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1 Introduction

As is now well known in the literature on cheap talk games (i.e., games with costless,

non-binding, and unmediated communication), repeated communication generally allows

to reach outcomes that cannot be implemented with unilateral or single-period communi-

cation, even if only one player is privately informed (see Aumann and Hart, 2003, Forges,

1984, 1990a, Krishna and Morgan, 2004, Krishna, 2004, and Simon, 2002). In this paper

we study this feature in “sender-receiver” communication games with partially verifiable

types, i.e., games in which the informed player (the expert, or “sender”) has the abil-

ity to voluntarily certify partial or full information to the uninformed decisionmaker (the

“receiver”). We characterize the set of all Nash equilibrium payoffs achievable with un-

mediated communication, by allowing players to talk and negotiate for many periods. At

each stage of this communication phase, the sender can certify part of his information.

This possibility of certifying information, in addition to make cheap talk claims, is jus-

tified in many concrete interactive decision situations. For example, players may present

physical proofs such as documents, observable characteristics of a product, endowments

or costs. Alternatively, in economic or legal interactions there may be labels, penalties

for perjury, false advertising and warranty violations, or accounting principles that allow

agents to submit substantive evidence of their information. Interesting phenomena similar

to those obtained in the cheap talk case arise in games with strategic information certi-

fication. We show that several bilateral communication stages and delayed information

certification allow to convey substantive information and lead to equilibrium outcomes

that are not achievable when only one signalling stage is permitted. A leading example is

analyzed in Section 2.

Our study is closely related to Aumann and Hart (2003) who characterized Nash

equilibria of long cheap talk games, i.e., the subset of communication equilibria (Forges,

1986a, 1990b; Myerson, 1982, 1986) that use only plain conversation. (A communication

equilibrium is a Nash equilibrium of an extension of the game allowing the players to

communicate for several periods, with the help of a mediator, before they make their

decisions.) Here, we characterize the analog of that subset for certification equilibria

(Forges and Koessler, 2005). (A certification equilibrium is defined as a communication

equilibrium, except that each player can also transmit reports from a type-dependent set,

i.e., can send certified information into the communication system.)

Our general model, presented in Section 3, is a one-side incomplete information game

with an expert (the informed player) and a decision maker (the uninformed player). The

expert has a finite set of types, or private signals, with a common prior probability distri-

3



bution. The payoff of each player depends both on the expert’s type and on the decision

maker’s action. The decision maker chooses his action without observing the expert’s type.

However, before the action phase, but after the expert learns his type, players are able to

directly communicate with each other. Communication is assumed strategic, non-binding

(no commitment and no contract are allowed), costless, payoff-irrelevant, and unmediated

(decentralized). In addition, players are not able to observe private payoff-irrelevant sig-

nals (“private sunspots”) and there is no extraneous noise in communication, which thus

takes place “face-to-face”. However, mixed (randomized) strategies are allowed in both

the communication and action phases.

Contrary to usual cheap talk games (Crawford and Sobel, 1982; Ben-Porath, 2003;

Gerardi, 2004; Krishna and Morgan, 2004), the set of messages available to the expert is

type-dependent, reflecting his ability to certify his information. We will assume that the

expert has always the opportunity to remain silent, i.e., to send a meaningless message

to the decision maker. Furthermore, to guarantee that our geometric characterization be

sufficient for an equilibrium, we will require that players have access to a rich language.

More precisely, we make the following assumption: for any set of types containing his real

type, the expert has a sufficiently large set of messages allowing him to certify that is real

type belongs to that set.

In the associated one-shot communication game the expert learns his type and sends

a message to the decision maker, who then chooses an action. Such games are sometimes

called persuasion or disclosure games (see, e.g., Milgrom, 1981; Milgrom and Roberts,

1986; Seidmann and Winter, 1997). To the best of our knowledge, this literature has

always focused on one-shot information revelation with very specific assumptions on play-

ers’ preferences, like single-peakedness, strict concavity and monotonicity. Our first result

(Theorem 1) is a full characterization of Nash equilibrium payoffs of one-shot communica-

tion games with certifiable information. Roughly, equilibrium payoff vectors are obtained

by convexifying the graph of an extended set of equilibrium payoffs of the basic game

without communication (the silent game), by keeping the payoff of the informed player

constant and individually rational. Several geometric illustrations involving full, partial

and/or no information revelation are provided.

In a multistage communication game, the talking phase has an arbitrary large number

of periods. In each communication period both players simultaneously send a message

that depends on the history of play up to that period. The informed player’s message may

also depend on his private information. As in Hart (1985) and Aumann and Hart (2003),

our equilibrium characterization makes use of the mathematical concepts of diconvexifica-

tion and dimartingale. In Theorem 2 we show that the set of equilibrium payoffs of any
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multistage communication game can be characterized in terms of starting points of di-

martingales converging to the graph of an extended set of equilibrium payoffs of the silent

game, and staying in an adapted set of individually rational payoffs during the whole pro-

cess. This theorem is illustrated with our leading example. An equivalent representation

in terms of diconvexification is provided.

The paper is organized as follows. In the next section we present our leading example.

Section 3 describes the model. Section 4 formulates the geometric characterizations of

the equilibrium payoffs and then explains and illustrates them through examples. Formal

proofs for Theorem 1 (signalling) and Theorem 2 (persuasion with a deadline) are provided

in Sections 5 and 6, respectively. We conclude and discuss extensions of the model in

Section 7. The Appendix contains several additional examples.

2 An Example

In this section we introduce and motivate our study of multistage and bilateral communi-

cation with certifiable information through an example. This example motivates our study

concerning two aspects. First, the example illustrates how by certifying their information

players can reach equilibrium outcomes that cannot be achieved by any communication

system with non-certifiable information (even with a mediator). Second, the example

shows that delayed information revelation and multiple rounds of communication and

compromises may be required to achieve some equilibrium payoffs, even if only one player

has substantive information.

Consider two players, player 1 (the expert) and player 2 (the decisionmaker), who are

playing a strategic form game which depends on the true state of Nature, k1 or k2, with

probability 1/2 each (see Figure 1). Player 1 knows the true state of Nature but player 2

does not know the actual game being played. Player 2 must choose action j1, j2, j3, j4 or

j5, and player 1 has no choice. The expected payoff of player 2 depending on his action

and his belief p ∈ [0, 1] about the state of Nature k1 is represented by Figure 2 on the next

page (the thick lines denote his best-reply payoff).

j1 j2 j3 j4 j5

k1 5, 0 3, 4 0, 7 4, 9 2, 10

k2 1, 10 3, 9 0, 7 5, 4 6, 0

Figure 1: Introductory Example.
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Figure 2: Player 2’s Expected Payoffs (thin lines) and Best-Reply Expected Payoffs (thick
lines) in the Introductory Example.

Without communication possibilities (in the “silent game”), the only equilibrium payoff

is (0, 7) since action j3 yields the best expected payoff for player 2 given his prior belief

p = 1/2. If, before choosing his action, player 2 is able to talk with player 1, and no

information can be certified (or verified) concerning the true state of Nature then, whatever

the communication possibilities (even repeated), the unique equilibrium payoff remains

(0, 7). Information transmission is not possible here because if player 2 chooses his action

conditionally on the messages sent by player 1 then, whatever the true state of Nature,

player 1 has always an incentive to use the messages he should have sent at the other state

(since information is not certifiable, the set of available messages of player 1 is the same

whatever the true state of Nature). In other words, information which is transmitted to

player 2 is never credible, even if in every state it is to the advantage of both players that

player 1 tells player 2 the truth, and that this latter believes him. Notice that allowing

unboundedly long communication, or even adding a mediator, cannot help here: one can

verify that the unique communication equilibrium1 is the singleton equilibrium {j3} of the

silent game.

Assume now that player 1 can voluntarily certify his information concerning the real

state of Nature. That is, his informational reports are assumed truthful (the making of

1See, e.g., Myerson (1994).
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false statements is prohibited), but he may withhold his information since it is not required

that he makes positive disclosures. To begin with, assume that player 1 can only send a

single message and that player 2 cannot send any message. More precisely, assume that

player 1 can choose between two types of reports: either he certifies his information (he

sends the message m = c
1 if the real state is k1 and the message m = c

2 if the real state

is k2), or he certifies no information2 (he sends the message m = m which is available

whatever the true state). It is easy to see that full revelation of information is now

possible: player 2 chooses action j5 if player 1 reveals that the true state is k1, he chooses

j1 if player 1 reveals that the true state is k2, and chooses j3 if player 1 reveals nothing. In

such a situation, player 1 has no incentive not to reveal his information because his payoff

would be zero instead of 2 in state k1 and 1 in state k2. Obviously, player 2 also behaves

rationally because he chooses the best action for him in each state of Nature.

As in usual cheap talk games, the non-revealing outcome is also an equilibrium since

player 2 can always ignore what player 1 says and choose action j3.
3

The two equilibrium outcomes described above (the perfectly revealing one and the

non-revealing one) are not the only Nash equilibria of the one-shot communication game

with certifiable information. Indeed, if we allow player 1 to randomize, then there are two

other partially revealing equilibria. One of them is better for player 1 than any of the

previous pure strategy equilibria since it gives him a payoff of 2 whatever his type. In

this equilibrium, denoted by PRE1, player 1 certifies his type (sends the message c
1) with

probability 1/3 and remains silent (sends the message m) with probability 2/3 in k1, and

he always remain silent (sends the message m) in state k2. Player 2’s posterior beliefs are

Pr(k1 | m) = Pr(m|k1) Pr(k1)
Pr(m) = 2/6

2/6+1/2 = 2/5 and Pr(k1 | c
1) = 1, so he plays action j5

when he receives the message c
1 and is indifferent between j2 and j3 when he receives the

message m. If he plays j2 with probability 2/3 and j3 with probability 1/3 after m, and if

he plays j1 after the off-equilibrium message c
2 then player 1 has no incentive to deviate:

in k1 he gets a payoff of 2 if he sends the message c
1 and also (2/3) × 3 + (1/3) × 0 = 2

if he sends the message m, so he is indifferent between the two messages; in k2 he gets a

payoff of 1 if he sends the message c
2 and (2/3)×3+(1/3)×0 = 2 if he sends the message

m, so he strictly prefers to send message m.

