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1 Introduction 

 

In many bargaining situations, the decisions that parties take at one point in time affect 

the size of future surpluses. For instance, members of a household decide not only how 

to allocate current consumption among themselves but also how much to save for 

tomorrow’s consumption. Partners in a business need to agree how to share current 

profits among themselves, and also whether and how any remaining profit should be re-

invested. Political parties attempt to find agreement over an issue by taking into account 

the fact that their current decisions can increase goodwill and facilitate agreement over 

issues in the future. Colluding firms can negotiate over how to share current profits 

between themselves, while also investing in order to generate profits in the future.  

The aim of this paper is to investigate bargaining games characterised by a dynamic 

accumulation problem, that is, players attempt to agree not only on how to share a 

surplus but also on the level of investment, which will then affect the capital stock and 

the amount of future surpluses. The capital stock we have in mind does not need to be 

physical, but can simply reflect the value of the ongoing relationship itself (e.g., it can 

represent goodwill generated by the agreement between political parties on some 

issues). This implies that our framework can be applied to several bargaining situations.  

A dynamic accumulation problem combined with a bargaining process is almost 

unexplored in economics. As far as we know, only Muthoo (1999, section 10.3) has 

considered the problem of an alternating bargaining process combined with a dynamic 

accumulation game. However, he analyses it as a possible application of an infinitely 

repeated game in which two parties share an infinite series of cakes of constant size 

(Muthoo, 1995). In particular, the investment problem is strongly simplified since the 

focus is on steady-state stationary subgame perfect equilibria and therefore, players 
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should invest so as to have the same surplus in each period. For this reason, the problem 

of identifying investment paths in bargaining games remains open. 

We attempt to address this question, by analysing an ultimatum bargaining 

framework in which players are able to invest part of the surplus. By introducing the 

possibility of accumulation, the game is modified in a non-trivial way, in particular, it 

can be non-stationary (by stationary game we mean a game characterised by the same 

subgame at specific nodes). This implies that the computation of an equilibrium is not 

as simple as in the case of a stationary game. Moreover, there can be multiple equilibria 

(indeterminacy of equilibria due to non-stationarity has been shown by, for instance, 

Binmore, 1987).  

The equilibrium concept on which we focus is the Markov subgame perfect 

equilibrium (MPE). Following Fudenberg and Tirole (1990), an MPE is a subgame 

perfect equilibrium in which players' strategies are restricted to depend on the past 

history of play through the state variable (i.e., Markov strategies). In our case, the state 

variable is the capital stock, kt (plus the rules of the game that define the identity of the 

proposer). As Maskin and Tirole (2001) point out, this means that only those aspects of 

the past that are significant should have an appreciable influence on behaviour. 

Moreover, Markov strategies represent the simplest form of behaviour that is consistent 

with rationality (Maskin and Tirole, 2001).  

The main result of our analysis is that a unique MPE exists. This is characterised by 

demands in which the proposer obtains the entire surplus not invested and invests more 

than his opponent would have done provided that the proposer is sufficiently patient. 

Within an ultimatum framework a proposer can focus on his intertemporal optimisation 

by recognising that in the future he can propose again (with a positive probability and 

his opponent can propose with the complementary probability). Indeed, an acceptance is 
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always obtained, when a rejection implies the end of the game. However, such an 

equilibrium is not specific to ultimatum bargaining, and it can also be sustained under 

alternative bargaining procedures (even, a potentially infinite bargaining stage, although 

in this case other MPE can exist). The assumption of an ultimatum bargaining 

procedure (in which a rejection implies the end of the game) is restrictive but it allows 

us to fully derive the results. This is a first step to the solution of more interesting 

bargaining procedures.  

Moreover, we show that bargaining leads to underinvestment. The intuition is as in 

the classic hold-up problem although in this case we have a dynamic set-up. In 

particular, since a proposer can extract the entire surplus not invested, he can fund the 

current level of investment by reducing his own consumption. In this sense he bears all 

the cost of investing. Additionally, the proposer will take into account the fact that in 

the future his opponent enjoys a positive probability of being a proposer and therefore 

today’s proposer needs to take into account that he will share the benefits of his initial 

investment with the other player.  Within the context of the social planner’s problem the 

incentives are different for two reasons. First, both players share the cost of the 

investment, second, they equally share the benefits of this investment (under the 

assumption of symmetric players). This is why the social planner’s investment path is 

higher. 

In the following section the model is presented and solved. We then consider the 

optimum for the social planner (in section 3). We discuss alternative bargaining 

procedures in section 4. Section 5 concludes this paper. 

 



 5

2 The Game 

 

Two players (for instance, firms, political parties, members of a household, etc.), named 

1 and 2, engage in the production of a surplus and its division between themselves. In 

particular, having produced a surplus from a given capital stock, the two players bargain 

over how much to invest and how to share the consumption of the remaining surplus 

between themselves. The level of investment affects the future capital stock and, 

consequently, the surplus available in the following bargaining stage. 

