {0, 1}t we have Kφ(x) ≈ tH(π̂) where π̂ is the empirical
distribution of zeros and H denotes the entropy.

15Let nx be the number of zeros in x ∈ Ht for t ≥ 2. We haveKφ(x) ≈ tH
(

nx

t

)
= −nx ln nx

t
. This comes from

the fact that for each block of length
⌈

t
nx

⌉
you have approximately one zero which requires about dlog2

(⌈
t

nx

⌉)
e

bits to be describe. A more detailed proof is provided by Theorem 2.8.1, p180 in [4].
Now fixing Kφ(x) = k this means that nx (ln t− lnnx) = k is constant.

Draft of 09/07/2005-20h07 10

Recalling that Kolmogorov complexity is not computable the practical positioning on this
graph may sound impracticable. The aim of proposition 1 is precisely to tackle with this
issue : the boundary between k < Kφ(T) and k > Kφ(T) may be substituted with k <
dlogp (T)e −

⌈
f(dlogp (T)e)

⌉
and k > dlogp (T)e for some adequate f (like f : x 7→ logp(x)).

The gray area inbetween can be made arbitrarily sparse.

5 Discussion and future work

We hope that these preliminary results pave the way for a more complete study. There are
at least two additionnal directions that we believe may be of interest.

Firstly we would like to address the issue of learning and coordination. Consider any two
player repeated game and assume that player one is limited to a fixed subset of strategies. We
would like to know under which conditions player two can achieve perfect coordination with
him.

Assume that both players are limited to computable strategies - but without any bound
on their complexity. We conjecture that the halting problem prevents player two from having
a strategy which would eventually coordinate itself with any strategy of player one. On the
other hand is player two is enhanced with a halting Oracle16 then by exhaustively enumerating
all Turing strategies and progressively discarding those which are not compatible with past
history player two eventually coordinates itself with any strategy of player one. Now assume
that player one has a bound on the complexity of his strategies. This implies that the set of his
strategies is finite - which ensures following [6] that player two has a strategy which eventually
coordinates itself with player one. However the halting problem again prevents this strategy
from being implemented by a Turing machine.

The second direction we are interested in concerns mixed strategies. Consider thet set of ra-
tional distributions of probabilities over actions and let Σ = (µn)n∈N

be the subset of those that
can be implemented by a Turing machine. There exists a distribution (namely

∑
n∈N

p−Kµ(n)µn)
which is absolutely continuous with respect to any µn. Hence the “grain of salt” hypothesis
is true and the result by [3] ensures that the path of play may converge to a repetition of
single-stage Nash equilibrium (in mixed strategies). However there is no computable distribu-
tion which is a.c. with respect to any computable distribution. On the other hand if player one
is bounded in complexity by some k ∈ N

∗ then µk =
∑

n ∈ N

Kµ(n) ≤ k

p−Kµ(n)µn satisfies grain

of salt again. Moreover it is of complexity no more than pk (although its actual complexity
could be smaller). The problem is that k 7→ µk is not computable : there exists a strategy for
player two but noone could ever effectively find it.

The last orientation that could appear fruitful concerns the link between Kolmogorov com-
plexity and entropy : it follows from theorem 8.1.2 p524 of [4] that H(X1, . . . , Xn) ≈n→+∞

16A Turing machine with a halting Oracle is a standard Turing machine augmented by a device which at
each steps computes in finite time wether a given program would eventually halt on a given input. Such an
Oracle is not Turing-computable.

Draft of 09/07/2005-20h07 11

RÉFÉRENCES

EP (Kφ(X1, . . . , Xn)) for any finite random sequence X drawn from a computable rational pro-
bability distribution. This property possibly opens a new field of application for many results
on the entropy of a mixed strategy in a repeated game. We look forward to materialize them.

Références

[1] R.J. Aumann. Survey of repeated games. In R.J. Aumann, editor, Essays in game theory
and mathematical economics in honor of Oskar Morgenstern, pages 11–42. Wissenschafts-
verlag, Bibliographisches Institut, Mannheim, Wien, Zurich, 1981.

[2] E. Kalai. Bounded rationality and strategic complexity in repeated games. Game Theory
and Applications, pages 131–157, 1993.

[3] E. Kalai and E. Lehrer. Rational learning leads to Nash equilibrium. Econometrica,
51 :1019–1045, 1993.

[4] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer Verlag, 1997. Second Edition.

[5] A. Neyman. Finitely repeated games with finite automata. Mathematics of Operations
Research, 23 :513–551, 1998.

[6] A. Neyman and D. Okada. Two-person repeated games with finite automata. International
Journal of Game Theory, 29 :309–325, 2000.

[7] A. Rubinstein. Modelling Bounded Rationality. MIT Press, 1998.

6 Appendices

6.1 Proof of proposition 1

Proof (i) Let k ∈ N the number of an implementation of identity : φk : x 7→ x.
Then Kφ(x) ≤ |x|+Kφ(k) + d︸ ︷︷ ︸

m

= dlogp (x)e+m.

(ii) Let f : N→ N with f(n) −−−−→
x→+∞

+∞. Let ε > 0.