In the second partially revealing equilibrium with randomized certification, denoted by

PRE2, player 1 always remains silent (sends the message m) in state k1 and he certifies his

type (sends the message c
2) with probability 1/3 and remains silent (sends the message

2Or, equivalently, he remains silent.
3However, notice that contrary to the fully revealing equilibrium, the non-revealing equilibrium is based

on irrational choices outside the equilibrium path since player 2 should not choose action j3 when player
1 reveals him the true state of Nature.
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m) with probability 2/3 in k2. Player 2’s posterior beliefs are Pr(k1 | m) = 3/5 and

Pr(k1 | c
2) = 0, so he plays action j1 when he receives the message c

2 and is indifferent

between j3 and j4 when he receives the message m. If he plays j3 with probability 4/5

and j4 with probability 1/5 after message m, and if he plays j3 after the off-equilibrium

message c
1 then it can be checked as before that player 1 has no incentive to deviate: in

k1 he gets a payoff of 0 if he sends the message c
1 and (4/5) × 0 + (1/5) × 4 = 4/5 if he

sends the message m, so he strictly prefers to send message m; in k2 he gets a payoff of 1

if he sends the message c
2 and (4/5) × 0 + (1/5) × 5 = 1 if he sends the message m, so he

is indifferent between the two messages.4

Now, we show that if player 1 is able to talk with player 2 during several bilateral

communication rounds, then he is able to reach even a higher equilibrium payoff of 3

whatever his type. This equilibrium can be achieved in three communication stages.

In the first two communication stages there is no information certification, and in the

last communication stage player 1 will reveal (and certify) his information to player 2

conditionally on what both players said in the previous communication stages. The whole

communication phase can work as follows.

Equilibrium (i).

In the first communication stage player 1 partially reveals (without certifying) his informa-

tion by using a random communication strategy which transmits the correct information

with probability 3/4 so as to leave some doubt in player 2’s mind. That is, he sends a

message m = a with probability 3/4 if the real state is k1 and with probability 1/4 if the

real state if k2. Symmetrically, he sends a message m = b with probability 3/4 if the

real state is k2 and with probability 1/4 if the real state if k1 (the labeling of these two

messages is irrelevant but both messages a and b are cheap talk messages: they must be

available to player 1 whatever his type). From Bayes’ rule, player 2 will believe state k1

with probability 3/4 if he receives the message a and with probability 1/4 if he receives

the message b. Hence, substantive but only partial information is conveyed, without any

information certification. Communication cannot stop now since, as seen before, player 1

would have an incentive to deviate by always sending the message a at k1 and the mes-

sage b at k2. Assume that player 2 chooses action j2 whenever he receives the message

b. This choice is rational given his beliefs. Otherwise, when the message a is sent, they

agree on a jointly controlled 1
2 − 1

2 lottery to reach the following compromise (this second

4Notice that contrary to the previous partially revealing equilibrium, this equilibrium is based on irra-
tional choices outside the equilibrium path since player 2 should not choose action j3 when player 1 reveals
him the true state of Nature (the equilibrium is not subgame perfect).
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communication stage conveys no substantive information, i.e., no information about the

fundamentals of the game).5 If head occurs, then communication stops and thus player 1

chooses action j4. On the contrary, if tail occurs, then player 1 certifies his information

in the last communication stage (he sends the message c
k if the real state is k). Then,

player 2 chooses action j5 if c
1 is sent and action j1 if c

2 is sent. Player 1 has no incentive

to deviate if, for example, player 2 chooses action j3 when player 1 deviates in the last

communication stage by remaining silent. The whole communication and decision process

in this equilibrium is summarized by Figure 3 (where “JCL” stands for “jointly controlled

lottery”). Player 2’s expected payoff is
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Figure 3: An Equilibrium Communication and Decision Tree for the Introductory Example
(Equilibrium (i)).

5A jointly controlled lottery is a mechanism that generates a uniform probability distribution on any
finite set from private random communication strategies so that a unilateral deviation does not change the
probability distribution. For example, a 1

2
− 1

2
lottery can be generated as follows: each player chooses a

message in {a, b} at random, both players announce their choices simultaneously and the outcome is head
(H) if the messages coincide and tail (T ) otherwise.
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Equilibrium (ii).

The communication and decision process is similar to the previous one except that in the

first signaling stage the messages are sent with probability (3/5, 2/5) instead of (3/4, 1/4).

In Section 4 we will provide geometric characterizations of all possible equilibria of

unilateral or bilateral communication games with certifiable information. For example,

the previous fully revealing equilibrium (FRE) and the two partially revealing equilibria

(PRE1 and PRE2) of the unilateral communication game are simply characterized by the

intersection points FRE, PRE1 and PRE2 in Figure 7 on page 19. The non-existence

of informative equilibrium in direct communication games (of bounded length) in which

information is not certifiable is simply characterized by the fact that the gray solid lines in

Figure 7 never intercept. The geometric characterization of the equilibria described above

requiring information certification as well as multiple and bilateral communication stages

is slightly more complex, and will be illustrated in subsection 4.3.

3 Model

We consider two players: player 1 (the “sender”, informed player, interested party or

expert) and player 2 (the “receiver” or uninformed decisionmaker (DM)). J (|J | ≥ 2)

is the finite action set of player 2 (player 1 has no action). K (|K| ≥ 2) is the set

of possible states (or types of player 1), with a common prior probability distribution

p = (p1, . . . , pk, . . . , pK) ∈ ∆(K). The normal form “game” Γk in state k ∈ K is given by

two payoff vectors Ak ≡ [Ak(j)]j∈J and Bk ≡ [Bk(j)]j∈J . That is, Ak(j) and Bk(j) are

the payoffs to player 1 and player 2, respectively, when player 2 chooses action j ∈ J and

the state is k ∈ K.

3.1 Silent Game: Non-Revealing Equilibria

The silent game, denoted by Γ(p), consists of two phases. In the information phase a

state k ∈ K is picked at random according to the probability distribution p. Player 1

is perfectly informed about the true state k, while player 2 is not. In the action phase,

player 2 chooses an action j ∈ J and players are paid off in accordance with the normal

form game Γk = (Ak, Bk). That is, player 1 and player 2 receive payoffs Ak(j) and Bk(j),

respectively, where k is the true state.

A mixed strategy of player 2 in the silent game Γ(p) is simply a mixed action y ∈ ∆(J).

We extend payoff functions linearly to mixed actions: Ak(y) = Ak · y =
∑

j∈J y(j)Ak(j)

and Bk(y) = Bk · y =
∑

j∈J y(j)Bk(j).
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The set of (Bayesian) Nash equilibria of the silent game Γ(p) is simply the set of optimal

mixed actions for player 2 in the silent game Γ(p):

Y (p) ≡ arg max
y∈∆(J)

∑

k∈K

pk Bk(y)

︸ ︷︷ ︸
pB(y)

=

{
y ∈ ∆(J) :

∑

k∈K

pk Bk(y) ≥
∑

k∈K

pk Bk(j), ∀ j ∈ J

}
.

It is also called the set of non-revealing equilibrium outcomes at p.

Remark 1 A pure action is always sufficient to maximize the decisionmaker’s payoff. So,

for all j, j ′ ∈ supp[Y (p)] and y ∈ ∆(J) we have pB(j) = pB(j ′) ≥ pB(y). However,

mixed actions might be used by player 2 for two reasons: (i) on the equilibrium path to

make player 1 indifferent between several messages, and (ii) off the equilibrium path to

punish (minmax) player 1.

The resulting equilibrium payoffs are the (K + 1)-dimensional vectors (a, β), where

a = (a1, . . . , aK) ∈ R
K , ak = Ak(y) is the payoff of player 1 of type k and the scalar

β = pB(y) ∈ R is player 2’s expected payoff (expectation over k). Let E(p) ⊆ R
K × R

be the set of equilibrium payoffs of Γ(p), also called the set of non-revealing equilibrium

payoffs at p. That is,

E(p) ≡ {(a, β) ∈ R
K × R : ∃ y ∈ Y (p), a = A(y), β = pB(y)}.

3.2 Unilateral Communication Game: Signalling

Here, we consider only direct (unmediated and noiseless) and unilateral communication,

from player 1 to player 2, as in standard sender-receiver/persuasion/signalling games.

The set of available messages (“keystrokes”) of player 1 is state-dependent and is denoted

by M(k) when his type is k (so, the “keyboard” of player 1 depends on his type). Let

M
1 =

⋃
k∈K M(k) be the set of all messages that player 1 could send. The set

⋂
k∈K M(k)

is the set of all cheap talk messages available to player 1, i.e., the set of all messages that

player 1 can send whatever his type.

We assume that the set of cheap talk messages available to player 1 is nonempty. That

is, there exists m ∈ M 1 such that M−1(m) = K. This “right to remain silent” assumption

will be needed for the “only if” part (from equilibrium to dimartingales) of the Theorems

(see Theorems 1 and 2). For the “if” part (from dimartingales to equilibrium) we will

further assume that the message space and certifiability possibilities of the sender are

sufficiently rich. That is, whatever his type k, and for each event L ⊆ K containing k,
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player 1 can choose among a sufficiently large set of messages certifying that his real type

is in L. Formally, we assume that

|{m ∈ M1 : M−1(m) = L}| ≥ L + 1, for all L ⊆ K.

Notice that this “rich langage/certifiability” assumption implies the previous assumption

that the set
⋂

k∈K M(k) is nonempty (simply take L = K). Note also that assuming full

certifiability only for singleton events L = {k} will not be sufficient for the “if” part of

the theorems.

The signalling game determined by Γ and p, denoted by ΓS(p), is obtained by adding

a unilateral talking phase to the silent game Γ(p) before the action phase but after the

information phase. Therefore, the signalling game corresponds to a standard “persuasion

game” (Milgrom, 1981; Shin, 1994; Seidmann and Winter, 1997) and has three phases (see

Figure 4).

Information phase

Expert learns k ∈ K

Talking phase

Expert sends message m1 ∈ M(k)

Action phase

DM chooses action j ∈ J

Figure 4: Signalling Game ΓS(p).

In the information phase a normal form “game” Γk is picked at random from {Γ1, . . . ,ΓK}

according to the probability distribution p. Player 1 is informed of k and player 2 is not.

