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Abstract

We characterize e�cient equilibria of common interest voting games with

privately informed voters and study the implications of e�cient equilibrium

selection for Condorcet jury theorems. We show that larger juries can do no

worse than smaller ones and derive a simple necessary and su�cient condition

for asymptotic e�ciency of di�erent voting rules. This condition implies that

the unanimity as well as near unanimity rules are asymptotically ine�cient

regardless of equilibrium selection. However, if the signal distribution fails

a non-degeneracy condition, the unanimity rule dominates any other rule.

Finally, if signals are conditionally independent, full information equivalence

can be exactly achieved for any rule that allows the divisibility of individual

votes, and for any �nite number of voters.
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1 Introduction

Condorcet (1785) pioneered the study of elections by showing that under certain con-

ditions, decisions made by a group (such as a jury, a committee or an electorate) are

superior on average to those made by an individual (such as a judge or a dictator),

thus providing an instrumental rationale for participatory democracy. In Condorcet's

framework, di�erences of opinion among individuals arise not due to a fundamental clash

of values or interests but due to di�erent (and imperfect) information that they may

have regarding various options. Social choice is therefore seen as an exercise in informa-

tion aggregation in order to uncover an underlying `truth'. In general, di�erent decision

(or voting) rules will di�er in their ability to aggregate information. In this paper we

compare alternative voting rules in this light.1

There are two sets of questions that we ask with respect to the information aggrega-

tion properties of di�erent voting rules. The �rst of these relate to Condorcet's original

results that have subsequently come to be known as Condorcet's jury theorems (CJTs).

There are at least two di�erent versions. The �rst claims that in an election with two

alternatives and under the majority rule, a jury or an electorate consisting of several

members is more likely to make the correct choice than any single decision maker (we

refer to this as CJT1). A second and distinct claim is that as the number of voters

grows towards in�nity, the probability of making the wrong choice vanishes under the

majority rule. We refer to this asymptotic version as CJT2. In addition, one can also

imagine a generalization of the statement of CJT1, saying that larger juries have a higher

probability of making the correct choice than smaller ones. We call this CJT3.

Following Condorcet, various papers have established conditions under which the

jury theorems are valid, extending Condorcet's results to rules other than the majority

rule, e.g., super-majority or unanimity rules, under Condorcet's original assumption of

sincere voting (i.e., voters vote the way they would had they been called upon to make

the decision alone).2 As pointed out by Austen-Smith and Banks (1996), sincere voting

1It may be argued that in most applications of interest, both private information and some degree of

heterogeneity of preferences will be present. Nevertheless, the pure common interest case serves as an

useful theoretical benchmark by focusing on the purely coordination aspect of information aggregation.
2See Miller (1988), Ladha (1992) and Berend and Paroush (1992). Young (1986, 1988) analyzes the
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is far from an innocuous assumption. While voting, voters will not only take into account

their own information, but also the information that can be inferred from their being

pivotal, which is the only situation in which their votes matter. Since being pivotal

may contain signi�cant information, individuals may not vote sincerely even when they

expect others to do so. In other words, sincere voting often may not constitute a Nash

equilibrium of the voting game, even though all voters have identical interests. This

observation has led to an emerging literature on equilibrium voting behavior and its

consequences. Following this literature, we also focus on the case with strategically

sophisticated voters.

We begin by reestablishing a result, �rst shown by McLennan (1998), that in common

interest games, the strategy pro�le which maximizes the (common) payo� function also

constitutes a Bayesian Nash equilibrium.3 We call this pro�le the e�cient equilibrium

of the voting game. We show further that there exists an e�cient equilibrium in pure

strategies that is typically asymmetric, even in symmetric environments. It follows that

under very general conditions, a (weak) version of CJT3 (hence CJT1) must obtain: for

the class of voting rules satisfying monotonicity with respect to jury size, given e�cient

equilibrium selection, larger juries can do no worse than smaller ones.

Next, we establish a necessary and su�cient condition on the voting rule that guar-

antees that the equilibrium probability of a wrong decision approaches zero as the jury

size approaches in�nity. For non-degenerate conditionally independent signal distribu-

tions with �nite support, and in e�cient equilibrium, error probabilities approach zero

in the limit if and only if the voting rule is such that the number of votes required

for each decision (conviction as well as acquittal) grows unboundedly as the jury size

increases. Thus, the asymptotic properties of the equilibrium outcome (i.e., obtaining a

CJT2) is closely related to the asymptotic properties of the voting rule. An immediate

corollary is that the unanimity rule (which requires a single vote for the defendant's

acquittal by any jury) always produces asymptotic ine�ciency. On the other hand, for

the sequence of e�cient equilibria, any proportional rule (such as simple majority rule)

extension of `Condorcet's Rule' to more than two alternatives.
3The same is true if attention is restricted to only symmetric strategy pro�les and symmetric Nash

equilibrium. See McLennan (1998). Myerson (1998) proves a similar result.
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is informationally e�cient in the limit.

In an interesting and provocative paper, Feddersen and Pesendorfer (1998) have

shown that in a model with conditionally independent and symmetric binary signals,

unanimity rule could lead to a higher probability of convicting an innocent defendant

than less demanding majority or super-majority rules. Furthermore, for the symmetric

equilibrium that they study, unanimity rule produces asymptotic ine�ciency|the prob-

abilities of convicting the innocent and acquitting the guilty remain bounded away from

zero even as the jury size goes to in�nity. Duggan and Martinelli (2001) and Meirowitz

(2001) generalize the result to richer signal spaces, including a continuum of signals,

and show that, as long as the signal distribution satis�es a bounded likelihood ratio

condition, unanimity rule is asymptotically ine�cient if attention is restricted to sym-

metric equilibria. In a recent paper, Martinelli (2002) has shown (by methods di�erent

from ours) that the asymptotic ine�ciency of unanimity rule is robust to equilibrium

selection, provided likelihood ratios are bounded. On the other hand, Feddersen and

Pesendorfer (1998 &1997) (see also Wit (1998)) show that, for any interior proportional

rule (i.e. majority as well as super-majority rules), asymptotic e�ciency obtains along

the sequence of symmetric equilibria. Our necessary and su�cient condition on voting

rules that deliver asymptotic e�ciency uni�es and generalizes these results, for any �nite

number of signals and common interests.4 These necessary and su�cient conditions are

reminiscent of the \double{largeness" condition in Pesendorfer and Swinkels (2000) that

is necessary and su�cient for e�cient information aggregation in multi-object common

value auctions.

Finite non degenerate signal distributions imply that likelihood ratios are bounded,

and this is critical for our results. We demonstrate this by considering a binary signal

model in which one of the signals can be received only if the defendant is innocent, but

not otherwise. Conceptually, this may be thought of as a case where there exists some

`proof' of innocence (which may nevertheless escape the detection of individual jurors),

as opposed to merely noisy `evidence' which still leaves some residual doubt about the

defendant's innocence in the juror's mind. We show that in this simple model, unanimity

4Feddersen and Pesendorfer (1997) and Martinelli (2002) also consider the case of heterogenous juries

for the case of any interior proportional rule and the unanimity rule respectively.
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rule is the most e�cient voting rule for any jury size; indeed, it always produces full

information equivalence, i.e., the outcome is the same as would have been the case if

all the signals were common knowledge. Moreover, if the full information equivalent

outcome is sensitive to the realized vector of signals (i.e. it is not optimal to always

convict or always acquit the defendant), unanimity rule is the unique e�cient rule. This

result complements those in Duggan and Martinelli (2000) and Martinelli (2002), who

show that unanimity rule can be approximately e�cient in the limit when arbitrarily

strong evidence in favor of innocence may be obtained.

The second question that we ask with respect to information aggregation properties

of voting rules is the following. For a �xed jury size, are there any voting rules that, in

equilibrium, would implement the same outcome as would be obtained when the jurors

could freely share their private information? Our results imply that this full information

equivalence is generally not achievable, except for speci�c voting rules in a binary signal

model. Similarly, Austen{Smith and Banks (1996) provide an example where each juror

has two binary signals, and where no voting rule can lead to full information equiva-

lence. Put di�erently, communication among voters (which, in a common interest game,

can lead to the optimal utilization of all the available information) will generally have

a strictly positive value. Our �nal set of results goes to show that a simple extension

of the voting mechanism can perfectly substitute for the need for communication in a

large class of situations, although not always. We consider voting rules that allow jurors

to `split' their votes, i.e., each juror can give a fraction of her vote to one option (say

conviction) and the remaining fraction to the other. We show that when the signal dis-

tribution satis�es conditional independence, the divisibility of votes can exactly deliver

full information equivalence| there always exists an equilibrium satisfying that prop-

erty. Moreover, this is true for any monotonic voting rule and any number of voters,

and even when the signal distribution is not identical across voters. Intuitively, divisible

votes allow the voters to convey the intensity of their information with respect to dif-

ferent states of the world. If the signal distribution satis�es conditional independence,

then voters can precisely convey their information, as well as make it count in the de-

cision in an e�cient manner, even though the additivity of the voting rule imposes a

non-trivial constraint a priori. The restrictiveness of this constraint is illustrated in a
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counter-example where the signal distribution is not conditionally independent, and full

information equivalence can be shown to be unattainable.

