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Abstract 

 

Simple cake-cutting procedures used to divide a cake, which could be any 

heterogeneous good, are analyzed and compared.  The well-known 2-person, 1-cut cake-

cutting procedure, cut-and-choose, while envy-free and efficient, is not equitable, limiting 

the cutter to exactly 50% when the chooser, in general, can do better.  A new surplus 

procedure (SP), which induces the players to be truthful in order to maximize their 

minimum allocations, leads to a more equitable division of the surplus—the part that 

remains after each person receives exactly 50%.  However, SP is more information-

demanding than cut-and-choose, requiring that the players report their value functions 

over the entire cake, not just indicate 50-50 points.  

For 3 persons, there may be no envy-free division that is equitable.  But there is a 

simple 3-person, 2-cut squeezing procedure that induces maximin players to make cuts 

that yield an envy-free division.  By contrast, no 4-person, 3-cut envy-free procedure is 

known to exist.  The applicability of the surplus and squeezing procedures to the fair 

division of a heterogeneous good, like land, are discussed. 
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 Better Ways to Cut a Cake 

1.  Introduction 

Economics, we are told, is the study of the allocation of scarce resources.  If the 

resources constitute a heterogeneous, divisible good, parts of which are valued differently 

by different people, then the best way to divide it is of central importance. 

Also important is the perceived fairness of a division.  Divisions viewed as fair are 

more likely to be accepted as legitimate and, therefore, to be stable.  But stability is also 

related to the difficulty of manipulating a procedure that produces a division.  

In this paper, we analyze cake-cutting algorithms to divide a cake, which could be 

any heterogeneous good.  These algorithms, which use a minimal number of cuts, not 

only establish the existence of fair divisions—defined by properties described below—

but also provide step-by-step procedures for carrying them out.  In addition, they give us 

insight into the difficulties underlying the simultaneous satisfaction of certain properties 

of fair division, including the incentive to be truthful about one’s valuation of the cake.          

We begin with the well-known 2-person cake-cutting procedure, “I cut, you 

choose,” or cut-and-choose.  It goes back at least to the Hebrew Bible (Brams and Taylor, 

1999, p. 53) and satisfies two desirable properties:  

1. Envy-freeness: Each person thinks that he or she receives at least a tied-for-

largest piece and so does not envy the other person. 

2. Efficiency (Pareto-optimality): There is no other allocation that is better for one 

person and at least as good for the other person. 

But cut-and-choose does not satisfy a third desirable property: 
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3. Equitability. Each person’s subjective valuation of the piece that he or she 

receives is the same as the other person’s subjective valuation.  

The last property raises a question about the interpersonal comparison of utility, about 

which we will say more later. 

We propose a new cake-cutting procedure that, while it does not satisfy 

equitability in an absolute sense, does approximate it in a relative sense: After ensuring 

that each person receives exactly 50%, it gives each person approximately the same 

proportion of the cake that remains, called the surplus.  Thereby this procedure, which we 

call the surplus procedure (SP), gives each person more than 50% of the entire cake.  By 

contrast, cut-and-choose limits the cutter to exactly 50% when he or she has no 

information about the other person’s preferences. 

As is usual in the cake-cutting literature, we postulate that the goal of each person 

is to maximize the value of the minimum-size piece (maximin piece) that he or she can 

guarantee, regardless of what the other person does.  Thus, we assume that each person is 

risk-averse: He or she will never choose a strategy that may yield a more valuable piece 

of cake if it entails the possibility of getting less than a maximin piece.    

Remarkably, as we will show, maximin strategies under SP require that each 

person be truthful about his or her preferences for different portions of the cake.  This is 

because the incentives to undervalue and to overvalue different portions conflict, creating 

a tension such that being truthful becomes the unique strategy that guarantees 50% shares 

plus a minimum percentage of the surplus.    

In section 2, we describe cut-and-choose and illustrate it with an example.  In 

section 3, we describe SP and show that it gives, initially, “proportional equitability” that 
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is only approximate.  But SP provides two persons with the incentive to negotiate a cut 

that makes proportional equitability exact, so each person in the end receives exactly the 

same proportion of the surplus.  