For n ∈ N
∗ and c ∈ N let

An(c) = {x ∈
[
pn−1, pn − 1

]
, Kφ(x) ≤ n− c− 1}

Then n ∈ N
∗ and c ∈ N we have

|An(c)| =
∣∣{x ∈

[
pn−1, pn − 1

]
, ∃k ∈ N, |〈k〉A| ≤ n− c− 1, φk(∅) = x}

∣∣
≤ |{k ∈ N, |〈k〉A| ≤ n− c− 1}|

=

∣∣∣∣∣

n−c−1⋃

l=0

{k ∈ N, |〈k〉A| = l}

∣∣∣∣∣

=

n−c−1∑

l=0

pl

= pn−c − 1

Draft of 09/07/2005-20h07 12

6.1 Proof of proposition 1

For I ⊂ N let
BI = {x ∈ I , dlogp (x)e − f

(
dlogp (x)e

)
− 1}

Let n ∈ N
∗ ; then ∀x ∈ [pn−1, pn − 1] , dlogp (x)e = n.

Thus B[pn−1,pn−1] = A[pn−1,pn−1] (f(n)) hence

∣∣B[pn−1,pn−1]

∣∣ ≤ pn−f(n)

It follows that for N ∈ N
∗

∣∣B[1,N]

∣∣ ≤
∣∣∣B[1,pdlogp(N)e]

∣∣∣

=
∣∣∣B[1,p−1]

⋃
B[p,p2−1]

⋃
· · ·

⋃
B[pdlogp(N)e−1,pdlogp(N)e−1]

⋃
B{pdlogp(N)e}

∣∣∣

= (p− 1) +

dlogp(N)e−1∑

n=1

∣∣B[pn−1,pn−1]

∣∣

 + 1

≤ p+

dlogp(N)e−1∑

n=1

pn−f(n)

Since f(n) −−−−→
n→+∞

+∞ let n0 ∈ N
∗ be such that ∀n ≥ n0, f(n) > logp

(
2p
ε

)
. Then for

N ≥ pn0 we have

∣∣B[1,N]

∣∣ ≤ p+
n0−1∑

n=1

pn−f(n)

︸ ︷︷ ︸
M0

+

dlogp(N)e−1∑

n=n0

pn

pf(n)

≤ M0 +
ε

2p

dlogp(N)e−1∑

n=n0

pn

≤ M0 +
ε

2p

(
pdlogp(N)e − pn0

)

≤ M0 +
ε

2p

(
plogp(N)+1 − 0

)

= M0 +
ε

2
N

Let N0 ≥ pn0 such that ∀N ≥ N0,
M0

N
< ε

2
; then for N ≥ N0 we have

1

N

∣∣B[1,N]

∣∣ < ε

thus 1
N

∣∣[1, N]−B[1,N]

∣∣ > 1− ε that is

1

N

∣∣{x ∈ [1, N] , Kφ(x) ≥ dlogp (x)e − f
(
dlogp (x)e

)
− 1

}∣∣ > 1− ε

Draft of 09/07/2005-20h07 13

6.2 Proof of lemma 1

This holds for any N ≥ N0 which completes the proof with

Ef,ε =
⋃

N≥N0

(
[1, N]− B[1,N]

)

2

6.2 Proof of lemma 1

Let t ≥ 2. φ〈2t〉
A

is an implementation of Dit by definition. Thus Kφ(D
i
t) ≤

∣∣2 t
∣∣ = 1 +Kψ(t)

since t is a shortest description of t ≥ 2 in the enumeration ψ.
On the other hand CountDefectionk computes t for any k such that φk implements Dit

(and in particular for k =
〈
2 t

〉
A
). Since

〈
5k

〉
A

implements CountDefectionk it follows that
Kφ(t) ≤ Kφ(D

i
t).

To conclude note that ∀n, ψn = φ〈7n〉A
so that Kψ(t) ≤ Kφ(t) + 1. And by construction of

the enumeration ψ there is no shorter description of t than 7n in the enumeration ψ. Thus
Kφ(t) = Kψ(t) + 1 so that Kφ(D

i
t) ≤ Kφ(t) ≤ Kφ(D

i
t) which completes the proof.

6.3 Proof of lemmas 2 and 3

Let x ∈ H∗. φ〈3x〉A
is an implementation of E ix by definition. Thus Kφ(E

i
x) ≤ |3 x| = 1 +

Kψ(x) = Kφ(x).
On the other hand GetPathAndDefectionk,T returns x for any k such that φk implements
E ix. Since

〈
6k

〉
A

implements GetPathAndDefectionk,T it follows that Kφ(x) ≤ Kφ(E
i
x) which

proves lemma 2.

Now let t ∈ [2, T − |x|]. φ〈4x,t〉
A

is an implementation of EDix,t by definition ; thusKφ(ED
i
x,t) ≤∣∣3 x, t

∣∣ = Kφ(x, t).
Since GetPathAndDefectionk,T returns (x, t) for any k such that φk implements EDix,t and

since
〈
6k

〉
A

implements GetPathAndDefectionk,T it follows that Kφ(x, t) ≤ Kφ(ED
i
x,t) which

completes the proof of lemma 3.

Draft of 09/07/2005-20h07 14