Other notable contributions to the literature on voting under private information

include the following. Dekel and Piccione (2000) analyze sequential, rather than si-

multaneous, voting procedures. Persico (2002) studies a voting model in which voters

must spend resources to acquire information, creating a possible free rider problem. He

compares di�erent voting rules in terms of the incentives generated for information acqui-

sition, as well as their information aggregation properties. Coughlan (2000), Doraszelski,

Gerardi and Squintani (2002) and Gerardi and Yariv (2002) study voting behavior when

voters can communicate. While these are interesting issues in themselves, our focus in

the current paper is elsewhere.

The rest of the paper is organized as follows. In section 2, the model is presented. In

section 3, we analyze e�cient equilibria and characterize voting rules that yield CJTs 1,2

and 3. Section 4 takes up the case of binary signals while Section 5 traces the implication

of allowing votes to be divisible. Section 6 concludes while the Appendix contains some

of the proofs.

2 The Model

There is a countable set of individuals f1; 2; :::g, indexed by j: The individuals have to
take a joint decision d 2 D = fA;Cg (A stands for `acquit', C stands for `convict') by

forming a jury J consisting of a �nite subset of jJ j individuals.5

There are two states denoted by s 2 S = fI;Gg (I represents `innocence' and G
represents `guilt'). All individuals have a common state-dependent payo� function over

states s and decisions d that is given by:

u(s; d) =

8>><>>:
�q if s = I; d = C;

�(1� q) if s = G; d = A;

0 otherwise,

(1)

5Throughout we use the notation j:j to denote the cardinality of a set.
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where q 2 (0; 1):6

The state s is not known but each individual j has private information represented

by a signal or type tj 2 Tj = f1; :::;mjg: Let 
 = S � �1j=1Tj be the set of possible
states and type pro�les with typical element ! = (s; t1; t2; :::). Let the function S : 
!
S de�ned by S(!) = s represent the unknown state and the function Tj : 
 ! Tj
de�ned by Tj(!) = tj represent the privately known type of individual j. Let F be the

sigma{algebra on 
 generated by the collection of sets of the form f!jS(!) = sg and
f!jTj(!) = tjg for s 2 S, tj 2 Tj, j 2 f1; 2; :::g. Let P be a probability measure on

(
;F). We assume that the probability triple (
;F ; P ) is common knowledge among
all (potential) jurors.

For any non-empty �nite set J of individuals, let TJ denote the collection fTjgj2J ;
tJ denote a particular realization ftjgj2J of TJ and let TJ be the set of such realizations.
Thus TJnfjg denotes the signals of those in J other than j and tJnfjg a realization of

TJnfjg. We assume that
7

P (S = s) > 0 for all s 2 S (2)

and

P [TJ = tJ ] > 0 for all tJ and �nite, non{empty J: (3)

The joint decision d is taken by forming a �nite jury J . Members of J then play a

non{cooperative simultaneous move Bayesian game.8 Speci�cally, after observing their

respective private signals, each juror j 2 J takes an action xj 2 f0; 1g; simultaneously
and independently of other jurors. The action xj = 1 is interpreted as a vote for the

decision C while xj = 0 is interpreted as a vote for the decision A: Let �j : Tj ! [0; 1]

denote the (behavior) strategy of j with �j(tj) denoting the probability with which juror

6The parameter q captures the relative importance of committing two di�erent kinds of errors (con-

victing an innocent defendant and acquitting a guilty one). It will become apparent later that q can

also be interpreted as a threshold of `reasonable doubt', i.e., a juror would want to convict a defendant

if and only if she comes to believe that the latter is guilty with probability q or more.
7Following usual convention, in what follows we denote the events f!jS(!) = sg and f!jTJ(!) = tJg

by the more convenient fS = sg and fTJ = tJg; etc.
8Since juries frequently engage in communcation, the model applies more to a two-candidate election

with a dispersed electorate such as, say, a local council race. We follow the literature in using the

terminology of jury trials, although the best application of the model lies elsewhere, in our view.
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j 2 J chooses the action 1 given a type realization tj 2 Tj: Denote by �Jnfjg the strategies
of jurors in J other than j and let �J = (�j; �Jnfjg) be a strategy pro�le for the jury J

and �J , the set of such pro�les.

Given a non{empty set of jurors J and a realization of types tJ ; a strategy pro�le

�J generates a probability distribution over action pro�les xJ = fxjgj2J . Let XJ be the
set of action pro�les xJ and de�ne

Pr�J (xJ jTJ = tJ) =
Q

j:xj=1

�j(tj)
Q

j:xj=0

(1� �j(tj)) (4)

to be the probability with which the action pro�le xJ is generated by �J given TJ = tJ .

For any set X � XJ , let Pr�J (XjTJ = tJ) =
P

xJ2XPr�J (xJ jTJ = tJ) if X is non{empty

and equal to 0 otherwise. For any B 2 F with P (B) > 0, denote by Pr�J (XjB) =P
tJ2TJPr�J (XjTJ = tJ)P (TJ = tJ jB) the probability with which action pro�les in X

are generated by �J given the event B.

Individual votes are aggregated into a decision d by a decision or voting rule. Such a

rule is any function d(:) that takes the action pro�le xJ 2 XJ into a decision d(xJ) 2 D:
For any d 2 D, let Xd=d = fxJ 2 XJ jd(xJ) = dg and denote by Pr�J (d =djB) =
Pr�J (Xd=djB) the probability with which the decision d 2 D is generated by �J and d

given any B 2 F with P (B) > 0: De�ne

U(�J ;d_) =
X
s2S

P (S = s)
X
d2D

Pr�J (d =djS = s)u(s; d) (5)

to be the ex{ante expected payo� of any individual from �J given d. We will look for

Bayesian Nash equilibria of the simultaneous move voting game de�ned by the voting

rule d and the set of jurors J:

De�nition 1 Given a jury J and a decision rule d; a strategy pro�le �J is a Bayesian

Nash Equilibrium (BNE), if for each j 2 J; �j 2 argmax�0j U(�
0
j; �Jnfjg;d

_):

Before we proceed to an analysis of such equilibria we consider the benchmark case

where all private signals are public and introduce the notion of full information equiv-

alence. For a non{empty jury J; consider the decision problem when the realization
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tJ of TJ is common knowledge. From (1), note that the expected payo� from the de-

cision C is �qP (S = IjTJ = tJ) whereas the expected payo� from the decision A is

�(1� q)P (S = GjTJ = tJ): Thus, the optimal full information decision rule is to choose
C whenever tJ is such that P (S = GjTJ = tJ) > q and choose A whenever tJ is such
that P (S = GjTJ = tJ) < q; choosing any probability of conviction in [0; 1] when

P (S = GjTJ = tJ) = q. Let V �(J) be the ex{ante expected payo� of all individuals

(or value function) whenever the jury J makes its decision according to this full infor-

mation decision rule. With private information and in the absence of communication,

whether or not a jury is able to implement the full information decision rule depends,

among other things, on the properties of the voting rule d: This motivates the following

de�nition.

De�nition 2 A decision rule d satis�es full{information equivalence for a jury J if

there exists a BNE �J such that Pr�J (d = CjTJ = tJ) = 1 whenever P (S = GjTJ =
tJ) > q and Pr�J [d = CjTJ = tJ ] = 0 whenever P (S = GjTJ = tJ) < q:

Notice that if d satis�es full information equivalence for a jury J then there exists a

BNE �J such that U(�J ;d) = V
�(J):

3 E�cient Equilibria & Condorcet Jury Theorems

Our �rst theorem9 shows that, for any jury J and voting rule d; there is a pure strategy

BNE that attains the maximum feasible ex ante payo� among all strategy pro�les: We

will call such a payo�-optimal pro�le an e�cient equilibrium.

Theorem 1 Fix J and d: If �J2 argmax�0J2�J U(�
0
J ;d) then �J is a BNE. Further,

there exists a pure strategy pro�le in the set argmax�0J2�J U(�
0
J ;d): If this pure strategy

pro�le is the unique maximizer of U(�0J ;d) in the class of pure strategy pro�les, then it

is the unique maximizer of U(�0J ;d) in the class of all strategy pro�les (pure and mixed).