If there are n > 2 persons, we show in section 4 that envy-freeness and equitability 

cannot always be achieved with n – 1 cuts (the minimal number).  We describe a simple 

3-person, 2-cut envy-free procedure, called the squeezing procedure.  If n > 3, it is not 

known whether there exists an n-person, (n-1)-cut envy-free procedure. 

In section 5, we discuss trade-offs in cake division.  Whereas SP is more equitable 

than cut-and-choose, it is also more information-demanding.  The squeezing procedure, 

on the other hand, does not require any prior revelation of information, but it does require 

the use of “moving knives” (Brams, Taylor, and Zwicker, 1995).  We conclude by 

considering the applicability of these procedures to real-world problems of fair division. 

2. Cut-and-Choose 

Assume that two players, A and B, value a cake along a line that ranges from x = 0 

to x = 1.  More specifically, we postulate that the players have value functions, vA(x) and 

vB(x), where vA(x) ≥ 0 and vB(x) ≥ 0 for all x over [0, 1].  Analogous to probability density 

functions, or pdfs, we assume the total valuations of the players—the areas under vA(x) 

and vB(x)—are 1.  We also assume that only parallel, vertical cuts, perpendicular to the 

horizontal x-axis, are made, which we will illustrate later. 

Under cut-and-choose, one player cuts the cake into two portions, and the other 

player chooses one.  To illustrate, assume a cake is vanilla over [0, 1/2] and chocolate 

over (1/2, 1].  Suppose the cutter, player A, values the left half (vanilla) twice as much as 
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the right half (chocolate).  This implies that vA(x) = 4/3 on [0, 1/2], and vA(x) = 2/3 on 

(1/2, 1].   

To guarantee envy-freeness when the players have no information or beliefs about 

each other’s preferences, A should cut the cake at some point x so that the value of the 

portion to the left of x is equal to the value of the portion to the right.1  The two portions 

will be equal when A’s valuation of the cake between 0 and x is equal to the sum of its 

valuations between x and 1/2 and between 1/2 and 1: 

(4/3)(x – 0) = (4/3)(1/2 – x) + (2/3)(1 – 1/2), 

which yields x = 3/8.  In general, the only way that A, as the cutter, can ensure itself of 

getting half the cake is to give B the choice between two portions that A values at exactly 

1/2 each. 

To show that cut-and choose does not satisfy equitability, assume B values vanilla 

and chocolate equally.  Thus, when A cuts the cake at x = 3/8, B will prefer the right 

portion, which it values at 5/8, and consequently will choose it.  Leaving the left portion 

to A, B does better in its eyes (5/8) than A does in its eyes (1/2), rending cut-and-choose 

inequitable. 

If the roles of A and B as cutter and chooser are reversed, the division remains 

inequitable.  In this case, B will cut the cake at x = 1/2.  A, by choosing the left half (all 

vanilla), will get 2/3 of its valuation, whereas B, getting the right half, will receive only 

1/2 of its valuation.  Because cut-and-choose selects the endpoints of the interval of envy-

free cuts, any cut between 3/8 and 1/2 will be envy-free. 

                                                 
1 When players do have information or beliefs, a cutter may do better with a less conservative strategy 
(Brams and Taylor, 1996, 1999). 
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3.  The Surplus Procedure (SP) 

Here are the rules of SP, which we will refer to as steps: 

1.  Independently, A and B report their value functions, fA(x) and fB(x), over the 

cake, [0, 1], to a referee.  These functions may be different from the players’ true value 

functions, vA(x) and vB(x). 

2.  The referee determines the 50-50 points, a and b, of A and B—that is, the 

points on [0, 1] such that each player reports that half the cake, as it values it, lies to the 

left and half to the right (these points are analogous to the median points of pdfs).   

3.  If a and b coincide, the cake is cut at a = b.  One player is randomly assigned 

the piece to the left of this cutpoint, the other player the piece to the right.  The procedure 

ends.   

4.  Assume that a is to the left of b, as illustrated below: 

0---------------------a----------------b---------------------1. 

Then A receives the portion [0, a], and B the portion [b, 1], which each player values at 

1/2 according to its reported value function.  

5.  Let c (for cutpoint) be the point in [a, b] at which the players receive the same 

percentage of the cake in this interval, as each values it:  

0---------------------a----------c-------b---------------------1. 