The talking phase has only one time period in which type k ∈ K of player 1 (publicly)

sends a message m
1 ∈ M(k). Finally, in the action phase, player 2 chooses an action

and they are paid off in accordance with the normal form game Γk. The extensive form

representation of the signalling game with only two types, two cheap talk messages and

one certificate for each type (M(k) = {a, b, ck}, k = k1, k2) is given in Figure 5.

A (mixed) strategy for player 1 in the signalling game is a profile σ = (σk)k∈K , with

σk ∈ ∆(M(k)) for all k. A (mixed) strategy for player 2 is a function τ : M
1 → ∆(J). A

pair of strategies (σ, τ) of the signalling game generates expected payoffs (a1
σ,τ , . . . , aK

σ,τ )

and βσ,τ for player 1 and player 2, respectively. As usual, a (Bayesian) Nash equilibrium

of the signalling game is a pair of mixed strategies (σ, τ) satisfying

ak
σ,τ = max

σ̃
ak

σ̃,τ for all k ∈ K; and

βσ,τ = max
τ̃

βσ,τ̃ .
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Figure 5: Extensive form of the signalling game ΓS(p) with two types, two cheap talk
messages and one certificate for each type (M(k) = {a, b, ck}, k = k1, k2).

Let ES(p) be the set of Nash equilibrium payoffs of ΓS(p).

3.3 Bilateral and Bounded Communication Game: Persuasion with a

Deadline

We consider an arbitrary large but finite number n ≥ 1 of communication rounds. In each

communication round t = 1, . . . , n each player can directly send a message to the other.

As in the signalling game, the set of available messages of player 1 is denoted by M(k)

when his type is k, M
1 =

⋃
k∈K M(k) is the set of all messages that player 1 could send,

and
⋂

k∈K M(k) 6= ∅ is the set of all cheap talk messages available to player 1. The set of

available messages of player 2 is denoted by M
2, with |M 2| ≥ 2.

As in the signalling game we assume that |{m ∈ M 1 : M−1(m) = L}| ≥ L + 1 for all

L ⊆ K. However, notice that in the multistage communication game it would be sufficient

to have two cheap talk messages and that a combination of several certificates allows to

certify any event L ⊆ K.6 The above specific assumption on the richness of the message

space is only for convenience.

The direct (unmediated and noiseless) communication game with n communication

stages, determined by Γ and p, is denoted by Γn(p). It is obtained by adding a talking

phase with n bilateral communication rounds to the silent game Γ(p) before the action

6That is, it would be sufficient to assume that |
⋂

k∈K
M(k)| ≥ 2, and ∀ k, ∀ k 6= k′, ∃ m ∈ M(k),

M−1(m) = K\{k′}.
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phase but after the information phase(see Figure 6).

Information phase

Expert learns k ∈ K

Talking phase (n ≥ 1 rounds)

Expert and DM send (m1
t ,m

2
t ) ∈ M(k) × M 2

(t = 1, . . . n)

Action phase

DM chooses j ∈ J

Figure 6: n-Stage Communication Game Γn(p).

In the information phase a normal form “game” Γk is picked at random from {Γ1, . . . ,ΓK}

according to the probability distribution p. Player 1 is informed of k and player 2 is not.

At each period t = 1, . . . , n of the talking phase, type k ∈ K of player 1 (publicly) sends a

message m
1
t ∈ M(k) and player 2 (publicly) sends a message m

2
t ∈ M

2. Messages are sent

simultaneously. Finally, in the action phase (in period n + 1), player 2 chooses an action

and they are paid off in accordance with the normal form game Γk.

A t-period history, t = 0, 1, . . . , n, is a sequence consisting of t pairs of messages,

ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ) ∈ (M1 × M

2)
t
.

The set of all t-period histories is denoted by Mt = (M1 × M
2)

t
.

A (behavioral7) strategy σ of player 1 in the direct n-period communication game Γn(p)

consists of a sequence of functions σ1, . . . , σn, where σt = (σ1
t , . . . , σ

K
t ) and σk

t : Mt−1 →

∆(M(k)) for k ∈ K and t = 1, . . . , n.

A (behavioral) strategy τ of player 2 consists of a sequence of functions τ1, . . . , τn, and

a function τn+1, where τt : Mt−1 → ∆(M2) for t = 1, . . . , n, and τn+1 : Mn → ∆(J).

A pair of strategies (σ, τ) of the communication game generates expected payoffs

aσ,τ = (a1
σ,τ , . . . , a

K
σ,τ ) and βσ,τ for player 1 and player 2, respectively. A (Bayesian)

Nash equilibrium of the direct n-period communication game Γn(p) is a pair of behavioral

strategies (σ, τ) satisfying

ak
σ,τ = max

σ̃
ak

σ̃,τ for all k ∈ K; and

βσ,τ = max
τ̃

βσ,τ̃ .

Let En(p) be the set of Nash equilibrium payoffs of Γn(p). Notice that ES(p) ⊆ En(p) ⊆

En+1(p) for all n ≥ 1. Let EB(p) =
⋃

n En(p) be the set of Nash equilibrium payoffs of all

bilateral/bounded communication games determined by Γ and p.

The next section is aimed at characterizing the sets ES(p) and EB(p).

7We focus on finite games with perfect recall. Hence, by Kuhn’s (1953) theorem behavioral strategies
are without loss of generality (see also Subsection 7.2).
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4 Characterization of Equilibrium Payoffs ES(p) and EB(p)

4.1 Statement of the Results

When some coordinates of p vanish, Aumann and Hart (2003) consider the modified equi-

librium payoffs E+(p) of the silent game Γ(p), which is the same as E(p) except that when

the probability of one of player 1’s type vanishes, then the corresponding type of player 1

can get more than his equilibrium payoff. That is, the set of modified equilibrium payoffs

of the silent game Γ(p) is the set of all payoffs (a, β) ∈ R
K × R such that there exits an

equilibrium y ∈ Y (p) of the silent game Γ(p) satisfying

(i) ak ≥ Ak(y), for all k ∈ K;

(ii) ak = Ak(y) if pk 6= 0;

(iii) β =
∑

k∈K pk Bk(y).

So, if p has full support we have E+(p) = E(p). The graph of the modified equilibrium

payoff correspondence is

G ≡ gr E+ ≡ {(a, β, p) ∈ R
K × R × ∆(K) : (a, β) ∈ E+(p)}.

Here, we consider a larger set of modified equilibrium payoffs, denoted by E++(p), and

called the set of extended equilibrium payoffs of the silent game Γ(p). It is also obtained

from equilibrium payoffs E(p) of the silent game Γ(p), but when the probability of one of

player 1’s type vanishes we allow the corresponding type of player 1 to get any payoff,

which of course may be less than his equilibrium payoff. That is, the set of extended

equilibrium payoffs E++(p) is the set of all payoffs (a, β) ∈ R
K × R such that there exits

an equilibrium y ∈ Y (p) of the silent game Γ(p) satisfying only (ii) and (iii). Clearly,

E(p) ⊆ E+(p) ⊆ E++(p) and if p has full support then all these sets coincide.

Remark 1 Notice that the sets E(p), E+(p) and E++(p) are convex for all p, and if (a, β)

and (a′, β′) belong to one of these sets then β = β ′. This is because we consider only

one decisionmaker (in general, if both players are decisionmakers as in Aumann and Hart,

2003, then the sets are not convex and player 2’s equilibrium payoff is not unique).

The graph of this extended equilibrium payoff correspondence is denoted by

H = gr E++ ≡ {(a, β, p) ∈ R
K × R × ∆(K) : (a, β) ∈ E++(p)}.
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For any (nonempty) set of types L ⊆ K, let

INTIRL ≡ {a ∈ R
K : ∃ y ∈ ∆(J), ak ≥ Ak(y) ∀ k ∈ L},

be the set of payoffs that are interim individually rational for player 1 when we restrict

the individual rationality constraint to a subset L of player 1’s set of types. Remark that

INTIRL ⊆ INTIRL′ whenever L′ ⊆ L.

Let H1 ≡ conva(H) ∩ {(a, β, p) ∈ R
K × R × ∆(K) : a ∈ INTIRK} be the set of

expected payoffs obtained from H by convexifying in (β, p) when the payoff of player 1,

a, is kept constant and is interim individually rational (on the whole set of types K) for

player 1. We show that H1 fully characterizes the set of equilibrium payoffs of ΓS(p),

the talking game determined by Γ and p ∈ ∆(K) with only one step of signalling. Let

H1(p) ≡ Projp(H1) ≡ {(a, β) ∈ R
K × R : (a, β, p) ∈ H1} be the p-section of H1.

Theorem 1 (Signalling) Let pk > 0 for all k ∈ K. We have,

ES(p) = H1(p) ≡ {(a, β) ∈ R
K × R : (a, β, p) ∈ H1}.

In addition, any Nash equilibrium payoff of ΓS(p) can be obtained with at most K + 1

messages.

That is, (a, β) ∈ R
K+1 is the payoff to a Nash equilibrium in a signalling game ΓS(p) if

and only if (a, β, p) is in H1 ≡ conva(H)∩{(a, β, p) ∈ R
K ×R×∆(K) : a ∈ INTIRK}, the

set of payoffs obtained from H ≡ gr E++ by convexifying in (β, p) when a is kept constant

and is interim individually rational for player 1.

From the proof of this “if” part of the Theorem (the construction of the sender’s

strategy; see Section 5.2), the following proposition is immediate:

Proposition 1 Every equilibrium of the signalling game ΓS(p) is outcome equivalent (i.e.,

it induces the same probability distribution over player 2’s decision conditional on k) to a

“canonical” equilibrium (σ, τ) with the following property:

For all m ∈ M 1, if σk(m) > 0 for some k ∈ K, then σk′

(m) > 0 for all k′ ∈ M−1(m).