9The main part of the result that follows was proved in McLennan (1998, Theorem 1). Since it is

central to the subsequent arguments, and since the proof is a one-liner, we reproduce it here for the

reader's convenience.
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Proof. Suppose, contrary to claim, that �J is not a BNE. Then there exists some j and

some �0j 6= �j such that U(�0j; �Jnfjg;d) > U(�J ;d); contradicting the de�nition of �J .
Since the voting game is �nite, by Kuhn's theorem10, the behavior strategy pro�le

�J has an outcome equivalent mixed strategy pro�le, denoted by �J : It follows that

U(�J ;d) = U(�J ;d) =
X
�0J2�J

�J(�
0
J)U(�

0
J ;d) = U(�J ;d);

where �J is the set of pure strategy pro�les with �
0
J its generic element; �J(�

0
J) is the

probability assigned to �0J by �J and �J is an element of argmax�0J2�J U(�
0
J ;d). Then �J

must be a BNE. Moreover, if �J is the unique element of argmax�0J2�J U(�
0
J ;d) it must

also be the unique element of argmax�0J2�J U(�
0
J ;d):

For a jury J and a decision rule d let V (J;d) denote the value function or the

expected payo� from any e�cient equilibrium:

V (J;d) = max
�J2�J

U(�J ;d) (6)

A primary concern of this paper is to establish properties of the function V (J;d): In

this section we ask the following two questions. First, for what kind of voting rules d

is V (J;d) monotonic, i.e., V (J;d) � V (J 0;d) whenever J 0 � J . In other words, what

voting rules deliver CJT3 (and so CJT1)? Second, what kind of voting rules deliver

asymptotic e�ciency (CJT2), i.e., V (J;d) approaches 0 when J becomes large? In

Section 5 we look for voting rules that exactly deliver full information equivalence, for

a �xed jury J:

In principle, the voting rule d could take a very complicated form. However, most

voting protocols observed in practice take the form of a cuto� rule: an option is selected

if it receives more than a certain number of votes. Any such rule can be summarized

by a function k : N ! N such that 1 � k(n) � n: The interpretation is that for a jury
with n members, the decision C is selected if and only if the number of votes cast in

favor of C is k(n) or more. Let K denote the set of such rules. In the rest of this paper,

we focus on decision rules d identi�ed by such a cuto� function k; using the notation

k to denote a decision rule. Some well{known examples of such rules are k(n) = n

10See Kuhn (1953).
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(unanimity rule, unanimity being needed to convict the defendant); k(n) = 1 (a veto

required for conviction); and k(n) = dn
2
e (majority rule, where dxe denotes the smallest

integer greater than or equal to x). All these voting rules are monotonic in the following

sense.

De�nition 3 A voting rule k 2 K is monotonic if k(n) as well as n � k(n) is non-
decreasing in n.

Our next result shows that a larger jury can do no worse than any smaller jury

composed of a subset of its members, for any monotonic voting rule k 2 K. Thus, all
such rules deliver CJT3 (hence CJT1).

Theorem 2 For every monotonic voting rule k 2 K, and for any two juries J; J 0 such
that J 0 � J , V (J;k) � V (J 0;k).

Proof. Let ��J 0 be an e�cient equilibrium for the jury J 0: Let Y = JnJ 0: Construct a
strategy pro�le �Y for members of Y as follows: any subset of Y with k(jJ j) � k(jJ 0j)
members vote for A regardless of the signal received, while the remaining members vote

for C, again irrespective of their private signal. Since k is monotonic, both these numbers

are non{negative.

Consider the pro�le �J = (�
�
J 0 ; �Y ) for the jury J . Clearly, the strategy pro�les �J

and ��
J 0
are outcome equivalent so that U(�J ;k) = V (J

0;k). Since V (J;k) � U(�J ;k);
by Theorem 1, the result follows:

Theorem 2 is a direct consequence of Theorem 1. As long as the voting rule is

monotonic, it is always possible to neutralize the e�ect of additional jury members by

instructing them to always vote one way or the other. Then, by Theorem 1, in e�cient

equilibrium, an expanded jury can do no worse than any of its sub-juries. Feddersen and

Pesendorfer (1998) have presented an example in which the probability of one type of

error (convicting an innocent) increases with jury size, for the unanimity rule. Though

they do not show it, in their example (and for the symmetric equilibrium they focus

on) the expected payo� of each juror is decreasing in the size of the jury. In light of
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Theorem 2, this is clearly an e�ect of selecting symmetric equilibria.11

What class of voting rules are capable of delivering CJT2, i.e., e�cient informa-

tion aggregation in the limit when the jury size becomes large? For the question to

be non{trivial, we must impose some condition on the signal technology that guaran-

tees asymptotically perfect information (among the electorate at large) and then ask

whether the constraints imposed by particular voting rules and the lack of communica-

tion possibilities permit enough usage of this information so that asymptotic e�ciency

is achieved. For the next result we suppose that for all j and j0, conditional on S, the

random variables Tj; Tj0 are identically and independently distributed. Speci�cally, we

assume that for all j, Tj = f1; :::;mg with m > 1; and that for all J and tJ ;

P [TJ = tJ jS = s] =
Y
j2J
P (Tj = tjjS = s) for all s 2 S. (7)

Furthermore, we assume that the type distributions are non-degenerate, i.e., each signal

has a strictly positive probability of occurrence in each state:

P (Tj = tjjS = s) > 0 for all tj 2 Tj and s 2 S; (8)

Finally, we assume that the types for each j are strictly ordered by their likelihood

ratios:
P (Tj = tjjS = G)
P (Tj = tjjS = I)

is strictly increasing in tj: (9)

Given these assumptions on the type distribution, and given that we restrict attention

to voting rules in the class K; a jury J is uniquely identi�ed by its size jJ j: Accordingly,
we will denote by n the size of a jury and let V (n;k) be the value function of the game

with n jurors and rule k; from an associated e�cient equilibrium. Observe that by

Theorem 2, V (n;k) is non{decreasing in n.

Theorem 3 Fix a monotonic rule k 2 K and assume that the signal distributions satisfy

(7), (8) and (9). Then, limn!1 V (n;k) = 0 if and only if limn!1 k(n) = limn!1[n �
11While e�cient equilibria may be asymmetric even in symmetric models and so require greater `co-

ordination' than symmetric equilibria, a focus on e�cient equilibria allows us to isolate those properties

of strategic voting that depend on equilibrium selection and those which do not.
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k(n)] = 1. Further, if either limn!1 k(n) < 1 or limn!1[n � k(n)] < 1, then there
exists a n such that for all n > n, V (n+ 1;k) = V (n;k).

Theorem 3 identi�es the set of monotonic rules in K that deliver a CJT2 and thus

uni�es and extends a number of results obtained previously in the literature. In partic-

ular, it implies that the unanimity rule is asymptotically ine�cient for any sequence of

equilibria considered. The same is true for near-unanimity rules.12 This generalizes a

result in Feddersen and Pesendorfer (1998), where the sequence of symmetric equilibria

in a binary signal model is shown to have this property. As we demonstrate in the next

section, such equilibria are ine�cient whenever they involve mixed strategies. Theo-

rem 3 nevertheless establishes that the inferiority of unanimity rule is fairly robust to

model and equilibrium selection.13 Another corollary of our result is that for any inte-

rior proportional rule (such as simple or supermajority rules) we must have asymptotic

e�ciency if the sequence of e�cient equilibria are considered. Given Theorem 1, this

result also follows directly from Feddersen and Pesendorfer (1997, 1998) and Duggan

and Martinelli (2000), who have previously proved this property for symmetric equilib-

ria. More importantly, for non-degenerate signal distributions, Theorem 3 establishes

a precise connection between the asymptotic properties of the rule and the asymptotic

properties of the outcome. For any rule satisfying monotonicity, however complicated,

the limiting properties can be inferred by straightforward application of this result.

To prove Theorem 3 it will be helpful to establish some basic properties of pure

strategy equilibria. For any pure strategy pro�le �J ; let pivj be the event that juror j is

12For example, a rule that stipulates that for a motion to be taken up by a committee or legislature,

it must be supported by one member, and seconded by another. This may be thought of as a rule with

k(n) = 2 in favour of admissibility of the motion.
13Martinelli (2002) also shows the asymptotic ine�ciency of the unanimity rule, in a very general

setting and independent of equilibrium selection. For a �nite signal space, this result requires not

having any signal tj such that P (Tj = tj jS = G) = 0, i.e., a failure of (8). While our approach is quite
di�erent, our results suggest that (8) is required for the asymptotic ine�ciency of all rules failing the

\double largeness condition" of Theorem 3. In Section 4.1 we show in the context of a binary signal

model that if (8) fails, then the unanimity rule is in fact optimal, even for a �xed jury size.
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pivotal, i.e., his vote a�ects the outcome:14

pivj = f!j
X

h2Jnfjg

�h(th) = k � 1g 2 F : (10)

Furthermore, we say that a pure strategy �j satis�es the cuto� property if there exists

tj 2 f0g [ Tj such that �j(tj) = 1 i� tj > tj: A strategy pro�le �J = f�jgj2J satis�es
the cuto� property if all component strategies �j do. Our �rst lemma shows that in any

pure strategy equilibrium, if juror j's vote a�ects the outcome, then �j must satisfy the

cuto� property.