Determine the points, a' ≤ c and b' ≥ c, that give A and B the maximum common 

percentage of the surplus, in deciles, that is possible when A gets [a, a'] and B gets [b', b].  

0---------------------a----- a'---c--b'-----b---------------------1. 
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This decile percentage, p, will necessarily be less than or equal to the percentage that the 

players receive at c.  

Remark 1.  If A values the cake more near a and B values the cake more near b, p 

will be greater than 50% (e.g., 60%), whereas p will be less than 50% (e.g., 40%) if the 

opposite is the case.  

6.  If p occurs at c, a' = c = b'.  Then the cake is cut at c, with A receiving the 

portion to the left and B the portion to the right.   

7.  Assume p does not occur at c.  Then the player that values the subinterval [a', 

b'] more is awarded this portion of the cake.  If this player is A, it receives in toto the 

portion [0, b'], and B receives the portion (b', 1].  If this player is B, it receives in toto the 

portion (a', 1], and A receives in toto the portion [0, a'].  If the players equally value the 

subinterval [a', b'], then A gets the portion to the left of c, and B gets the portion to the 

right of c.  

8.  Before the referee informs the players of these assignments, they would be told 

the value of p.  If both players agree to settle at c, the cake is cut at c, with A getting the 

portion [0, c] and B getting the portion (c, 1]. 

Remark 2.  When the players are informed of the value of p (e.g., 50%), they can 

surmise that if they both agree, they both will both get a minimum of p. 

To illustrate SP with the example in section 2, recall that the 50-50 points for A 

and B, respectively, are a = 3/8 and b = 1/2.  To find the point c in [a, b] = [3/8, 1/2] at 

which A and B obtain the same percentage of the cake in this interval—as each player 

values it—note that A attaches value    
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VA(x) = vA(x)dx = (4 /3
3 / 8

1/ 2∫a

b∫ )dx =1/6            (1) 

to this interval, and B attaches value 

VB(x) = vB(x)dx = dx
3 / 8

1/ 2∫ =1/8
a

b∫                                                                            (2) 

to it.   

We solve for the point c at which the percentage of [3/8, 1/2] that A receives (to 

the left of c) is equal to the percentage that B receives (to the right):  

[vA(x)dx]/(1/6) =
3 / 8

c∫ [vB(x)dx]/(1/8),
c

1/ 2∫  

which yields c = 7/16 = 0.4375, the midpoint of the interval, because both players have 

uniform value functions over [3/8, 1/2].  At this point, A receives a value of 1/12 from 

[3/8, 7/16], and B receives a value of 1/16 from (7/16, 1/2].  These values are exactly 1/2 

the players’ valuations of the [a, b] interval, [3/8, 1/2], as given by equations (1) and (2) 

above, so p = 0.50.   

Because p has a decile value, the subinterval, [a', b'] = [c, c] has zero length and, 

therefore, is of no value to the players.  Thus, SP ends in step 6, with A receiving a total 

value of 1/2 + 1/12 = 7/12 = .5833, and B receiving a total value of 1/2 + 1/16 = 9/16 = 

0.5625.   

Note that both players receive more than 50%, but not by the same amount, 

because they value [a, b] differently.  Because A values this interval more than B does, it 

receives more, in absolute terms, since SP gives each player the same percentage of the 
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interval, as each values it (50% in our example).2  We will give another example later in 

this section in which the subinterval [a', b'] does not shrink to a point, because cutting at c 

does not happen to give a decile value to the players.  

To show that maximin players will be truthful when they submit their value 

functions to a referee, we next show that A or B may do worse if they are not truthful in 

reporting the following: 

1. The locations of their 50-50 points, a and b.   

Assume B is truthful and A is not.  If A misrepresents a and causes it to crisscross 

b, as illustrated by the location of α below, 

0---------------------------a---b--α -------------------------1. 

then A will obtain [α , 1] and, in addition, get some less-than-complete portion of (b, α ).  

But this is less than 50% of the cake for A and, therefore, less than what A would obtain 

under SP if it was truthful.  