In particular, if a cheap talk message m ∈
⋂

k∈K M(k) is sent with strictly positive

probability by player 1, then all types of player 1 send this message with strictly positive

probability. More generally, the proposition says that in equilibrium we can assume with-

out loss of generality that if player 2’s posterior about a certain type k of player 1 is null
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after some message m sent with strictly positive probability (pk
m = 0 with P (m) > 0),

then k /∈ M−1(m), i.e., the message m certifies that k is not realized. In particular, all

types have strictly positive posterior probability after a cheap talk message (sent with

strictly positive probability in equilibrium). Without using the geometric characterization

of Theorem 1, the intuition of the proposition is as follows. Assume that type k ′ does

not send a message m but could have sent it (i.e., m ∈ M(k ′)). Then, the types who

send message m could have sent another message instead of m that certifies that k ′ is not

realized, without changing player 2’s posteriors and so without changing the equilibrium

outcome.

To get the equilibrium payoffs for talking games with several bilateral communication

rounds, let H2 be the set of payoffs obtained from H1 by first convexifying in (a, β)

when player 2’s belief p is fixed, then in (β, p) when player 1’s payoff a is fixed, and by

convexifying again in (a, β) when player 2’s belief p is fixed, with the restriction that in each

step of the process of diconvexification the payoff of player 1 is interim individually rational

for the types with a strictly positive posterior in that step. The p-section of the set H2

will correspond to the set of equilibrium payoffs of talking games with four communication

rounds: a jointly controlled lottery, a step of signalling, a second jointly controlled lottery,

and a second step of signalling. Next, let H3 be the set of payoffs obtained from H2 by

convexifying in (β, p) when player 1’s payoff a is fixed, and then by convexifying in (a, β)

when player 2’s belief p is fixed, with again the restriction that in each step of the process

of diconvexification the payoff of player 1 is interim individually rational for the types

with a strictly positive posterior in that step. The p-section of the set H3 will correspond

to the set of equilibrium payoffs of talking games with six communication rounds. The

limit of the increasing sequence H1, H2, . . .Hl constructed in this way is denoted by

di-co IR(H) ≡
⋃∞

l=1 Hl. Points in di-co IR(H) will correspond to all equilibrium payoffs of

talking games of bounded length. Let HB(p) ≡ Projp(di-co IR(H)) ≡ {(a, β) ∈ R
K × R :

(a, β, p) ∈ di-co IR(H)} be the p-section of di-co IR(H).

The set di-co IR(H) can also be expressed as the set of starting points of particular

martingales that converge to H, as in the next Theorem.

Theorem 2 (Bounded Persuasion) Let pk > 0 for all k ∈ K. We have,

EB(p) = HB(p) ≡ {(a, β) ∈ R
K × R : (a, β, p) ∈ di-co IR(H)}.

Equivalently, (a, β) ∈ R
K+1 is a Nash equilibrium payoff of the bounded persuasion game
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Γn(p) for some n ≥ 1, i.e.,

(a, β) ∈ EB(p),

if and only if there exists a martingale z = (z0, z1, . . . , zN ), with zs = (as, βs, ps) ∈

R
K × R × ∆(K) satisfying the following properties:

(1) z0 = (a, β, p). That is, the starting point (and expectation) of the martingale is the

Nash equilibrium payoff under consideration.

(2) zN ∈ gr E++ ≡ H. That is, the martingale converges to the extended equilibrium

payoffs of the silent game: (aN ,βN ) ∈ E++(pN ).

(3) as+1 = as for all even s and ps+1 = ps for all odd s. That is, the martingale is a

dimartingale.

(4) For all s = 0, 1, . . . , N , as ∈ INTIRsupp[p
s
], where

INTIRsupp[ps]
≡ {a ∈ R

K : ∃ y ∈ ∆(J), ak
s ≥ Ak(y) ∀ k ∈ supp[ps]},

and supp[ps] ≡ {k ∈ K : pk
s > 0}. That is, the vector payoff of player 1’s types with

strictly positive probability is individually rational along the communication process.

Remark 2 Notice that if zN ∈ H and aN ∈ INTIRK then (2) and (4) are satisfied. But

the converse is not true: it is easy to construct an example with an equilibrium payoff

(a, β) ∈ EB(p) but aN /∈ INTIRK , K 6= supp[pN ]. Notice also that condition (4) only for

s = 0 is not sufficient. Indeed, one can easily construct a dimartingale with a0 ∈ INTIRK ,

(aN ,βN ,pN ) ∈ H, but (a, β) /∈ EB(p) (as /∈ INTIRsupp[ps]
for some history at s).8

8Examples are available from the authors upon request.
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4.2 Illustration of Theorem 1 (Signalling)

For the introductory example, the graph of the modified equilibrium payoff correspondence,

G = gr E+, is represented on the (a1, a2) coordinates by grey solid lines in Figure 7. The

graph of the extended equilibrium payoff correspondence, H = gr E++, is represented

in the same figure by all the grey lines, including the dashed ones. The sets G and

H are also described in Table 1. Since all points at the north-east of (0, 0) are interim

individually rational for player 1, convexifying the set H by keeping a constant and interim

individually rational yields three new points at p = 1/2: FRE, PRE1 and PRE2, which

are exactly the three Nash equilibrium payoffs found in Section 2, in addition to the non-

revealing equilibrium (NRE). Indeed, each of these points corresponds to two extended

non-revealing equilibria, at two different p’s forming an interval that includes p = 1/2,

giving the same payoff to player 1. Notice that, for example, the intersection point PRE3

is not an equilibrium payoff for p = 1/2 because 1/2 lies outside the interval [3/5, 1].

j1

j2

j3

j4

j5

FRE

PRE1

PRE3

PRE2

NRE

p = 0

p
=

1/5

p
=

2/
5

p
=

3/
5

p = 4/5

p
=

1

a1

a2

0 1 2 3 4 5
0

1

2

3

4

5

6

Figure 7: Extended equilibrium payoffs of the expert in the introductory example.
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4.3 Illustration of Theorem 2 (Persuasion with a Deadline)

The dimartingale corresponding to Equilibrium (i) of the introductory example (see Fig-

ure 3) is represented by Figure 8. It yields to the point j2 at p = 1/2 in Figure 7,

which is not achievable at p = 1/2 with only one step of signalling/diconvexification. The

dimartingale corresponding to Equilibrium (ii) is similar.

1/2
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Figure 8: Dimartingale/diconvexification Corresponding to Equilibrium (i) of the Intro-
ductory Example.

Adding a jointly controlled lottery before a signalling stage allows a convexification by

keeping p fixed. This yields to the graph H∗
1 = convp(H1) described on the a-coordinates

in the fourth column of Table 1. For example, adding a jointly controlled lottery before a

signalling stage at p = 1/2 yields to all convex combinations of equilibrium payoffs of the

signalling game, [j3,FRE,PRE1,PRE2]. Adding a second signalling stage allows a second

convexification by keeping a fixed. One can check that this does not yield new equilibrium

payoffs, except for p ∈ (2/5, 3/5). Indeed, for p ∈ (2/5, 3/5) one can combine the sets

H∗
1 (p′) = [j2,PRE2,FRE], p′ ∈ (1/5, 2/5), and H∗

1 (p′′) = [j4,PRE3,FRE], p′′ ∈ (3/5, 4/5),

which yields to the payoffs in the triangle [j2,PRE1,FRE], which were not achievable

at p ∈ (2/5, 3/5) with only 2 communication stages. Hence, for p ∈ (2/5, 3/5), H2(p) =
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H∗
1 (p)∪ [j2,PRE1,FRE] = [j3,PRE2, j2,FRE]. It is easy to verify that one cannot get new

points after two steps of diconvexification on both directions, so H2 = H3 = · · · = H∞.

p G H H∗
1 = convp(H1) H2

0 (a1 ≥ 5, 1) (a1 ≥ 0, 1) · · · · · ·
(0, 1

5) j1 j1 [j1,PRE2] · · ·
1
5 [j1, j2] [j1, j2] [j1, j2,PRE2] · · ·

(1
5 , 2

5) j2 j2 [j2,PRE2,FRE] · · ·
2
5 [j2, j3] [j2, j3] [j2,PRE2, j3,FRE] · · ·

(2
5 , 3

5) j3 j3 [j3,FRE,PRE1,PRE2] [j3,PRE2, j2,FRE]
3
5 [j3, j4] [j3, j4] [j3, j4,FRE] · · ·

(3
5 , 4

5) j4 j4 [j4,PRE3,FRE] · · ·
4
5 [j4, j5] [j4, j5] [j4, j5,FRE] · · ·

(4
5 , 1) j5 j5 [j5,FRE] · · ·
1 (2, a2 ≥ 6) (2, a2 ≥ 0) · · · · · ·

Table 1: “· · · ” means “as in the previous column”.
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5 Proof of Theorem 1 (Signalling)

5.1 From equilibrium to constrained convexification (only if): ES(p) ⊆

H1(p)

Let (σ, τ) be any Nash equilibrium of the signalling game ΓS(p), where pk > 0 for all k ∈ K,

and let (a, β) ∈ ES(p) be the associated equilibrium payoffs. We must show that (a, β, p)

is in H1, i.e., (a, β, p) can be obtained as a convex combination of points in H = gr E++

by keeping a constant and interim individually rational (a ∈ INTIRK).

Let P = Pσ,τ,p be the probability distribution on Ω = K×M 1×J generated by players’

strategies and the priors. So,

P (m) =
∑

k∈K

pk σk(m),

is the (ex ante) probability that player 1 sends the message m ∈ M 1. Let M∗ = {m ∈

M1 : P (m) > 0}. For all m ∈ M ∗, let

pk
m = P (k | m) =

pk σk(m)

P (m)
,

be player 2’s posterior about player 1’s type after receiving the message m, let pm =

(pk
m)k∈K , and let

βm =
∑

k∈K

pk
m Bk(τ(m)),

be the resulting expected payoff for player 2 when m is reached.

Since pk =
∑

m∈M∗ P (m) pk
m for all k ∈ K and β =

∑
m∈M∗ P (m)βm, we have

(a, β, p) =
∑

m∈M∗

P (m) (a, βm, pm).

So, to show that (a, β, p) is a convex combination of points in H be keeping a constant

it suffices to show that (a, βm, pm) ∈ H for all m ∈ M ∗, i.e., (a, βm) ∈ E++(pm) for all

m ∈ M∗. Player 2’s equilibrium condition implies that τ(m) ∈ Y (pm) for all m ∈ M ∗,

so condition (iii) in the definition of E++(pm) (see page 15) is satisfied for all m ∈ M ∗.