Lemma 1 Assume that the signal distributions satisfy (7), (8), (9) and let k(n) = k:

For a jury J of size n; in any pure strategy BNE �J ; for each juror j with pivj 6= ;,

�j(tj) = 1) P (S = Gjpivj; Tj = tj) � q;
�j(tj) = 0) P (S = Gjpivj; Tj = tj) � q:

(11)

and �j satis�es the cuto� property:

Proof. Let �J be a pure strategy BNE and consider j such that pivj 6= ; and Tj = tj.
Since pivj 6= ;; we obtain from (3) that P (pivjjTj = tj) > 0 for all tj: Conditional

on pivj and Tj = tj; the expected payo� of j from voting for conviction is equal to

�qP (S = Ijpivj; Tj = tj) whereas the expected payo� from voting for acquittal instead

is �(1� q)P (S = Gjpivj; Tj = tj): Since j's vote a�ects the outcome if and only if pivj
occurs and P (pivjjTj = tj) > 0, it follows that if �j(tj) = 1 (respectively, = 0) then

P (S = Gjpivj; Tj = tj) � q (resp., � q), establishing (11). Furthermore, the event

pivj depends only on the realization of TJnfjg so that by (7), conditional on S = s, it is

independent of the event Tj = tj for each tj 2 Tj and s 2 S. By Bayes Rule, (8) and
(9) it follows that P (S = Gjpivj; Tj = tj) is increasing in tj. From (11), �j must then

satisfy the cuto� property.

14If pivj occurs then a vote for conviction (respectively, acquittal) from j results in the decision C

(resp., A) being chosen. If pivj does not occur then j's vote does not a�ect the decision. Since pivj can

be generated by unions and intersections of sets of the form f!jTh 2 T 1h g 2 F and f!jTh 2 ThnT 1h g 2 F ;
where h 2 Jnfjg and T 1h = fth 2 Thj�h(th) = 1g, pivj is measurable.
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For a jury J and any pure strategy pro�le �J , let Jc(�J) = fj 2 J j�j(tj) = 18 tjg
and Ja(�J) = fj 2 J j�j(tj) = 08 tjg. Jurors in Jc (respectively, Ja) vote to convict
(resp., acquit) regardless of their signal. Let Ji(�J) = JnfJc(�J) [ Ja(�J)g be the set
of jurors who vote informatively, i.e., their vote depends on their signal. If jJc(�J)j � k
then the jury always votes to convict while if jJa(�J)j > n�k then the jury always votes
to acquit. When jJc(�J)j < k and jJa(�J)j � n� k, the set Ji(�J) of informative voters
is non{empty, pivj is non{empty for all j 2 J , and the jury votes informatively, i.e.,
sometimes votes to convict and sometimes votes to acquit depending on the realization

of TJ . Note that when �J satis�es the cuto� property, each j 2 Ji(�J) has an interior
cuto� tj 2 f1; :::;m� 1g:
For the rest of the proof it will be helpful to consider monotonic rules k satisfying

k(n) = k; for all n � k and some non{negative integer k: Given such a rule, we show

now that for a large enough jury, some juror must vote to acquit with probability 1,

given that the jury does not convict with probability 1.

Lemma 2 Assume that the signal distributions satisfy (7), (8), (9) and that k(n) = k

for all n � k: For each n and a jury Jn of size n; let �Jn be a pure strategy BNE. If there
exists n1(k) such that for all n > n1(k), jJc(�Jn)j < k, then there exists n2(k) such that
for all n > n2(k); jJa(�Jn)j � 1:

Proof. Pick any jury Jn of size n > n1(k) and suppose that there does not exist n2(k)

such that for all n > n2(k); jJa(�Jn)j � 1: Pick n > n1(k) such that jJa(�Jn)j = 0 so that
Ji(�Jn) 6= ; and pivj 6= ; for all j 2 J: By Lemma 1, �Jn satis�es the cuto� property:
Pick j 2 Ji(�Jn). The event pivj tells juror j that exactly k � jJc(�Jn)j � 1 of the
n� jJc(�Jn)j � 1 other jurors j0 2 Ji(�Jn)nfjg have signals that are above their cuto�s
tj0 2 f1; :::;m� 1g: Thus, when pivj occurs, at most k � jJc(�Jn)j � 1 of these jurors j0

have signals that take the highest possible value m. Since tj � m, by (7), (8) and (9),
the event fpivj; Tj = tjg is weaker evidence for fS = Gg than the event B 2 F , where
B occurs when exactly k�jJc(�Jn)j jurors among the n�jJc(�Jn)j jurors in Ji(�Jn) have
signals equal to m. That is,

P (S = Gjpivj; Tj = tj) � P (S = GjB) =
P (S = G)

P (S = G) + l(jJc(�Jn)j; n; k)P (S = I)

14



where

l(jJc(�Jn)j; n; k) =
�
P (Tj = mjS = I)
P (Tj = mjS = G)

�k�jJc(�Jn )j � P (Tj < mjS = I)
P (Tj < mjS = G)

�n�k�jJc(�Jn )j
:

Using (9) observe that
P (Tj=mjS=I)
P (Tj=mjS=G) < 1 <

P (Tj<mjS=I)
P (Tj<mjS=G) : Then, for any positive scalar

M > 0 there exists n > n1(k) large enough, with jJa(�Jn)j = 0 and Ji(�Jn) 6= ;; such
that l(jJc(�Jn)j; n; k) > M: But this implies that for n and M large enough, P (S =

Gjpivj; Tj = tj) < q for any tj 2 Tj; a contradiction with the fact that j 2 Ji(�Jn), i.e.,
1 � tj < m, by (11):
The next lemma contains a result that is similar to, but more restricted than Theorem

3. It states that for a rule k(n) = k for all n � k; there exists an upper bound on the
size of a jury, beyond which a larger jury can do no better than a smaller one.

Lemma 3 Assume that the signal distributions satisfy (7), (8), (9) and that k(n) = k

for all n � k: There exists n(k) such that for all n � n(k), V (n;k) = V (n(k);k) < 0:

Proof. For each n and a jury Jn of size n; let �Jn be an e�cient pure strategy BNE

and suppose �rst that there exists n1(k); such that for all n > n1(k), jJc(�Jn)j < k: By
Lemma 2, there exists n2(k) such that for all n > n2(k); jJa(�Jn)j � 1: Pick any jury Jn
of size n > n2(k) and note that it can achieve the same outcome as any jury Jn+1 of size

n+ 1 by setting jJc(�Jn)j = jJc(�Jn+1)j, jJa(�Jn)j = jJa(�Jn+1)j � 1 and setting identical
thresholds tj 2 f1; :::;m � 1g for the identical number of remaining jurors. But then,
from Theorem 2 we must have V (n + 1;k) = V (n;k) for all n > n2(k) implying that

V (n;k) = V (n(k);k) for all n � n(k) = n2(k) + 1: Moreover, in at least one e�cient
equilibrium, the jury of size n(k) chooses the decision A; with probability at least as

high as that of all jurors in J
n(k)
nJc(�Jn(k)) receiving the lowest signal 1 and voting for

acquittal. Since, conditional on S = G; this latter probability is strictly positive by (8),

and since P (S = G) > 0, it follows that V (n(k);k) < 0:

Suppose next that for each jury Jn of size n � k there exists a jury Jn0 of size n0 > n
such that jJc(�Jn0 )j � k in any e�cient equilibrium �Jn0 of Jn0 : Then the decision C is

chosen with probability 1 by the jury Jn0 . Since choosing this decision is always feasible

for the jury Jn; we obtain via Theorem 2 that V (n + 1;k) = V (n;k) for all n � k
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implying that V (n;k) = V (n(k);k) for all n � n(k) = k: Since, in at least one e�cient
equilibrium, the jury of size n(k) chooses the decision C even when S = I; and since

P (S = I) > 0, it follows that V (n(k);k) < 0:

Proof of Theorem 3.