2.  The locations of a' and b'. 

Again, assume B is truthful and A is not.  Because A does not know the location of 

b, it does not know the location of a', much less b'.  Without knowing the location of [a', 

b'], it cannot overvalue this subinterval with certainty in order to increase its chances of 

obtaining it under SP.  If it overvalues, instead, the portion [a, a'], it may only succeed in 

moving a' leftward and do worse than if it were truthful, whether or not it obtains the 

subinterval [a', b'].  The uncertainty about the location of [a', b'] robs A of the ability to 

report a value function fA(x) ≠ vA(x) that would assuredly give it a better outcome than 

truthfulness gives.     
                                                 
2 By comparison, an equitable cut at 3/7 ≈ 0.429 would give A a value of 4/7 ≈ 0.571 to the left and B a 
value of 0.571 to the right.  This common value to the players is between what A and B receive under SP 
(0.5833 and 0.5625, respectively). 
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In summary, if A is not truthful in step 1 of SP, it may not obtain 50% of the cake 

or, if it does, it may obtain a smaller portion of [a, b] than it would obtain if it were 

truthful.  To be sure, A may succeed in increasing the value of its portion over what it 

would obtain by being truthful.  But there is no guarantee that this will occur and, indeed, 

the opposite outcome is possible, as we have shown.  We conclude that truthfulness is the 

only strategy that ensures both players of at least 50%, and generally more, under SP. 

Are there variants of SP that offer the same assurance?  Consider the following: 

1. Change step 7 of SP so that the player that more values the interval [a, b]—not 

just the subinterval [a', b']—receives it.  This variant, which is effectively cut-

and-choose (with the player that values [a, b] more the chooser), would limit 

one player to exactly 50%.  Moreover, each player, knowing one bound of [a, 

b], would have an incentive to overvalue the cake near this bound to increase 

its chances of obtaining all of [a, b]. 

2.  Change step 7 of SP so that the cake is divided at c without the assent of both 

players (step 8).  This variant would give each player an incentive to 

undervalue, in proportional terms, the cake near its 50-50 point in order to push 

c toward the other player’s 50-50 point (the players would still have an 

incentive to be truthful about their 50-50 points to ensure a minimum of 50%).  

By contrast, the reward of [a', b'] to the player that values it more counters this 

incentive to undervalue under SP, creating the tension needed to induce 

truthfulness.  This tension persists even when the players reach agreement to 

cut at c in step 8, because each must assume that there may not be agreement, 

in which case the procedure would end at step 7.  

3. Divide [a, b] not at c but at the point e (for equitable) where the players’ 

valuations of their portions (A’s from 0, B’s from 1) are exactly the same, 

which would satisfy equitability rather than proportional equitability.  This 
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variant would give each player an incentive to undervalue the cake, in absolute 

terms, near its 50-50 point in order to push e toward the other player’s 50-50 

point.  Jones (2002) shows that the point e always exists.  

For variant 3, we could define a subinterval around e—as we do around c for SP—

and award it to the player that values it more.  For example, if both players increase their 

valuations of the entire cake from 50% at a and b to 70% at e, the rule might be that they 

each would receive 3/4 of the additional 20% (i.e., 15% each).  As for the subinterval that 

contains the remaining 5% for each, it would go to the player that values it more.  

Like step 7 of SP, awarding the subinterval to the player that values it more would 

counter the incentive of the players to undervalue the cake near a and b in order to push e 

toward the 50-50 point of the other player.  But it is possible that the player that values 

the subinterval more might value the entire interval, [a, b], less, so this variant could give 

more of [a, b], in absolute terms, to the player that values it less.  By contrast, under SP 

this effect is mitigated, because each player gets approximately the same percentage of 

[a, b]—up to a decile—whether it wins or loses [a', b'], so the player that values [a, b] 

more is also likely to do better in absolute terms. 

It is useful to illustrate SP with an example in which [a', b'] does not shrink to a 

point, as in our earlier example.  Suppose A’s valuation function is vA(x) = 2x, and B’s is 

vB(x) = 1, on [0, 1].  Thus, A has a triangular distribution, with its value most 

concentrated at x = 1, and B has a uniform distribution.   It is straightforward to show that 
a = 1/ 2 ≈ 0.707, b = 1/2 = 0.500, and c = 1+ 2( ) 21−12 2 −1( )/4 ≈ 0.608.  At 

cutpoint c, A and B would each receive about (.130)/(.280) ≈ 52% of [a, b] ≈ [.500, 

.707].   