Player 1’s equilibrium condition implies that Ak(τ(m)) = Ak(τ(m′)) whenever σk(m) > 0

and σk(m′) > 0 (player 1 of type k should be indifferent between all messages that he

sends with strictly positive probability), so

ak =
∑

m∈M∗

σk(m)Ak(τ(m)) = Ak(τ(m)),
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for all m such that σk(m) > 0 (which is equivalent to pk
m > 0 because pk > 0), so condition

(ii) in the definition of E++(pm) is also satisfied for all m ∈ M ∗.

Remark 3 Notice that when pk
m = 0 we may have ak < Ak(τ(m)) (because type k

cannot send the message m when m /∈ M(k)), so when some coordinates of pm vanish it is

possible that (a, βm, pm) /∈ G ≡ gr E+, contrary to the case of cheap talk with unverifiable

information (Aumann and Hart, 2003).

It remains to show that a ∈ INTIRK . Consider a message m ∈
⋂

k∈K M(k) (which

exists by assumption), and let y = τ(m) (m may or may not be a message sent by player 1

with positive probability, so there may be no rationality condition on y for player 2 as

long as no equilibrium refinement is introduced). By player 1’s equilibrium condition, for

all k ∈ K and m such that σk(m) > 0 we have ak = Ak(τ(m)) ≥ Ak(y), which proves that

a ∈ INTIRK .
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5.2 From constrained convexification to equilibrium (if): H1(p) ⊆ ES(p)

We start from (a, β, p), a convex combination of points in H by keeping a constant, with

a ∈ INTIRK and pk > 0 for all k ∈ K, and we construct an equilibrium (σ, τ) of the

signalling game ΓS(p) with expected payoffs (a, β).

Since (a, β, p) ∈ conva(H), we can write

(a, β, p) =
∑

w∈W

π(w) (a, βw , pw),

with π ∈ ∆(W ) and (a, βw, pw) ∈ H for all w ∈ W . Without loss of generality we assume

that π has full support. In addition, from Carathéodory’s theorem we can let |W | ≤ K +1

since the dimension of (β, p) ∈ R × ∆(K) is equal to K.

For all w ∈ W , we associate a set of types supp[pw] ≡ {k ∈ K : pk
w > 0} and a message

mw ∈ M1 with mw 6= mw′ for w 6= w′, and M−1(mw) = supp[pw]. This is possible given

our assumption on the richness of the message space.

Player 1’s strategy σ. For all k ∈ K and w ∈ W define

σk(mw) =
π(w) pk

w

pk
(and σk(m) = 0 if m 6= mw for all w ∈ W ).

Player 2’s strategy τ . Since by assumption (a, βw) ∈ E++(pw), for all w ∈ W we can

define (see condition (ii) and (iii) of E++(pw)),

yw = τ(mw) ∈ Y (pw) such that





ak = Ak(τ(mw)) if pk
w > 0

βw =
∑

k∈K pk
w Bk(τ(mw)).

For the other messages m 6= mw, w ∈ W , since by definition a ∈ INTIRK , we can define

τ(m) = y such that ak ≥ Ak(y) for all k ∈ K.

Payoffs. We first verify that (a, β) is the payoff generated by the strategy profile (σ, τ)

defined just before. Let P = Pσ,τ,p be the probability distribution on Ω = K×M 1×J gen-

erated by those strategies and the prior, and let E = Eσ,τ,p be the associated expectation

operator.

First, we check that P (mw) = π(w) for all w ∈ W :

P (mw) =
∑

k∈K

pk σk(mw) =
∑

k∈K

pk π(w) pk
w

pk
=

∑

k∈K

π(w) pk
w = π(w)

∑

k∈K

pk
w = π(w) × 1.
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By construction, player 1’s expected payoff when his type is k is given by

E[Ak(j) | k = k] =
∑

w∈W

P [m = mw | k = k]E[Ak(j) | k = k,m = mw]

=
∑

w∈W

σk(mw)
∑

j∈J

τ(mw)(j)Ak(j) =
∑

w∈W

σk(mw)Ak(τ(mw)) = ak,

the last equality following from the construction of player 2’s strategy: Ak(τ(mw)) = ak

whenever σk(mw) > 0 (⇔ pk
w > 0 because pk > 0).

Finally, player 2’s expected payoff is

E[Bk(j)] =
∑

k∈K

pkE[Bk(j) | k = k]

=
∑

k∈K

pk
∑

w∈W

P [m = mw | k = k]E[Bk(j) | k = k,m = mw]

=
∑

k∈K

pk
∑

w∈W

σk(mw)
∑

j∈J

τ(mw)(j)Bk(j) =
∑

k∈K

pk
∑

w∈W

π(w)pk
w

pk
Bk(τ(mw))

=
∑

w∈W

π(w)
∑

k∈K

pk
w Bk(τ(mw)) =

∑

w∈W

π(w)βw = β.

Equilibrium condition for player 2. Next, we verify that τ is a best reply for player 2

to player 1’s strategy σ. Since we have defined τ(mw) ∈ Y (pw) for all w ∈ W , and since

the messages (mw)w∈W are the only messages sent with strictly positive probability by

player 1, it suffices to verify that pw is the correct posterior belief of player 2 when he

receives the message mw (again, remember that we use no equilibrium refinement). This

is immediately obtained by Bayes’s rule given the definition of the strategy σ of player 1:

P [k = k | m = mw] =
P [m = mw | k = k]P [k = k]

P [m = mw]
=

σk(mw)pk

π(w)
= pk

w.

Equilibrium condition for player 1. Finally, we verify that σk is a best reply for

player 1 of type k to player 2’s strategy τ . Player 1 of type k sends each message mw, w ∈

W , satisfying pk
w > 0 (⇔ σk(mw) > 0 because pk > 0) with strictly positive probability. By

construction of player 2’s strategy we have Ak(τ(mw)) = ak (see the previous paragraph

“payoffs”) for all such messages, so type k is indeed indifferent between all these messages.

Next, remark that type k cannot send the other messages mw satisfying pk
w = 0 because

such messages are such that M−1(mw) = supp[pw], with k /∈ supp[pw] (by the definition

of supp[pw] since pk
w = 0), so mw /∈ M(k). Finally, if player 1 sends a message off the

equilibrium path, m 6= mw for all w ∈ W (so P (m) = 0), then he gets Ak(τ(m)) =
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Ak(y) ≤ ak = Ak(τ(mw)) for σk(mw) > 0, so he does not deviate. This completes the

proof of Theorem 1.
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6 Proof of Theorem 2 (Persuasion with a Deadline)

6.1 From equilibrium to constrained dimartingales (only if): EB(p) ⊆

HB(p)

Except for the construction of player 1’s sequence of virtual payoffs and the fact that we

consider martingales that are bounded in length, this part of the proof is similar to the

proof of Hart (1985) and Aumann and Hart (2003).

Let (σ, τ) be any Nash equilibrium of the communication game Γn(p) for some finite

n ≥ 1, where pk > 0 for all k ∈ K, with payoffs a = (a1, . . . , aK) ∈ R
K for player 1 and

β ∈ R for player 2. We construct a sequence of random variables z = (z0, z1, . . . , zN ),

with N = 2n, satisfying properties (1) to (4) of Theorem 2 and the martingale property:

E[zs+1 | z0, z1, . . . , zs] = zs, s = 0, 1, . . . , N.

We work on the probability space

Ω = K × (M 1 × M2)
n

︸ ︷︷ ︸
Mn

×J.

A realization ω = (k,m1
1,m

2
1, . . . ,m

1
t ,m

2
t , . . . ,m

1
n,m2

n, j) ∈ Ω consists in a type for

player 1, a final communication history, and an action for player 2. All random variables

(denoted in bold letters when there may be a risk of confusion) are defined on Ω. Let P =

Pσ,τ,p be the probability distribution on Ω generated by players’ strategies and the prior

probability distribution on player 1’s set of types, and let E = Eσ,τ,p be the corresponding

expectation operator. For example, P [k = k] = pk and

P [m1
t = m | ht−1 = ht−1,k = k] = σk

t (ht−1).

As in Aumann and Hart (2003), for s = 0, . . . , N we construct a new random variable

on Ω, gs, that corresponds to every history of talk, plus every history of talk followed by

player 1’s message in the next period. Formally,

gs ≡





ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ), if s = 2t is even, t = 0, . . . , n

(ht,m
1
t+1), if s = 2t + 1 is odd, t = 0, . . . , n − 1.

So, g0 = h0 = ∅, gN = g2n = hn, when s is even the last message in gs is from player 2,

and when s is odd the last message in gs is from player 1. We consider this new random
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variable in order to have the dimartingale property (property (3) of the Theorem).

Sequence of posteriors (ps)s=0,1,...,N . For each k ∈ K and s = 0, . . . , N , define

pk
s ≡ P [k = k | gs],

and ps = (pk
s)k∈K ∈ ∆(K).

Lemma 1 The sequence (pk
s)s=0,...,N is a (bounded) martingale satisfying

(i) p0 = p;

(ii) ps+1 = ps for all odd s.

Proof. The martingale property is simply due to the fact that (pk
s)s=0,...,N is a sequence

of posteriors by conditioning on more and more information (it is adapted to the sequence

of fields (Gs)s=0,...,N generated by (gs)s=0,...,N ). (i) is immediate: pk
0 = P [k = k | g0] =

P [k = k] = pk. To prove (ii), let s = 2t + 1 be an odd number. For each k ∈ K we have

pk
s+1 = P [k = k | gs+1] = P [k = k | ht,m

1
t+1,m

2
t+1] = P [k = k | ht,m

1
t+1] = pk

s

the last but one equality following from the fact that, conditional on (ht,m
1
t+1), m2

t+1

and k are independent.

Sequence of player 2’s payoff (βs)s=0,1,...,N . For each s = 0, . . . , N , define

βs ≡ E[Bk(j) | gs],

and let y = τn+1(gN ).

Lemma 2 The sequence (βs)s=0,...,N is a (bounded) martingale satisfying

(i) β0 = β;

(ii) βN =
∑

k∈K pk
N Bk(y), with y ∈ Y (pN ).