For the `only if' part, assume (without loss of generality) limn!1 k(n) = k < 1.
Since k is assumed to be a non-decreasing function, and increases only by integer values,

there must be a bn such that for all n > bn, k(n) = k. Let k0 be the rule k0(n) = k

for all n � k. Then for all n > bn, V (n;k) = V (n;k0) and further, by Lemma 3,

there exists n(k) such that for all n � n(k), V (n;k0) = V (n(k);k0) < 0; implying

limn!1 V (n;k) = V (n(k);k
0) < 0:

For the `if' part, for each jury Jn of size n we will construct a strategy pro�le �Jn with

the property that limn!1 U(�Jn ;k) = 0: The result will then follow from Theorem 1. For

each n; de�ne the functions c(n) = max[0; 2k(n)�n] and a(n) = max[0; n�2k(n)]: Then
limn!1(n� c(n)� a(n)) =1: For each jury Jn of size n de�ne a strategy pro�le �Jn =
f�nj gj2Jn as follows. Let c(n) individuals always vote to convict and a(n) individuals
always vote to acquit, regardless of their signals. For each remaining individual j; let

�nj (tj) = � if tj = 1 and �
n
j (tj) = �

0 otherwise, for some �; �0 2 [0; 1] such that

�G � P (Tj = 1jS = G)�+ P (Tj > 1jS = G)�0 >
1

2

�I � P (Tj = 1jS = I)�+ P (Tj > 1jS = I)�0 <
1

2

From (9), it is immediate that such �; �0 exist and are independent of n. Note that

for each n; conditional on S = G; with probability 1 there are c(n) votes for conviction

and a(n) votes for acquittal; and each of the remaining n� c(n)� a(n) voters vote for
conviction with probability �G >

1
2
; independently across such voters by (7). For any

" > 0; by the (weak) law of large numbers,15 it follows that for n large enough,

Pr�Jn [fxJn 2 XJnj
P

j2Jn xj � c(n)
n� a(n)� c(n) � �G � "gjS = G] > 1� "

Pick " small enough such that �G � " > 1
2
, so that (�G � ")(n� a(n)� c(n)) + c(n) >

k(n). Then, Pr�Jn [fxJn 2 XJnj
P

j2Jn xj � k(n)gjS = G], the probability of conviction

15See, e.g., Billingsley (1995).
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given S = G, is arbitrarily close to 1 for n large enough. Analogously, since �I <
1
2
;

the probability of acquittal given S = I is also arbitrarily close to 1; for n large enough.

Hence, limn!1 U(�Jn ;k) = 0.

4 Binary Signals

Several previous papers have used a binary signal model for simplicity and tractability.

However, the results have generally been derived based on the symmetric equilibrium

(usually involving mixed strategies). We now give a complete characterization of the

structure of pure strategy e�cient equilibria in such models. It will become apparent

in the process that e�cient equilibria are usually asymmetric. This in turn will enable

us to characterize the optimal voting rule k 2 K and show that in the binary signal

model, the optimal voting rule induces full information equivalence for any jury of size

n. Throughout this section we will maintain assumptions (7), (8) and (9). In Section

4.1 we will investigate the e�ect of relaxing (8).

Suppose each juror can receive one of two signals so that Tj = f1; 2g for all j. For
ease of exposition, we introduce the notation � = P (S = G) 2 (0; 1) and, using (7),
let pG = P (Tj = 2jS = G) and pI = P [Tj = 2jS = I] for each j. By (8) and (9),

pG; pI 2 (0; 1) with pG > pI . It will be convenient to de�ne �(z; y) as the posterior

probability on S = G if it is known that exactly y out of z signals (0 � y � z) have

turned out to be equal to 2. By Bayes' Rule:

�(z; y) =
(pG)

y(1� pG)z�y�
(pG)y(1� pG)z�y� + (pI)y(1� pI)z�y(1� �)

(12)

Note that by (9), for �xed y, �(z; y) is decreasing in z while �(z; z � y) is increasing in
z:

For any integer y � 1; let n�a(y) be the largest integer n0 2 [y;1) satisfying:

�(n0; y � 1) < q � �(n0; y) (13)

The interpretation is as follows. For a jury of size n0 > n�a(y), with at least y votes

required for conviction, a juror would strictly prefer to vote for acquittal even if his
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signal is equal to 2 and he knows that exactly y � 1 other jurors have also received a
signal equal to 2 and have voted for conviction. If �(y; y) � q, then n�a(y) is well{de�ned
as it equals the largest value of n0 for which �(n0; y) � q: If �(y; y) < q there exists no
integer satisfying the inequality above. In that case, we de�ne n�a(y) = 0.

Similarly, for y � 0, let n�c(y) be the largest integer n0 2 [y + 1;1) satisfying:

�(n0; n0 � y � 1) � q < �(n0; n0 � y) (14)

For a jury of size n0 > n�c(y), with at least n
0 � y votes required for conviction, a juror

would strictly prefer to vote for conviction even if his signal is equal to 1 and he knows

that exactly n0 � y� 1 other jurors have received a signal equal to 2 and have voted for
conviction. If �(y + 1; 0) � q then n�c(y) is well{de�ned as it equals the largest value of
n0 for which �(n0; n0 � y � 1) � q. If �(y + 1; 0) > q, there will not exist any integer

satisfying the above inequality. In that case, we de�ne n�c(y) = 0.

Now consider the problem with n jurors with at least k votes required for conviction.

Observe that n�a(k) < n if �(n; k) < q; n�a(k) = n if �(n + 1; k) < q � �(n; k) and

n�a(k) > n if q � �(n+ 1; k): Similarly, n�c(n� k) < n if q < �(n; k � 1), n�c(n� k) = n
if �(n; k � 1) � q < �(n+ 1; k) while n�c(n� k) > n if �(n+ 1; k) � q. Let

n�(n; k) = minfn; n�a(k); n�c(n� k)g (15)

so that

n�(n; k) = n i� �(n; k � 1) � q � �(n; k) (16)

Since n and k are �xed in the rest of this section, we drop the arguments of the functions

n�a; n
�
c and n

� in what follows in order to minimize on notation.

Consider a pure strategy pro�le �J satisfying the cuto� property that has the follow-

ing additional features. Suppose jJi(�J)j 2 fn��1; n�g if n� = n�a > k and q = �(n�a; k),
or if n� = n�c > n�k+1 and q = �(n�c ; n�c�(n�k)�1); with jJi(�J)j = n� otherwise. Let
jJa(�J)j = n� jJi(�J)j if n� = n�a and equal to 0 otherwise, while jJc(�J)j = n� jJi(�J)j
if n� = n�c and equal to 0 otherwise. Let �

�
J be the set of such strategy pro�les.

For any strategy pro�le in ��J , n
� (or one less) of the jurors vote informatively, i.e.,

with �j(2) = 1 and �j(1) = 0: The remaining voters all vote for acquittal if n� = n�a
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and all vote for conviction if n� = n�c . We show below that strategy pro�les in �
�
J are

e�cient equilibria. Finally, note from (7) that the full information value function V �(:)

is determined entirely by the size n of a jury, allowing us to denote the full information

value function as V �(n): We extend the domain of V �(n) as follows:

V �(0) = max[�(1� q)�;�q(1� �)]: (17)

We are now in a position to characterize e�cient equilibria.16

Proposition 1 Assume Tj = f1; 2g for all j, (7), (8) and (9). Consider a jury J of
size n and a rule k 2 K with k(n) = k:

1. If �(n � k + 1; 0) < q < �(k; k) and �J is an e�cient pure strategy equilibrium
then �J 2 ��J .

2. If �J 2 ��J then it is an e�cient pure strategy equilibrium:

3. V (n;k) =V �(n�(n; k)):

Proof. See the Appendix.

Proposition 1 e�ectively establishes a simple algorithm for computing e�cient equi-

libria in a binary model. This can be described in words as follows. Imagine for a

moment that all jurors vote informatively, i.e. for conviction if their signal is equal to

2, and in favor of acquittal if their signal is equal to 1. If it is incentive compatible for

each individual juror to vote in such a way then informative voting by every juror is the

e�cient equilibrium. If not, then an individual best response to informative voting by

all others is either to always vote for conviction or to always vote for acquittal. Then,

let any one juror do so and let everyone else vote informatively. If this is incentive com-

patible for the remaining informative voters, we have found the e�cient equilibrium. If

not, decrease the number of voters voting informatively by one, and repeat the same

16While Proposition 1 characterizes e�cient equilibria in pure strategies, in most cases of interest,

mixed strategy equilibria are not e�cient. Moreover, when the additional condition on � in the necessity

part of the result is not satis�ed, e�cient equilibria involve either always choosing C or always choosing

A: In such cases, there are many strategy pro�les outside ��J which are e�cient equilibria.

19



exercise till an equilibrium is found. The resultant equilibrium will be optimal among

all equilibria.

So far, we have discussed the e�ciency of equilibria, given the voting rule. It is

instructive to ask: (assuming jurors are always able to coordinate on the best possible

equilibrium) which voting rules are best? Formally, for a jury of size n, a voting rule

k� 2 K is e�cient if

k� 2 argmax
k2K

V (n;k) (18)

for each n: From Proposition 1.3, since V �(n) is a non{decreasing function (more in-

formation is better), k�(n) is the value of k 2 f1; :::; ng which maximizes n�(n; k). As

long as �(n; 0) � q � �(n; n) (so that the decision problem is non{trivial), there exists

a k 2 f1; :::; ng such that (16) holds and the maximized value of n�(n; k) is n. Hence we
get the following characterization of the optimal voting rule k�:

k�(n) 2 fk 2 f1; :::; ngj n�(n; k) = ng (19)

The most e�cient voting rule is such that under such a rule, it is an equilibrium for

all jurors to vote informatively. By Lemma 4 (see the proof of Proposition 1), it also

satis�es full information equivalence. However, the last property is a special feature

of binary signal models. With a richer signal structure, full information e�ciency is

generally not achievable under any voting rule (see Austen-Smith and Banks (1996))

that only permits indivisible votes.