Under SP, however, p = 50%, so B would receive exactly 50% of [a, b], as it 

values it.  A would receive about 54% because of the higher value it places on [a', b'] ≈  

[.604, .612], which it wins.   
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In sum, B would get [0, .604], giving it 60.4% of the entire cake, and A would get 

(.604, 1], giving it 63.5% of the entire cake.  Thereby, SP slightly favors the player (A) 

that values [a, b]—as well as [a', b']—more.  Nonetheless, both players, in receiving 

more than 60% each, are considerably above the 50% that cut-and-choose would give the 

cutter.  

It is worth noting that if the cake were cut at the equitable point, e, both players 

would get 61.8% in our example, which is less for A (triangular distribution) and more 

for B (uniform distribution) than SP gives each.  We think it fair that A benefits more 

under SP, because A values [a, b] as well as [a', b']—the portion of the surplus that it 

wins—more than B does.  Still, both players do quite well under SP. 

To return to our three properties, any 2-person, 1-cut procedure that gives at least 

50% to each player, including cut-and-choose and SP, is envy-free and efficient.  The 

main difference between these procedures is the closeness with which they approximate 

equitability, which involves an interpersonal comparison of utility between A and B: 

How does the subjective value that A attaches to its portion of the cake compare with the 

subjective value that B attaches to its portion?3  

The equitability comparison, we believe, is perfectly legitimate in assessing how 

satisfied A and B are likely to be with their shares.  Although analysts might differ over 

whether equitability or proportional equitability is the appropriate standard, our examples 

suggest that the difference in allocations that each standard yields will not usually be very 

great. 

Proportional equitability awards [a', b'] to the player that values it more.  An 

equitable allocation at e may reverse this.  In our last example, e = 0.618, so B would 

receive [0, .618], which includes [a', b'] = [.604, .612].  Consequently, B would do better 

than under SP. 

                                                 
3 By comparison, A’s possible envy of B does not depend on how B values its portion but, rather, on how A 
values B’s portion.  In this sense, envy-freeness does not involve an interpersonal comparison of utility. 
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Whether subintervals are defined around c, as SP does, or around e if one redefines 

SP in terms of equitability rather than proportional equitability, how big subintervals 

should be in comparison to the interval, [a, b], is a question we leave open.  For c, we 

suggested giving each player up to the largest decile possible; for e, it could be a fixed 

percentage of [a, b], like 75%.  In either case, it is the uncertainty about the location of 

the subinterval that induces the players not to undervalue the cake beyond their 50-50 

points, because by doing so they risk losing the subinterval.              

How might SP be extended to three or more players is unclear.  In section 4, we 

will describe a procedure that induces maximin players to make envy-free cuts in 3-

person cake division, but this division may not be equitable, even in theory. 

4.  Extensions to Three or More Players  

We now show, via an example, that it is not always possible to divide a cake 

among three players into envy-free and equitable portions using two cuts.  Because envy-

freeness seems to us to be the more important property to satisfy if one has to make a 

choice between it and equitability, we henceforth focus on it. 

Assume that A and B have (truthful) piecewise linear value functions that are 

symmetric and V-shaped, 

vA(x) =
−4x + 2 for x ∈[0,1 / 2]
4x − 2 for x ∈(1 / 2,1]

 
 
 

vB(x) =
−2x + 3 / 2 for x ∈[0,1/ 2]
2x −1 / 2 for x ∈(1 / 2,1]

.
 
 
 

 

Whereas both functions have maxima at x = 0 and x = 1 and a minimum at x = 1/2, A’s 

function is “steeper” (higher maximum, lower minimum) than B’s, as illustrated in Figure 
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1.  In addition, suppose that a third player, C, has a uniform value function, vC(x) = 1 for 

x ∈  [0, 1].    