Proof. The martingale property is due to the fact that (βs)s=0,...,N is a sequence of

conditional expectations of a fixed random variable by conditioning on more and more

information. (i) is immediate by the definition of β: β0 = E[Bk(j)] = E
[
E[Bk(j) | k]

]
=
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∑
k∈K pkE[Bk(j) | k = k] = β. Next, we have

βN ≡ E[Bk(j) | gN ] = E
[
E[Bk(j) | gN ,k]

]
=

∑

k∈K

P [k = k | gN ]E[Bk(j) | gN ,k = k]

=
∑

k∈K

pk
NE[Bk(j) | gN ] =

∑

k∈K

pk
NBk(τn+1(gN )),

the last but one equality following from the fact that, conditional on gN , j and k are

independent.9 The equilibrium condition of player 2 implies that y = τn+1(gN ) ∈ Y (pN ).

This completes the proof of the Lemma.

At this stage, we have constructed (ps)s=0,1,...,N and (βs)s=0,1,...,N that have all the

properties required by the Theorem. It remains to construct an appropriate sequence of

player 1’s payoffs, which is more delicate.

Sequence of player 1’s vector payoff (ak
s)s=0,1,...,N , k ∈ K. A first definition that

could come to mind for the characterization of the sequence of player 1’s payoffs is to

simply take

E[Ak(j) | gs],

which is always well defined. However, it is not relevant, in general, for type k (except when

s = N). To see this, consider a very simple example with one unilateral communication

period (N = 1), two types of equal probability (K = {k1, k2}, p1 = p2 = 1/2), and

assume that in the first talking period type k1 sends message m with probability one and

type k2 sends message m′ with probability one. After message m, player 2 chooses action

j1, and after message m′ he chooses action j2. Then, we would have E[Ak(j) | g0] =

(1/2)Ak(j1) + (1/2)Ak(j2), which is not meaningful for any type k.

A more meaningful definition of k’s expected payoff is

E[Ak(j) | gs,k = k].

Unfortunately, it is not well defined when P [gs = gs | k = k] = 0, and this can happen

even when P [gs = gs] > 0. This can be seen easily in the previous example, where

E[Ak(j) | g1 = m′,k = k1] is not well defined albeit P [g1 = m′] = 1/2 > 0.

Finally, it is worth noticing that the definition used by Aumann and Hart (2003) does

not work in our setup. Indeed, they define the (highest) payoff that player 1 of type k can

9For the last equality, remember that we have extended Bk linearly to mixed actions.
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achieve against player 2’s strategy τ after the history gs as

sup
σ̃

Eσ̃,τ,p[A
k(j) | gs],

where the supremum is over all strategies σ̃ of player 1 such that Pσ̃,τ,p[gs | k = k] > 0.

But this is not necessarily well defined in our setup even when P [gs = gs] > 0 because a

history gs may contain a message (certificate) that cannot be sent by type k (for example,

g1 = m /∈ M(k)).

Hence, we follow a different, and somehow simpler, approach. For each k ∈ K, we

construct the sequence of type k’s (virtual) payoff (ak
s)s=0,1,...,N as follows. Let ak

s =

ak
s(gs). When

P [gs = gs | k = k] > 0,

we define

ak
s(gs) = E[Ak(j) | gs = gs,k = k],

which is unambiguously k’s expected payoff given the history gs (and k). Clearly, for

s = 0, ak
s(gs) is always well defined: ak

0(g0) = E[Ak(j) | k = k] = ak. More generally,

assume inductively that ak
s(gs) is well defined, i.e., assume that P [gs = gs | k = k] > 0.

If s = 2t − 1 is odd, then gs+1 = (gs,m
2
t ), so P [gs+1 = gs+1 | k = k] > 0 when P [m2

t =

m2
t | gs = gs] > 0, which implies that ak

s+1(gs+1) remains well defined. If s = 2t is even,

then we may have a problem to define ak
s+1(gs+1) because now it is player 1’s message

that is added to the history: gs+1 = (gs,m
1
t+1). Indeed, we may have P [m1

t+1 = m1
t+1 |

gs = gs,k = k] = σk
t+1(m

1
t+1 | ht) = 0 (even when P [m1

t+1 = m1
t+1 | gs = gs] > 0), so

P [gs+1 = gs+1 | k = k] = 0. It that situation, we let

ak
s+1(gs,m

1
t+1) = ak

s(gs).

First, notice that the equilibrium condition of player 1 implies ak
s(gs) = ak

s+1(gs,m) for all

m such that σk
t+1(m | gs) > 0. Second notice that we will have the same problem in all

histories following (gs,m
1
t+1) (they have probability 0 conditional on k), so we fix more

generally k’s payoff for all these histories:

ak
s+l(gs,m

1
t+1, . . .) = ak

s(gs), l = 1, 2 . . . .

All this construction can be summarized formally as follows. For each s = 0, . . . , N

and k ∈ K define the random variable

fk
s
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as the longest subhistory of gs satisfying P [f k
s | k = k] > 0 (notice that this history

necessarily ends with player 2’s message, or is equal to gs), and let

ak
s = E[Ak(j) | fk

s ,k = k].

This definition is equivalent to,

ak
s =





E[Ak(j) | gs,k = k], if pk
s > 0

ak
r, if pk

s = 0,

where r is a random variable (stopping time) which is equal to the largest r such that

pk
r > 0.

Lemma 3 For every k ∈ K, the sequence (ak
s)s=0,...,N is a (bounded) martingale satisfying

(i) ak
0 = ak;

(ii) ak
s+1 = ak

s for all even s;

(iii) If pk
N > 0, then ak

N = Ak(y), with y ∈ Y (pN ).

Proof. To prove the martingale property we must show that

E[ak
s+1 | gs] = ak

s , for all s = 0, 1, . . . , N.

If pk
s+1 = 0, then this property is immediate because by construction we have ak

s+1 = ak
s =

ak
r , where r ≤ s is the largest number such that pk

r > 0. Now, consider the case pk
s+1 > 0,

and let s = 2t − 1 be odd (when s is even, the martingale property will follow from (ii)).

Thus, pk
s > 0 and gs+1 = (gs,m

2
t ), which implies





ak
s+1 = E[Ak(j) | gs,m

2
t ,k = k]

ak
s = E[Ak(j) | gs,k = k].

So,

E[ak
s+1 | gs] =

∑

m∈supp[τt(gs)]

P [m2
t = m | gs]E[Ak(j) | gs,m

2
t = m,k = k]

=
∑

m∈supp[τt(gs)]

P [m2
t = m | gs,k = k]E[Ak(j) | gs,m

2
t = m,k = k]

= E[Ak(j) | gs,k = k] = ak
s ,
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the second equality following from the fact that m2
t and k are independent conditional

on gs. This proves the martingale property for all odd s. Property (i) is immediate:

ak
0 = E[Ak(j) | k = k] = ak by the definition of ak. To prove (ii) let s = 2t be even,

so gs+1 = (gs,m
1
t+1). As before, when pk

s+1 = 0 the property is immediate because

ak
s+1 = ak

s = ak
r , with r ≤ s. When pk

s+1 > 0, then pk
s > 0 and gs+1 = (gs,m

1
t+1), so





ak
s+1 = E[Ak(j) | gs,m

1
t+1,k = k]

ak
s = E[Ak(j) | gs,k = k].

In such a situation these two terms are equal by the equilibrium condition of player 1 since

every message m1
t+1 player 1 of type k sends with strictly positive probability given gs

(and k = k) should yield the same expected payoff to player 1 of type k:

ak
s =

∑

m∈supp[σk

t+1
(gs)]

P [m1
t+1 = m | gs,k = k]E[Ak(j) | gs,m

1
t+1 = m,k = k]

= E[Ak(j) | gs,m
1
t+1 = m,k = k], for all m ∈ supp[σk

t+1(gs)]

= ak
s+1.

Finally, to prove (iii), assume that pk
N > 0, so

ak
N = E[Ak(j) | gN ,k = k] = E[Ak(j) | gN ]

= Ak(τn+1(gN )) = Ak(y), with y = τn+1(gN ) ∈ Y (pN ),

the second equality following from the fact that j and k are independent conditional on

gN , and the last from the equilibrium condition of player 2.

Lemma 4 For every s = 0, 1, . . . , N we have,

as ∈ INTIRsupp[ps]
.

Proof. Let us fix a history gs such that P [gs = gs] > 0 and let supp[ps] ⊆ K, supp[ps] 6= ∅,

be the set of types with a strictly positive posterior probability: pk
s = P [k = k | gs =

gs] > 0 for all k ∈ supp[ps]. We must show that there exists y ∈ ∆(J) such that

E[Ak(j) | gs = gs,k = k] ≥ Ak(y), for all k ∈ supp[ps].

Player 1’s equilibrium condition implies (in particular) that, whatever his type k ∈ supp[ps],

if he sends the same message m ∈
⋂

k∈K M(k) in all upcoming periods t′ ≥ t (where
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t = (s + 2)/2 is s is even, and t = (s + 3)/2 is s is odd), then his expected payoff in the

current period (s/2 if s is even, and (s + 1)/2 if s is odd) is not increased, so

E[Ak(j) | gs = gs,k = k] ≥ E[Ak(j) | gs = gs,m
1
t′ = m ∀ t′ ≥ t,k = k], for all k ∈ supp[ps].

Next, remark that, given gs = gs and m1
t′ = m ∀ t′ ≥ t, which specifies the sequence of all

player 1’s messages in the talking phase, j and k are independent. This implies

E
[
Ak(j) | gs = gs,m

1
t′ = m ∀ t′ ≥ t,k = k

]
= E

[
Ak(j) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

]

= Ak
(
E

[
τn+1(gN ) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

])
.

(Remember that we have extended linearly Ak to mixed actions.) Hence, by letting

y = E
[
τn+1(gN ) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

]
,

which does not depend on k (conditional on gs), we have completed the proof of the

Lemma.

As we have already mentioned, (ps)s=0,1,...,N and (βs)s=0,1,...,N have all the properties

required by Theorem 2 by Lemma 1 and Lemma 2. By Lemma 3 and Lemma 4, the

sequence (as)s=0,1,...,N also satisfies all the properties of the Theorem. This completes the

proof of the “only if” part of Theorem 2.
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6.2 From constrained dimartingales to equilibrium (if): HB(p) ⊆ EB(p)

Let z = (z0, z1, . . . , zN ) be a martingale over some probability space (F,F , π) and (finite)

sub σ-fields (Ft)t=1,...,N , satisfying the four properties of Theorem 2, with pk > 0 for all

k ∈ K, and N = n.