4.1 Degenerate Signals: `Proof' versus `Evidence'

We now relax assumption (8) by considering the case where pG = 1 but pI 2 (0; 1). This
means that whenever a single signal equals 1, the defendant's innocence is established

beyond doubt. However, any number of signals taking value 2, while making guilt more

likely, does not make it a certainty. Intuitively, whenever the defendant is innocent, there

exists a de�nitive proof of this fact (e.g. an alibi which establishes innocence beyond

doubt). However, individual jurors may not always be able to detect such proof. This

is in contrast to noisy evidence, which is inconclusive beyond a point.
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Proposition 2 In the binary signal model with (7) but pG = 1 and pI 2 (0; 1) the

unanimity rule for conviction k(n) = n is the only rule that satis�es full information

equivalence for all n.

Proof. Fix a jury J of size n, let y be the number of signals that take the value 2

and let d�n(y) 2 D be an optimal full information decision rule as a function of y: We

consider two cases. First, suppose n is such that �(n; n) � q. Then, d�n(y) = A for all
y is an optimal full information full information decision rule. For any rule k, this can

be achieved by setting �j(2) = �j(1) = 0 for all j 2 J . Hence, any rule satis�es full
information equivalence.

Next, consider the case where �(n; n) > q. Using pG = 1 in (12), we get �(n; y) = 0

for all y < n. Hence, d�n(y) = C i� y = n. Take the unanimity rule. It is immediate

that the strategy pro�le de�ned by �j(2) = 1 and �j(1) = 0 for all j 2 J is a BNE
that has the same outcome as the full information decision rule. Thus the unanimity

rule satis�es full information equivalence. Now take any other rule k with k(n) < n and

suppose there exists a BNE �J such that k satis�es full information equivalence. Then

the set J 0 = fj 2 J j�j(2) = 1g must have at least k(n) elements. If not, for the case
where y = n and all members of the set JnJ 0 vote for acquittal, the decision chosen will
be A whereas the full information decision d�n(n) = C: But then for the case where y < n

but Tj = 2 for all j 2 J 0; the decision chosen will be C whereas the full information

decision is A; a contradiction. Finally, since limn!1 �(n; n) = 1 > q, for large enough

n, the unanimity rule is the only rule that satis�es full information equivalence.

Duggan and Martinelli (2000) have shown in a continuous signal framework that the

asymptotic ine�ciency of unanimity rule is obtained if and only if there is no arbitrarily

strong signal in favor of guilt or innocence. Complementing this result, our binary signal

example shows that in the presence of the possibility of `perfect' evidence of innocence,

the unanimity rule is the most e�cient rule for any jury size and uniquely so for a large

enough jury.
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5 Full Information Equivalence with Divisible Votes

So far we have restricted attention to voting rules that grant a single indivisible vote to

each voter. For a large class of such voting rules, information is aggregated e�ciently as

the jury becomes very large. Yet for a jury of any �xed size, the decentralized information

is not e�ciently aggregated into the decision, unless the information structure is very

simple (binary). It is natural to ask whether e�ciency can be improved by adopting

alternative rules in such environments.

It is easy to see that there exists an optimal direct mechanism which allows for

perfect information aggregation. By selecting the optimal action (from the jurors' view-

point) for every reported vector of signals, such a mechanism eliminates any incentive to

misreport.17 However, it will, in general, be sensitive to the �ne details of the problem|

the utility function and the probability distribution over signals. This is obviously

impractical for the applications we have in mind: procedural rules for organizations,

judiciaries or legislatures need to be laid down in advance and are meant to apply to a

variety of recurrent problems. Constitutions cannot be rewritten every time the system

encounters a new and quantitatively dissimilar decision problem. It is therefore useful

to restrict attention to indirect mechanisms that are, in their construction, independent

of the features mentioned above, i.e., context free. The pre-speci�ed single indivisible

voting rules we have considered so far belong to this class. We now turn to the question:

are there other context free mechanisms that can deliver better results?

It turns out that a simple amendment to the usual voting rules can substantially

improve their e�ciency properties. This consists of allowing the votes to be divisible,

i.e. rules that allow jurors to cast a fraction of their votes for one alternative, and

the remaining fraction for the other. This mechanism is somewhat in the spirit of

approval voting, in that voters can express some degree of approval for either option.

The di�erence lies in the fact that it allows continuously divisible votes and also enforces

17The problem of designing an optimal mechanism with respect to some social welfare function

is less trivial when either the social objective conicts with that of jurors, or jurors have conicting

preferences themselves. Since we only consider common interest collective choice problems in this paper,

such complications do not arise.
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a budget constraint of votes for each juror. Hence, it combines the spirit of approval

voting with the `one person, one vote' principle.18

Fix a jury J with n members:With divisible votes, the players' pure strategies can be

described by a function �j : Tj ! [0; 1], describing the fraction of votes juror j 2 J casts
in favor of C, as a function of her signal. Let �J be a strategy pro�le. Pick any voting

rule k 2 K such that the jury J can take the decision C if and only if
P

j2J �j � k(n).19

It is straightforward to check that, given k, all the equilibria of the case when votes are

indivisible remain when votes are divisible. However, new equilibria generally arise. We

show now that in the special case when signals are conditionally independently (though

not necessarily identically) distributed, there exists an equilibrium that satis�es full{

information equivalence.

Suppose that (8) holds and denote by lj(tj) =
P [Tj=tj jS=G]
P [Tj=tj jS=I] the likelihood ratio of

signal Tj: By conditional independence, for any realized vector of signals TJ = tJ , the

posterior on s = G can be written using Bayes' Rule as:

P [S = GjTJ = tJ ] =
�
Q
j2J lj(tj)

�
Q
j2J lj(tj) + (1� �)

where � = P [S = G]: Then P [S = GjTJ = tJ ] � q if and only if
Q
j2J lj(tj) � L �

q(1��)
�(1�q)

or X
j2J

log lj(tj) � logL. (20)

Let lJ = maxj;tj lj(tj) and lJ = minj;tj lj(tj). To focus on the interesting cases, we

assume n log lJ < logL < n log lJ : If this is not satis�ed, then the optimal decision is to

always convict or always acquit the defendant, regardless of available information. It is

trivial to achieve full information equivalence in that scenario.

18The budget constraint on vote totals does not a�ect our results. For example, consider the following

scoring rule: each juror must assign a score belonging to the interval [0, 1] for each alternative. The

alternative receiving the highest total score is chosen. It can be shown that the set of equilibrium

outcomes for this scoring rule coincides with that for the divisible voting rule, so that these rules are

equivalent. Notice that the scoring rule is a natural generalization of approval voting from discrete to

continuous votes.
19Since votes are divisible, k(n) can be allowed to take non-integer values.
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Theorem 4 Fix a jury J with n members and assume that conditional on the state, the

distribution of signals is independent, (8) holds and n log lJ < logL < n log lJ . Then,

for each voting rule k 2 K with k(n) = k; there exists a pure strategy BNE �J described

by:

�j(tj) =

8>><>>:
k[log lj(tj)�log lJ ]
logL�n log lJ

if k � logL�n log lJ
log lJ�log lJ

(1)

1� (n�k)[log lJ�log lj(tj)]
n log lJ�logL

if k >
logL�n log lJ
log lJ�log lJ

(2)

(21)

for j 2 J; such that k satis�es full information equivalence for the jury J:

Proof. First consider the case described in (21.1). Since n log lJ < logL and since

log lj(tj) � log lJ by de�nition, it follows that �j(tj) � 0. Further, since �j(tj) is a

positive a�ne function of log lj(tj), �j(tj) �
k[log lJ�log lJ ]
logL�n log lJ

� 1: We now show that under
�J , the full information outcome is implemented. But from (21.1) it is immediate thatX

j2J
�j(tj) � k ()

X
j2J

log lj(tj) � logL; (22)

so that from (20) we conclude that under �J the sum of votes exceeds k if and only if it

is optimal for the jury J to convict the defendant under full information. From Theorem

1, it is then immediate that �J is a BNE.
20 The proof is identical for the case described

in (21.2) and is therefore omitted.