          

Figure 1.  Impossibility of Envy-Free and Equitable Cuts for Three Players 

In this situation, every envy-free allocation of the cake will be one in which A gets 

the portion to the left of x, B the portion to the right of 1 – x (A and B could be 

interchanged), and C the portion in the middle.  If the horizontal lengths of A and B’s 

portions are not the same (i.e., x), the player whose portion is shorter in length will envy 

the player whose portion is longer.  But such an envy-free allocation will not be 

equitable, because A will receive a larger portion in its eyes than B receives in its eyes, 

violating equitability.  Thus, an envy-free allocation cannot be equitable in this example, 

nor an equitable allocation envy-free, though both these allocations will be efficient with 

respect to parallel, vertical cuts.4  

                                                 
4 This conflict also holds for proportional equitability.  It is worth pointing out that an equitable allocation 
need not be efficient.  Thus, if C were given an end piece and A or B the middle piece in the example, 
cutpoints could be found such all the players receive, in their own eyes, the same value.  However, this 
value would be less than what another equitable allocation, in which C gets the middle piece and A and B 
the end pieces, yields.  By contrast, an envy-free allocation that uses n – 1 parallel, vertical cuts is always 
efficient (Gale, 1993; Brams and Taylor, 1996, pp. 150-151).  
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Two envy-free procedures have been found for 3-person, 2-cut cake division.  

Whereas one of the envy-free procedures requires four simultaneously moving knives 

(Stromquist, 1980), the other requires only two simultaneously moving knives (Barbanel 

and Brams, 2004).    

We describe the simpler procedure of Barbanel and Brams that involves 

“squeezing” pieces.  It assumes that virtual cuts, or what Shishido and Zeng (1999) call 

“marks,” can be made on the line segment defining the cake.  These marks may 

subsequently be changed by another player before real cuts are made.   
 
Players are given “instructions.”  If they are followed, an envy-free allocation 

results; if they are not, then a player may do worse, violating the maximin goal we 

assume of players. 

   Barbanel-Brams 3-person, 2-cut squeezing procedure.  A referee slowly moves a 

knife from left to right across a cake.  The players are instructed to call stop when the 

knife reaches the 1/3 point for each.  Let the first player to call stop be player A.  (If two 

players call stop at the same time, choose one randomly.)   

Let A place a mark at the point where it calls stop (the right boundary of piece 1 in 

the diagram below), and a second mark to the right that bisects the remainder of the cake 

(the right boundary of piece 2 below).  Thereby A indicates the two points that, for it, 

trisect the cake into pieces 1, 2, and 3: 

           1                    2                    3 
0----------------|----------------|----------------1.    
                      A                                A 
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Because neither player B nor player C called stop before A did, each of B and C 

thinks that piece 1 is at most 1/3.  They are then asked whether they prefer piece 2 or 

piece 3.  There are three cases to consider: 

1.  If B and C each prefers a different piece—one player prefers piece 2 and the 

other piece 3—we are done: A, B, and C can each be assigned a piece that they consider 

to be at least tied for largest.   

2.  Assume B and C both prefer piece 2.  A referee places a knife at the right 

boundary of piece 2 and moves it to the left.  Meanwhile, A places a knife at the left 

boundary of piece 2 and moves it to the right in such a way that the amounts of cake 

traversed on the left and right are equal for A.  Thereby pieces 1 and 3 increase equally in 

A’s eyes.  At some point, piece 2 will be diminished sufficiently to piece 2'—in either 

B’s or C’s eyes—to tie with either piece 1' or piece 3', the enlarged 1 and 3 pieces.  

Assume B is the first, or the tied-for-first, player to call stop when this happens; then give 

C piece 2', which it still thinks is the largest or the tied-for-largest piece.  Give B the 

piece it thinks ties for largest with piece 2' (say, piece 1'), and give A the remaining piece 

(piece 3'), which it thinks ties for largest with the other enlarged piece (piece 1').  Clearly, 

each player will think it gets at least a tied-for-largest piece.   

3.  Assume B and C both prefer piece 3.  A referee places a knife at the right 

boundary of piece 2 and moves it to the right.  Meanwhile, A places a knife at the left 

boundary of piece 2 and moves it to the right in such a way as to maintain the equality, in 

its view, of pieces 1 and 2 as they increase.  At some point, piece 3 will be diminished 

sufficiently to piece 3'—in either B or C’s eyes—to tie with either piece 1' or piece 2', the 

enlarged 1 and 2 pieces.  Assume B is the first, or the tied-for-first, player to call stop 
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when this happens; then give C piece 3', which it still thinks is the largest or the tied-for-

largest piece.  Give B the piece it thinks ties for largest with piece 3' (say, piece 1'), and 

give A the remaining piece (piece 2'), which it thinks ties for largest with the other 

enlarged piece (1').  Clearly, each player will think it got at least a tied-for-largest piece.   