We construct a Nash equilibrium (σ, τ) of the n-stage communication game Γn(p) with

expected payoffs (a, β).

First, for convenience we introduce a set W with K +1 elements (|W | = K +1), write

F as W N , and the atoms of Ft as elements gt of W t. We thus describe the martingale z

as

z = (zt(gt))t=0,1,...,n,

where for each t = 0, 1, . . . , n, gt ∈ W t, and

zt(gt) = (at(gt), βt(gt), pt(gt)) =
∑

w∈supp[π(·|gt)]

π(w | gt) zt+1(gt, w),

for all gt ∈ W t satisfying π(gt) > 0 (this is the martingale property). Notice that this

implies

E[zt] = E[zt(gt)] =
∑

gt∈W t

π(gt) zt(gt) = z0, t = 0, 1, . . . , n.

The four properties of the martingale in Theorem 2 can be restated as follows:

(1) z0(g0) = z0 = (a, β, p).

(2) If π(gn) > 0, then (an(gn), βn(gn)) ∈ E++(pn(gn)).

(3) at+1(gt+1) = at(gt) for all even t and pt+1(gt+1) = pt(gt) for all odd t, if π(gt) > 0

and π(gt+1) > 0.

(4) For all t = 0, 1, . . . , n, if π(gt) > 0, then

at(gt) ∈ INTIRsupp[pt(gt)] ≡ {a ∈ R
K : ∃ y ∈ ∆(J), ak

t (gt) ≥ Ak(y) ∀ k ∈ supp[pt(gt)]},

where supp[pt(gt)] ≡ {k ∈ K : pk
t (gt) > 0}. Notice that supp[pt(gt)] = supp[pt] = {k ∈

K : pk
t > 0}, in accordance with the definitions used in Theorem 2.

In odd periods t, wt is associated to a message m1
t ∈ M1 of player 1 (player 2’s message

does not affect players’s decisions), and in even periods t, wt is directly associated to a

jointly controlled lottery (possibly a series of jointly controlled lotteries), which is not

explicitly formalized here.10 Therefore, a history of messages hn consists, with some abuse

10The technique is standard; see, e.g., Aumann and Maschler (1995) and Aumann and Hart (2003). Note
that irrational probabilities might lead to infinitely many jointly controlled lotteries (see Subsection 7.2).
For simplicity, the reader may simply consider wt as a signal publicly observed in even periods.
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of notation, in a message m1
t ∈ M1 of player 1 in each odd period t, and in a realization

wt ∈ W of one or several jointly controlled lotteries in each even period t.

Accordingly, in the remaining of the proof we only construct explicitly player 1’s strat-

egy σk
t+1, k ∈ K, when t is even, and player 2’s strategy in the action phase, τn+1.

The set of histories of the talking phase up to period t is

Mt =





(M1 × W )t/2 if t is even,

(M1 × W )(t−1)/2 × W if t is odd.

To each sequence gt = (w1, . . . , wt) ∈ W t we associate a history φt(gt) ∈ Mt, with

φt(gt) 6= φt(g
′
t) whenever gt 6= g′t, as follows:

φt(gt) = φt(w1, w2, w3, w4 . . . , wt)

= (m1(w1), w2,m3(g3), w4, . . .),

where gr = (w1, . . . , wr), r < t, is a subsequence of gt, and for all odd t, mt(gt) ∈ M1,

mt(gt−1, wt) 6= mt(gt−1, w
′
t) whenever wt 6= w′

t, and

M−1(mt(gt)) = supp[pt(gt)].

This is possible given our assumption on the richness of the message space.

Player 1’s strategy σ. For each even period t = 0, 2, 4, . . ., each sequence gt ∈ W t with

strictly positive probability and each type k ∈ supp[pt(gt)] we construct player 1’s local

strategy σk
t+1(φt(gt)) (player 1’s strategy is irrelevant off the equilibrium path).

For each w ∈ supp[π(· | gt)], define

σk
t+1(mt+1(gt, w) | φt(gt)) =

π(w | gt) pk
t+1(gt, w)

pk
t (gt)

,

and σk
t+1(m | φt(gt)) = 0 if m 6= mt+1(gt, w) for all w ∈ W .

Player 2’s strategy τ . We construct the local strategy τn+1(hn) of player 2 for each final

history of talk hn ∈ Mn, with and without strictly positive probability (players’ strategies

in the talking phase are irrelevant off the equilibrium path, but player 2’s strategy in the

action phase is very important even after 0-probability histories).

If π(gn) > 0 for gn ∈ W n, then by the second property of the martingale assumed in
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the Theorem, (an(gn), βn(gn)) ∈ E++(pn(gn)), so we can define,

y(gn) = τn+1(φn(gn)) ∈ Y (pn(gn)) such that





ak
n(gn) = Ak(y(gn)) if pk

n(gn) > 0

βn(gn) =
∑

k∈K pk
n(gn)Bk(y(gn)).

If π(gn) = 0 for gn ∈ W n, then consider the shortest subsequence gt = (w1, w2, . . . , wt)

of gn = (w1, w2, . . . , wn) (note: t may be 0) such that π(gt) > 0 and define

τn+1(φn(gn)) = y such that ak
t (gt) ≥ Ak(y) for all k ∈ supp[pt(gt)].

This is possible by the forth property of the martingale.

The strategy profile (σ, τ) of the communication game Γn(p) is now completely defined

(except, as explained above, for the JCL). We next check that it generates the appropriate

expected payoffs and that it constitutes a Nash equilibrium of Γn(p).

Let P = Pσ,τ,p be the probability distribution on

Ω = K × Mn × J,

induced by (σ, τ) and p, and let E = Eσ,τ,p be the corresponding expectation operator.

Note: Since JCL are not formalized, P and E also depend on π for the realizations wt ∈ W

of JCL (public signals) in even periods.

The next lemma will be useful in several steps of the remaining of the proof.

Lemma 5 For all t = 0, 1, . . . , n and gt ∈ W t we have:

(i) P [ht = φt(gt)] = π(gt);

(ii) P [k = k | ht = φt(gt)] = pk
t (gt) for all k ∈ K, π(gt) > 0.

Proof. By induction on t. For t = 0 property (ii) is immediate: P [k = k] = pk = pk
0(g0).

For t = 1:

(i) We have:

P [h1 = φ1(g1)] =
∑

k∈K

pkP [h1 = φ1(g1) | k = k]

=
∑

k∈K

pkσk
1 (φ1(g1)) =

∑

k∈K

pkσk
1 (m1(g1))

=
∑

k∈K

pk π(g1) pk
1(g1)

pk
= π(g1)

∑

k∈K

pk
1(g1) = π(g1).
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(ii) We have:

P [k = k | h1 = φ1(g1)] =
P [h1 = φ1(g1) | k = k]P [k = k]

P [h1 = φ1(g1)]

=
σk

1 (m1(g1)) pk

P [h1 = φ1(g1)]
=

σk
1(m1(g1)) pk

π(g1)
by (i) just above

=
π(g1) pk

1(g1)

pk
0

pk

π(g1)
= pk

1(g1).

Now assume that properties (i) and (ii) are satisfied at t, and let us check them at

t + 1. We distinguish two cases: (a) t is odd, i.e., a JCL is added in t + 1; (b) t is even,

i.e., player 1’s signal is added in t + 1. Case (a) is simpler because we can exploit the fact

that the JCL does not depend on k.

In the rest of the proof of the Lemma, let gt+1 = (gt, wt+1) ∈ W t+1.

(a) (i) Since t + 1 is even we have:

P [ht+1 = φt+1(gt+1)] = P [ht+1 = (φt(gt), wt+1)]

= P [ht = φt(gt)]P [ht+1 = (φt(gt), wt+1) | ht = φt(gt)]

= π(gt)π(wt+1 | gt), by property (i) at t

= π(gt, wt+1) = π(gt+1).

(a) (ii) Since t + 1 is even we have:

P [k = k | ht+1 = φt+1(gt+1)] = P [k = k | ht+1 = (φt(gt), wt+1)]

= P [k = k | ht = φt(gt)] because wt+1 and k are independent

= pk
t (gt) by property (ii) at t

= pk
t+1(gt+1) by the third property of the martingale.
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(b) (i) Since t + 1 is odd we have:

P [ht+1 = φt+1(gt+1)] = P [ht+1 = (φt(gt),mt+1(gt+1)]

= P [ht = φt(gt)]P [ht+1 = (φt(gt),mt+1(gt+1)) | ht = φt(gt)]

= π(gt)P [mt+1 = mt+1(gt+1) | ht = φt(gt)], by property (i) at t

= π(gt)
∑

k∈K

pk
t (gt)σk

t+1(mt+1(gt+1) | φt(gt))

= π(gt)
∑

k∈K

pk
t (gt)

π(wt+1 | gt) pk
t+1(gt+1)

pk
t (gt)

= π(gt)π(wt+1 | gt)
∑

k∈K

pk
t+1(gt+1)

= π(gt)π(wt+1 | gt) = π(gt, wt+1) = π(gt+1).

(b) (ii) Since t + 1 is odd we have:

P [k = k | ht+1 = φt+1(gt+1)] =
P [ht+1 = φt+1(gt+1) | k = k]P [k = k]

P [ht+1 = φt+1(gt+1)]

=
P [ht+1 = φt+1(gt+1) | ht = φt(gt),k = k]P [ht = φt(gt) | k = k]P [k = k]

P [ht+1 = φt+1(gt+1)]

=
P [mt+1 = mt+1(gt+1) | ht = φt(gt),k = k]P [ht = φt(gt) | k = k]P [k = k]

π(gt+1)

=
σk

t+1(mt+1(gt+1) | φt(gt))P [ht = φt(gt)]P [k = k | ht = φt(gt)]

π(gt+1)
,

the last but one equality following from property (i) at t + 1, which has been checked just

before. By properties (i) and (ii) at t this yields:

P [k = k | ht+1 = φt+1(gt+1)] =
σk

t+1(mt+1(gt+1) | φt(gt))π(gt)p
k
t (gt)

π(gt+1)

=
π(wt+1 | gt) pk

t+1(gt+1)

pk
t (gt)

pk
t (gt)π(gt)

π(gt+1)
= pk

t+1(gt+1).