The requirement that signals be conditionally independent is only a su�cient condi-

tion for full information equivalence to be possible. We have been unable to determine

a tighter necessary and su�cient condition on the signal distribution that allows in-

formational equivalence.21;22 However, the following example demonstrates that some

20Theorem 1, though stated for �nite strategy spaces, can easily be extended to in�nite strategy

spaces as in this case.
21We conjecture that if the marginal distributions on each player's signals satisfy the monotone

likelihood property, Theorem 4 will still be true. The problem with showing this result is that a simple

constructive proof as in Theorem 4 is no longer available. We will investigate the issue further in future

research.
22Theorem 4 can be extended to the case where there are more than two alternatives, given conditional

independence and a symmetry condition on preferences. Proof available on request.
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restriction is necessary|the result of Theorem 4 will not be true for arbitrary probabil-

ity distributions over signals.

Consider a jury J of size two, and a game with divisible votes and 0 < k � 2. Suppose
each juror j receives a binary signal tj 2 f1; 2g. The joint distribution on signals is as
follows:

P [T1 = T2 = 2jS = G] = P [T1 = T2 = 1jS = G] =
1

2

P [T1 = 2; T2 = 1jS = I] = P [T1 = 1; T2 = 2jS = I] =
1

2

Whenever the defendant is guilty, both jurors receive the same signal, while they receive

di�erent signals whenever the defendant is innocent.23 Note that the full vector of

signals perfectly reveals the true state, although the marginal distributions are pure noise.

Obviously, the full information decision rule as a function of the signal realizations is as

follows: d�(2; 2) = d�(1; 1) = C and d�(2; 1) = d�(1; 2) = A. Suppose, if possible, that

there is a strategy pro�le �J that achieves the full information decision for each state and

each realized vector of signals. Then, we must have �1(2)+�2(2) � k and �1(1)+�2(1) � k
and �1(2) + �2(1) < k and �1(1) + �2(2) < k implying that k �

P
j;tj
�j(tj) < k; a

contradiction.

When players have rich signal spaces (i.e., there are more than two signals), it is not

surprising that a binary instrument (a yes/no vote) fails to aggregate that information

e�ciently, since the available instruments are coarser than the information available to

individual jurors. Allowing the divisibility of votes at least overcomes the problem of

dimensionality by allowing each voter to not only express a preference for one option

over the other, but also the intensity of that preference. However, as long as voters are

unable to communicate, there still exists a problem of coordination. This is because we

still restrict attention to voting rules in the set K which all have the constraint that

the decision must be a function of the sum of the individual votes. As the above exam-

ple demonstrates, whether this problem can be successfully solved depends on the �ne

23The example presented here is not \knife-edge", i.e. it will continue to hold if there is positive weight

on all signal realizations in every state. What matters is that the optimal decision be C whenever the

signals are identical and D otherwise.
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structure of the signal technology. Divisible voting rules (or scoring rules), though pow-

erful, are not a perfect substitute for communication possibilities. Nevertheless, there

are tantalizing parallels to models with indivisible votes and communication. Theorem

4, for example, states that as long as votes are divisible, the exact threshold for convic-

tion, k, does not matter. A similar invariance result is to be found in the model with

communication analyzed by Gerardi and Yariv (2002).

6 Conclusion

We have characterized e�cient equilibria of common interest voting games with privately

informed voters. E�cient equilibria typically involve pure strategies and are asymmetric

even in symmetric models. We studied the implications of e�cient equilibrium selec-

tion for Condorcet jury theorems. Provided e�cient equilibria are selected, larger juries

can do no worse than smaller ones. We also derived a simple necessary and su�cient

condition that relates the asymptotic e�ciency of voting outcomes to the asymptotic

properties of di�erent voting rules. Mistakes are eliminated in the limit if and only if

the number of votes required for each decision grows unboundedly. A corollary is that

unanimity as well as near unanimity rules are asymptotically ine�cient regardless of

equilibrium selection. However, if the signal distribution fails a non-degeneracy condi-

tion, the unanimity rule dominates any other rule. Finally, if signals are conditionally

independent, full information equivalence can be achieved for any rule that allows the

divisibility of individual votes.

Several interesting questions remain open. What kind of equilibria exist when jurors

have conicting interests (di�erent values q of in our model)? What is the e�ect of

allowing communication among jurors in such a model? What are the outcomes of a

divisible voting rule under more general signal structures, or when the jury is heteroge-

neous? What kind of mechanism should a social planner, who may not share the voters'

values, design? We think these are fruitful questions for future research.
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7 Appendix: Proof of Proposition 1

Lemma 4 Assume Tj = f1; 2g for all j, (7), (8) and (9). Consider a jury J of size n
and a rule k 2 K with k(n) = k:

1. In the full information problem with n0+1 jurors with n0 � 0 and �(n0+1; 0) � q �
�(n0+1; n0+1), V �(n0+1) = V �(n0) i� �(n0+1; y) = q for some y 2 f0; :::; n0+1g:

2. Let �J be a pure strategy pro�le with jJc(�J)j < k and jJa(�J)j � n� k. Then �J

is an equilibrium i� �J satis�es the cuto� property and

�(jJi(�J)j; k � jJc(�J)j � 1) � q � �(jJi(�J)j; k � jJc(�J)j): (23)

�(jJi(�J)j+ 1; k � jJc(�J)j) � q if Jc(�J) 6= ; (1)

�(jJi(�J)j+ 1; k � jJc(�J)j) � q if Ja(�J) 6= ; (2)
(24)

Furthermore, if �J is an equilibrium then U(�J ;k) =V
�(jJi(�J)j) and jJi(�J)j �

n�.

Proof. (1) Let eyn0 be the number of signals with value 2 among the n0 jurors and note
that the full information decision depends only on eyn0 : Denote by d�n0 the full information
decision rule with n0 jurors. Then d�n0 = C i� eyn0 � yn0 ; for some yn0 2 f0; :::; n0 + 1g
satisfying b�(n0; yn0 � 1) � q � b�(n0; yn0) (25)

where, b�(z; y) = �(z; y) if 0 � y � z; equal to 0 if y < 0 and equal to 1 if y > z.

Consider now the full information problem with an additional (n0+1)th juror and note

that V �(n0 + 1) � V �(n0) as the decision rule d�n0 is also a feasible rule with n
0 jurors

and the (n0 + 1)-th juror's information is ignored.

Suppose that V �(n0 + 1) = V �(n0). We must have �(n0 + 1; yn0) = q. For if

�(n0 + 1; yn0) < q so that yn0 < n
0 + 1 (respectively, �(n0 + 1; yn0) > q so that yn0 > 0), it

will be strictly better to choose a rule that di�ers from d�n0 only in picking the decision

A (resp., C) as opposed to the decision d�n0 = C (resp., d
�
n0 = A) ; when eyn0 = yn0 (resp.,eyn0 = yn0 � 1) and the last juror has a signal equal to 1 (resp. 2).
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Conversely, suppose �(n0+1; y) = q with y 2 f0; :::; n0+1g: If y = 0 (resp., y = n0+1),
then choosing C (resp. A) always is an optimal rule for both the size n0 + 1 and the

size n0 jury so that V �(n0 + 1) = V �(n0): So suppose 0 < y < n0 + 1 and note that the

optimal rule d�n0 for the size n
0 jury must have yn0 = y . Further, if for the size n

0 + 1

jury, the information of the last juror is ignored and d�n0 is used, then when there are y

(respectively, y�1) signals with value 2 of the �rst n0 jurors and the (n0+1)-th juror has
a signal equal to 1 (resp., 2) the decision C (resp., A) is chosen. Since �(n0 + 1; y) = q;

such a decision is weakly optimal. In all other cases, choosing according to d�n0 is strictly

optimal. Thus, V �(n0 + 1) = V �(n0).

(2) Let �J be a pure strategy equilibrium with jJc(�J)j < k and jJa(�J)j � n� k so
that jJi(�J)j � k � jJc(�J)j and pivj 6= ; for all j: By Lemma 1, �J satis�es the cuto�
property so that �j(2) = 1 and �j(1) = 0 for all j 2 Ji(�J): For j 2 Ji(�J) the event
pivj occurs when exactly k� jJc(�J)j � 1 of the other jJi(�J)j � 1 other jurors in Ji(�J)
have a signal equal to 2: From (11) we immediately obtain the left{hand side of (23) by

considering the case where Tj = 1 and the right{hand side by considering the case where

Tj = 2. Moreover if Jc(�J) 6= ;; then for j 2 Jc(�J) the event pivj occurs when exactly
k�jJc(�J)j of jurors in Ji(�J) have a signal equal to 2: From (11) we immediately obtain
(24.1) by considering the case where Tj = 1: Similarly, if Ja(�J) 6= ; then from (11) for

j 2 Ja(�J) and Tj = 2 we obtain (24.2).
Conversely, suppose that �J satis�es the cuto� property and that (23) and (24)

hold. We show that �J is an equilibrium. Consider j 2 Ji(�J). Since �J satis�es

the cuto� property and all jurors in Jc(�J) (resp. Ja(�J)) vote for conviction (resp.

acquittal) regardless of their signals, j knows that his vote matters (i.e., pivj occurs)

only when k�jJc(�J)j�1 of the jJi(�J)j�1 other jurors have a signal 2 and have voted
(according to �J) for conviction. Since this event has strictly positive probability by (3),

he would prefer to vote for conviction as long as P (S = Gjpivj; Tj = tj) � q and vote
for acquittal otherwise. From (23) we conclude that P (S = Gjpivj; Tj = 1) � q and

P (S = Gjpivj; Tj = 2) � q so that j would prefer to vote according to �J given that

others are doing so. Furthermore, if Jc(�J) 6= ;, then j 2 Jc(�J) knows that pivj occurs
only when k� jJc(�J)j jurors in Ji(�J) have a signal 2 and have voted (according to �J)
for conviction. Since this event has strictly positive probability by (3), he would prefer
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to vote for conviction as long as P (S = Gjpivj; Tj = tj) � q: From (24.1) we conclude

that this is true for Tj = 1 and so, by (9) when Tj = 2, so that j would prefer to vote

according to �J : Similarly, if Ja(�J) 6= ;, then considering j 2 Ja(�J) and using (24.2) it
follows that such a juror would like to vote according to �J . Thus �J is an equilibrium

pro�le.