Note that which player moves a knife or knives varies, depending on what stage is 

reached in the procedure.  In the beginning, we assume a referee moves a single knife, 

and the first player to call stop (A) then trisects the cake.  But at the next stage of the 

procedure, in cases (2) and (3), it is the referee and A that move two knives 

simultaneously, “squeezing” what players B and C consider to be the largest piece until it 

eventually ties, for one of them, with one of the two other pieces.  While Barbanel and 

Brams show that squeezing can also be used to produce an “almost” envy-free 4-person, 

3-cut division (at most one player is envious), absolute envy-freeness eludes them unless 

up to 5 cuts are allowed, which may require combining disconnected pieces.   

Earlier, Brams, Taylor, and Zwicker (1997) gave a 4-person, envy-free procedure 

that requires up to 11 cuts; chore division for 4 players requires even more (16 cuts) 

(Peterson and Su, 2002).  Because the Brams-Taylor-Zwicker 4-person procedure 

involves fewer cases than the Barbanel-Brams procedure, it is probably simpler, even 

though it requires more cuts (11 versus 5).   

Beyond 4 players, no procedure is known that yields an envy-free division of a 

cake unless an unbounded number of cuts is allowed (Brams and Taylor, 1995, 1996; 

Robertson and Webb, 1998).  While this number can be shown to be finite, it cannot be 

specified in advance—this will depend on the specific cake being divided.  The 

complexity of what  Brams and Taylor call the “trimming procedure” makes it of dubious 

practical value.  

5.  Conclusions 
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We have described a new 2-person, 1-cut cake-cutting procedure, called the 

surplus procedure (SP).  Like cut-and-choose, it induces the players to be truthful when 

they have no information about each other’s preferences.  But unlike cut-and-choose, it 

produces a proportionally equitable division, which is approximate if the procedure ends 

in step 7, exact if it ends in step 3 or step 8.   

SP is more information-demanding than cut-and-choose, requiring that the players 

submit to a referee their value functions over an entire cake, not just indicate a 50-50 

point.  Practically, players might sketch such functions, or choose from a variety of 

different-shaped functions, to indicate how they value a divisible good like land.   

Thus, land bordering water might be more valuable to one person (A), whereas 

land bordering a forest might be more valuable to the other (B).  Even if players know 

these basic preferences of each other, and hence that a will be closer to the water and b 

will be closer to the forest, SP creates sufficient uncertainty about a' and b' that it would 

be impossible for maximin players to exploit it without knowledge of the other player’s 

value function.  

For 3 persons, there may be no an envy-free division that is also equitable.  But 

there is a simple 3-person squeezing procedure that induces maximin players to make 

cuts that yield an envy-free division with only 2 cuts.  By contrast, no 4-person, 3-cut 

envy-free procedure is known to exist.  
 

Most disputes over land or other divisible property boil down to two or three 

parties, so it is pleasing to have procedures that yield efficient and envy-free divisions, 

which are proportionally equitable (approximate or exact) in the case of two parties.  If 

there are multiple divisible goods that must be divided, however, 2-person procedures 

like “adjusted winner” (Brams and Taylor, 1996, 1999) seem more applicable than cake-
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cutting procedures, though Jones (2002) shows that adjusted winner can be viewed as a 

cake-cutting procedure.   

The fair division of indivisible goods poses significant new challenges that lead to 

certain paradoxes (Brams, Edelman, and Fishburn, 2001).  But recently progress has been 

made in finding ways of dividing such goods (Brams and Fishburn, 2000; Edelman and 

Fishburn, 2001; Brams, Edelman, and Fishburn, 2003; Brams and King, 2004).  Ideally, 

procedures that work for both divisible and indivisible goods will inspire new approaches 

to settling disputes at all levels, from interpersonal to international.  
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