This completes the proof of Lemma 5.

Lemma 6 We have:

(i) E[Ak(j) | k = k] = ak for all k ∈ K;

(ii) E[Bk(j)] = β.
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Proof. (i) We show by induction on t (starting from t = n) that, for t = 0, 1, . . . , n,

ak
t (gt) = E[Ak(j) | ht = φt(gt),k = k], ∀ k ∈ supp[pt(gt)]. (1)

In particular, for t = 0, this will lead to what we are required to prove:

ak = ak
0(g0) = E[Ak(j) | h0 = φ0(g0),k = k] = E[Ak(j) | k = k].

Let t = n. If k ∈ supp[pn(gn)], then, by the construction of player 2’s strategy,

ak
n(gn) = Ak(τn+1(φn(gn)))

= E[Ak(j) | hn = φn(gn),k = k],

so property (1) is satisfied for t = n.

Now assume that the property is satisfied at t + 1 and let us check it at t. Let

k ∈ supp[pt(gt)]. By the martingale property, we have

ak
t (gt) =

∑

w∈supp[π(·|gt)]

π(w | gt) ak
t+1(gt, w).

We distinguish two cases: when t is odd and when t is even.

If t is odd. Then, pt+1(gt, w) = pt(gt) for all w ∈ supp[π(· | gt)], which implies

supp[pt+1(gt, w)] = supp[pt(gt)], so k ∈ supp[pt+1(gt, w)] for all w ∈ supp[π(· | gt)]. There-

fore, by the induction hypothesis, for all w ∈ supp[π(· | gt)] we have

ak
t+1(gt, w) = E[Ak(j) | ht+1 = φt+1(gt, w),k = k],

so

ak
t (gt) =

∑

w∈supp[π(·|gt)]

π(w | gt)E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

=
∑

w∈supp[π(·|gt)]

P [ht+1 = (φt(gt), w) | ht = φt(gt)] E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

=
∑

w∈supp[π(·|gt)]

P [ht+1 = (φt(gt), w) | ht = φt(gt),k = k] E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

= E[Ak(j) | ht = φt(gt),k = k].

If t is even. Then, ak
t+1(gt, w) = ak

t (gt) for all w ∈ supp[π(· | gt)], which implies, by
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the induction hypothesis,

ak
t (gt) = E[Ak(j) | ht+1 = φt+1(gt, w),k = k],

for all w such that pk
t+1(gt, w) > 0. Hence, ak

t (gt) is also equal to any average of the

previous value, so we get property (1) at t.

(ii) Player 2’s expected payoff is

E[Bk(j)] =
∑

k∈K

pkE[Bk(j) | k = k]

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]E[Bk(j) | k = k,hn = hn]

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]
∑

j∈J

τn+1(hn)(j)Bk(j)

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]Bk(τn+1(hn))

=
∑

hn∈Mn

P [hn = hn]
∑

k∈K

P [k = k | hn = hn]Bk(τn+1(hn))

=
∑

gn∈W n

π(gn)
∑

k∈K

pk
n(gn)Bk(τn+1(φn(gn)), by Lemma 5

=
∑

gn∈W n

π(gn)βn(gn), by the construction of player 2’s strategy

= E[βn] = β0 = β.

This completes the proof of Lemma 6.

Lemma 7 The strategy τ of player 2 is a best reply to the strategy σ of player 1 in the

n-stage communication game Γn(p).

Proof. Since τn+1(φn(gn)) ∈ Y (pn(gn)) for π(gn) > 0 it suffices to check that pk
n(gn) =

P [k = k | hn = φn(gn)] for all k ∈ K. This as been proved in Lemma 5 (property (ii) with

t = n).

Lemma 8 The strategy σ of player 1 is a best reply to the strategy τ of player 2 in the

n-stage communication game Γn(p).

Proof. (Sketch of the proof). There is no deviation to a message off the equilibrium

path by the interim individually rational condition. There is no deviation by type k to

an equilibrium message that is not sent by type k at equilibrium by the construction of
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player 1’s strategy (if a message m is sent along the equilibrium path, but never sent by

type k, then, by construction, message m cannot be sent by type k). Finally, the expected

payoff of any type k is not modified if he changes the probabilities of the messages sent

at equilibrium with strictly positive probability because type k is indifferent between all

these messages.

By Lemmas 6, 7 and 8, we have constructed the appropriate strategy profile. This

completes the proof of Theorem 2.
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7 Discussion and Extensions

7.1 Mediated Communication

7.2 Persuasion without a Deadline

7.3 Partial Certifiability

7.4 Sequential Rationality
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Appendix

A Simple Signalling Examples

Example 1 In the silent game of Figure 9 there is no incentive problem: the expert’s

preferences over the decisionmaker’s beliefs are positively correlated with the truth. The

optimal actions of the decisionmaker (the non-revealing equilibria) are

Y (p) =





{j1} if p > 3/4,

{j2} if p < 3/4,

∆(J) if p = 3/4.

The corresponding interim individually rational extended equilibrium payoffs (a1, a2)

of the expert are represented by Figure 10 in solid gray lines.

j1 j2

k1 1, 1 0, 0 p

k2 0, 0 3, 3 (1 − p)

Figure 9: Silent Game of Example 1.

p
=

3/4

p
=

1

p = 0

a1

a2

1

3

0

j1

j2 FRE

Figure 10: Extended equilibrium payoffs of the expert in Example 1.
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Example 2 In the silent game of Figure 11 the expert’s preferences over the decision-

maker’s beliefs are not correlated with the truth since the expert’s payoff Ak(j) does not

depend on k so he always want the decisionmaker to choose the same action whatever his

type. The optimal actions of the decisionmaker (the non-revealing equilibria) are

Y (p) =





{j1} if p > 2/3,

{j2} if p < 2/3,

∆(J) if p = 2/3.

The corresponding interim individually rational extended equilibrium payoffs of the

expert are represented by Figure 12 in solid and dashed gray lines.

j1 j2

k1 3, 2 1, 0 p

k2 3, 0 1, 4 (1 − p)

Figure 11: Silent Game of Example 2.

0 1 2 3 4
0

1

2

3

4

5

p = 0

p
=

2/
3

p
=

1

a1

a2

j1

j2

FRE

Figure 12: Extended equilibrium payoffs of the expert in Example 2.
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Example 3 In the silent game of Figure 13 the correlation fails more dramatically than

in Example 2: the expert’s preferences over the decisionmaker’s beliefs are negatively

correlated with the truth. Cheap talk and information certification cannot matter here.

The optimal actions of the decisionmaker are the same as in Example 2. The corresponding

interim individually rational extended equilibrium payoffs of the expert are represented

by Figure 14 in solid gray lines. The dotted lines do not belong to the set of interim

individually rational payoffs, so the communication game does not admit a fully revealing

equilibrium.

j1 j2

k1 3, 2 4, 0 p

k2 3, 0 1, 4 (1 − p)

Figure 13: Silent Game of Example 3.

0 1 2 3 4 5
0

1

2

3

4

5

p = 0

p
=

2/3

p
=

1

a1

a2

j1

j2

Figure 14: Extended equilibrium payoffs of the expert in Example 3.
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Example 4 In the silent game of Figure 15, the optimal actions of the decisionmaker (the

non-revealing equilibria) are

Y (p) =





{j1} if p < 3/10,

∆({j1, j2}) if p = 3/10,

{j2} if p ∈ (3/10, 7/10),

∆({j2, j3}) if p = 7/10,

{j3} if p ∈ (7/10, 4/5),

∆({j3, j4}) if p = 4/5,

{j4} if p > 4/5.

j1 j2 j3 j4

k1 4, 0 2, 7 5, 9 1, 10 p

k2 1, 10 4, 7 4, 4 2, 0 1 − p

Figure 15: Silent Game of Example 4.

The corresponding interim individually rational extended equilibrium payoffs (a1, a2)

of the expert are represented by Figure 16 in solid gray lines. As in Example 3 this game

does not admit a fully revealing equilibrium (the dotted lines are not interim individually

rational), but it has a partially revealing equilibrium for p ∈ (3/10, 4/5).

0 1 2 3 4 5
0

1

2

3

4

5

p = 0

p
=

3/10

p = 7/10

p = 4/5

p
=

1

a1

a2

PRE

j1

j2 j3

j4

Figure 16: Extended equilibrium payoffs of the expert in Example 4.
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Example 5 In the silent game of Figure 17,11 the optimal actions of the decisionmaker

(the non-revealing equilibria) are

Y (p) =





{j1} if p < 2/7,

∆({j1, j2}) if p = 2/7,

{j2} if p ∈ (2/7, 5/7),

∆({j2, j3}) if p = 5/7,

{j3} if p > 5/7.

j1 j2 j3

k1 1,−2 3, 3 2, 5 p

k2 2, 5 3, 3 1,−2 1 − p

Figure 17: Silent Game of Example 5.

The corresponding interim individually rational extended equilibrium payoffs of the

expert are represented by Figure 18 in solid gray lines.

0 1 2 3
0

1

2

3

p = 0
p = 2/7

p
=

5/
7

p
=

1

a1

a2

E1

E2j1

j2

j3

FRE

Figure 18: Extended equilibrium payoffs of the expert in Example 5.

11This game is taken from Farrell and Rabin (1996).
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Example 6 (Forges, 1986b) In the silent game of Figure 19, the optimal actions of the

decisionmaker are

Y (p) =





{j1} if p < 1/3,

{j2} if p ∈ (1/3, 1/2),

{j3} if p ∈ (1/2, 2/3),

{j4} if p > 2/3.

j1 j2 j3 j4 j5

k1 3,−2 3, 0 0, 3 3, 4 1, 0 p

k2 3, 4 0, 3 3, 0 3,−2 1, 0 1 − p

Figure 19: Silent Game of Example 6.

The corresponding interim individually rational extended equilibrium payoffs of the

expert are represented by Figure 20 in solid gray lines.

p
=

1/2

p
=

1

p = 2/3

p = 0

p
=

1/
3

a1

a2

3

3

0

j2

j3

j5

j1, j4

Figure 20: Extended equilibrium payoffs of the expert in Example 6.
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