For the last part, suppose �J is an equilibrium so that it satis�es the cuto� property

and (23) holds: Under �J , the decision C is chosen i� at least k� jJc(�J)j signals of the
jJi(�J)j signals of jurors in Ji(�J) take the value 2: Comparing (23) with (25) we see
that this is an optimal decision rule in the full information problem with jJi(�J)j jurors
so that U(�J ;k) =V

�(jJi(�J)j): Finally, note that jJi(�J)j � n� trivially if n� = n: So

suppose that n� = n�a < n: Then �(k; k) � q: For if not, then n�a = 0 as there exists no
integer n0 for which �(n0; k) � q. But from (23),

q � (jJi(�J)j; k � jJc(�J)j) � �(jJi(�J)j+ jJc(�J)j; k)

a contradiction. Thus, n�a � k satis�es (13): If jJi(�J)j > n�a, we obtain using the

right{hand side of (23)

q � �(jJi(�J)j; k � jJc(�J)j) � �(jJi(�J)j; k) � �(n�a + 1; k)

contradicting the de�nition of n�a as the largest integer that satis�es (13). The proof for

the case where n� = n�c < n is identical and so omitted.

Proof of the Proposition (parts (2) and (3))

We show �rst that any �J 2 ��J is an equilibrium pro�le and U(�J ;k) = V �(n�).

Consider �rst the case where �J 2 ��J is such that jJi(�J)j = n�: To begin with suppose
that �(n � k + 1; 0) � q � �(k; k) so that n�a � k and n�c � n � k + 1. If n� = n then
jJc(�J)j = 0 = jJa(�J)j and further, by (16), �(n; k � 1) � q � �(n; k): Comparing with
(23), by Lemma 4.2 we conclude that �J is an equilibrium and U(�J ;k) = V

�(n). Next,

if n� = n�a then jJc(�J)j = 0 and jJa(�J)j = n� n�a. Since n�a is the largest integer that
satis�es (13), �(n�a; k� 1) < q � �(n�a; k) and further �(n�a+1; k) < q. Comparing these
with (23) and (24.2) respectively, by Lemma 4.2 we conclude that �J is an equilibrium

and U(�J ;k) = V �(n�a). The case where n
� = n�c < n is identical and so its proof is

omitted.
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Next suppose �(k; k) < q so that n� = n�a = 0 = jJi(�J)j = jJc(�J)j and jJa(�J)j = n.
Since �(1; 1) � �(k; k) � q; each juror would prefer to acquit so that �J is an equilibrium
and the jury always acquits. Using �(k; k) � q and (9) we observe that the payo� from
always acquitting is greater than the payo� from always convicting so that U(�J ;k) =

V �(0). The proof for the case �(n � k + 1; 0) � q and n� = n�c = 0 is identical and so
omitted.

Finally, consider �J 2 ��J such that jJi(�J)j = n� � 1: Then, by the de�nition of ��J ,
either n� = n�a > k and �(n

�
a; k) = q, or n

� = n�c > n�k+1 and �(n�c ; n�c�(n�k)�1) = q.
In the former case, jJc(�J)j = 0 and jJa(�J)j = n � n�a + 1. Furthermore, since n�a > k
and �(n�a; k) = q, �(n

�
a � 1; k) is well{de�ned and �(n�a � 1; k � 1) < q < �(n�a � 1; k).

Comparing this and �(n�a; k) = q with (23) and (24.2) respectively, by Lemma 4.2

we conclude that �J is an equilibrium and U(�J ;k) = V �(n�a � 1). Further, since

�(n�a; k) = q; by Lemma 4.1 we see U(�J ;k) = V
�(n�a � 1) = V �(n�a). The proof for the

case where n� = n�c > n � k + 1 and �(n�c ; n�c � (n � k) � 1) = q is identical and so

omitted.

To complete the proof of part (2) of the Proposition, it remains to show if �J 2 ��J
then it is an e�cient equilibrium. Note that if any pure strategy pro�le �J has jJa(�J)j �
k or jJa(�J)j > n� k then either it always chooses the decision C or always the decision
A: In either case the payo� obtained is at most equal to V �(0). Since U(�J ;k) = V

�(n�)

for all �J 2 ��J , it immediately follows by Lemma 4.2 and Theorem 1 that any �J 2 ��J
is an e�cient equilibrium and further that V (n;k) = V �(n�). This completes the proof

of parts (2) and (3).

Proof of the Proposition (part (1))

Suppose that �(n � k + 1; 0) < q < �(k; k) so that n�a � k and n�c � n � k + 1 and
n� > 0: Let �J be an e�cient pure strategy equilibrium. We wish to show that �J 2 ��J :
Note �rst that we must have jJa(�J)j � n�k and jJc(�J)j < k: For if jJa(�J)j > n�k,

then the jury votes to always acquit. Consider the strategy pro�le �0J with the property

that a subset of exactly k voters vote informatively i.e., with �j(2) = 1 and �j(1) = 0,

with the rest voting for acquittal. Under �0J the jury votes for conviction i� exactly k

out of the k informative voters have a signal 2: Since all signal pro�les have positive

probability and �(k; k) > 0 we conclude that the jury does strictly better under �0J than
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�J , so that �J cannot be an e�cient equilibrium. Similarly one obtains jJc(�J)j < k.

By Lemma 4.2 we see that jJi(�J)j � n� and U(�J ;k) =V �(jJi(�J)j):
If V �(n�) > V �(n�� 1) then jJi(�J)j = n� as otherwise any ��J 2 ��J would dominate

it, by parts (2) and (3) of Proposition 1. Furthermore, in such a case we must have

Jc(�J) = ; if n� = n�a and Ja(�J) = ; if n� = n�c . For if n� = n�a and Jc(�J) 6= ; then
using Lemma 4.2 we obtain

q � �(jJi(�J)j+ 1; k � jJc(�J)j) = �(n�a + 1; k � jJc(�J)j) < �(n�a + 1; k)

a contradiction with the de�nition of n�a as the largest integer that satis�es (13). Sim-

ilarly, one shows that Ja(�J) = ; if n� = n�c . We conclude that �J 2 ��J if V �(n�) >
V �(n� � 1).
So suppose that V �(n�) = V �(n�� 1). Then n � minfn�a; n�c): For if n < minfn�a; n�c)

then n� = n and, moreover, from (13) and (14),

�(n; k � 1) < �(n�c ; n�c � (n� k)� 1) � q � �(n�a; k) < �(n; k)

implying that there exists no y 2 f0; :::; ng such that �(n; y) = q contradicting, via

Lemma 4.1, that V �(n�) = V �(n� � 1): It follows that n� 2 fn�a; n�cg: Consider the case
where n� = n�a: From (13) and Lemma 4.1 we see that �(n�a; k) = q. Since �(k; k) > q

we must have n�a > k: Furthermore,

�(n�a � 1; k � 1) < q < �(n�a � 1; k)

so that using Lemma 4.1 again we obtain V �(n�a � 1) > V �(n�a � 2) as there does not
exist y 2 f0; :::; n�a � 1g such that �(n�a � 1; y) = q: But then jJi(�J)j � n�a � 1, as
otherwise any ��J 2 ��J would dominate it, by parts (2) and (3) of Proposition 1. Hence,
jJi(�J)j 2 fn�a� 1; n�ag. Moreover, we must have Jc(�J) 6= ;; for if not, using Lemma 4.2
we obtain

q � �(jJi(�J)j+ 1; k � jJc(�J)j) � �(n�a; k � jJc(�J)j) < �(n�a; k) = q

a contradiction. We conclude that �J 2 ��J when V �(n�) = V �(n� � 1) and n� = n�a:

The proof for the case n� = n�c is identical and therefore omitted.
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