The game consists of two distinct phases: a production and a bargaining stage. Each 

phase can only start when the other has finished. We assume that the bargaining stage is 

characterised by an ultimatum procedure (only one round). Therefore, while the 

bargaining stage is ‘very quick’ (indeed, to simplify, is assumed to be timeless), 

production takes time. The parameter τ indicates the interval of time required to 

generate surplus. A time period is indicated by t with t = 0, 1, …∞ (in other words, t 

indicates the number of production stages which have taken place). A surplus is 

generated according to the production function F(kt) = kt
ρ, with 0 < ρ ≤ 1, where kt is 

the capital stock at period t. Once the output is generated, F(kt), the bargaining stage 

begins, in which players attempt to divide F(kt). Player i’s time preference is 

represented by a between-cake discount factor αi = exp (-riτ), where ri is his discount 

rate. In the first period, t = 0, a bargaining stage starts. The surplus available is 1, by 

assumption. In general, in period t player 1 (2, respectively) can become a proposer with 

probability1 p (1-p, respectively), with 0 < p < 1. A proposal by player i is a pair (ixt, iIt), 

where iIt is the investment level proposed by i at time t and ixt is the share demanded by 

i over the remaining surplus at time t. The proposal ixt, iIt depends on capital, denoted by 
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kt. Our notation is simplified, in the sense that the subscript t in the proposal indicates 

that this is conditional on the capital stock at t, kt.  

On the one hand, if the proposal is accepted, the bargaining stage ends and the 

proposer’s current per-period utility is,  

 

ui(ixt,iIt,kt) = [ixt(F(kt) - iIt)]1-η/(1-η),      (1) 

 

with 0 < η < 1. This is a general utility function: for η that goes to one, the per-period 

utility function tends to the logarithmic case, while for η that tends to zero, the utility 

becomes linear in consumption (the assumption of linear utility, η=0, common in 

bargaining games, must be excluded for the existence of a solution of the intertemporal 

optimisation problem, see Ljungqvist and Sargent, 2000). Once players agree over the 

division of a surplus, production takes place. The output available at the next bargaining 

stage (at t + 1) is F(kt+1), where kt+1 is the capital stock in the next period and it is given 

by the agreed level of investment iIt and the capital remaining after depreciation, kt+1 = 

iIt + (1-λ) kt, where λ is the depreciation rate (0 < λ < 1).  

On the other hand, if there is a rejection, the game finishes and the players get 

(almost2) zero payoffs. Therefore, in the case of rejection it is not only the surplus F(kt) 

that disappears but also the capital stock kt. For instance, suppose that two colluding 

firms get zero profits if they cease to collaborate. One reason could be that they compete 

à la Bertrand and there is no second-hand market for kt. Then, if the firms do not have 

frequent contacts, tacit collusion might be difficult to sustain. We can assume that as 

soon as one of the colluding firms rejects a proposal, the collaborative relationship is 

                                                                                                                                                                          
1 Similar results can be established if the bargaining stage is characterised by an alternating-offer rather 
than a random-proposer procedure. These results are available from the author upon request. 
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compromised. We can also think of the capital stock kt as not being physical but simply 

reflecting the investment in the relationship itself. For instance, suppose a country is 

enjoying a recently established democracy. Failure of the new political parties to reach 

agreement on political issues may threaten the viability of the democracy itself.  

The case in which, after a rejection, only the surplus at that stage disappears (F(kt)), 

but not the capital (kt) is interesting but technically more demanding and we discuss it in 

section 3. We now turn to discuss the MPE’s in the case in which a rejection implies the 

end of the game.  

 

2.1 The Equilibrium  

 

First of all, if an MPE exists in this framework, it must be without delay (if an MPE 

with delay is assumed to exist, then it can be shown that a profitable deviation exists, so 

that the strategies which defined such a delay cannot sustain an MPE). To define an 

MPE, we need to solve the following problem. The proposer at time t, say i (with i 

=1,2), will maximise his expected discounted utility, vi(kt), with respect to the share of 

the surplus he demands for his consumption, ixt, and the amount of the surplus to be 

invested, iIt, with 0 ≤ ixt ≤ 1 and 0 ≤ iIt ≤ F(kt). Player i’s expected discounted utility at 

time t is given by his current per-period utility, ui(ixt,iIt,kt), plus the future expected 

utility, Es∑sαi
t+sui(zxt+s,zIt+s,kt+s), where the per-period utility ui(zxt+s,zIt+s,kt+s) is defined 

in (1), with z proposing at t+s, z = 1,2 and s = 1,2,…. The expectation is taken with 

respect to the probabilities of becoming a proposer at t+s. Since the identity of a 

proposer at one point in time affects the future investment strategies via the agreed level 

                                                                                                                                                                          
2 As long as players outside option is sufficiently small, and therefore not binding, the analysis below still 
holds. 
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of investment (and therefore the capital stock for next period), the explicit form of vi(kt) 

is as follows,  

1

2 1

1 2 \

( , , ) ( ) [ ( , , ) (1 ) ( , , )]
p

t t s t s

p t s t

h t s h h
i i t i t t i i i i t s i t s t s i i j t s j t s t s

p s h h h

u x I k h p u x I k p u x I kα
+ +

− +

∞ −
+

+ + + + + +
= = ∈

+ + −∑ ∑ ∏ (2) 

where each element of a potential history ht, h, is equal to pi assuming player i proposes 

and (1-pi) when player j is assumed to propose (except for the unique element of ht+1\ht, 

that is 1 by assumption) for t =1, 2…∞. The potential history ht uniquely indicates the 

sequence of proposers to reach the node t from 1, where the nodes considered are only 

the ones in which an offer is to be made. These are numbered sequentially from 1. At 

each node there are two possibilities either i or j will propose next, in each period the 

lowest number is given to the node where i will propose next. Accordingly, the product 

of the elements of ht (∏h) gives the probability of reaching node t from node 1, while ht 

as a superscript of kt indicates the actual history of proposals which defines the capital 

stock at time t.    

Similarly, the expected discounted utility of a responder who accepts player i’s 

proposal (ixt, iIt), i.e., wi(kt), can be written in the following form, 

1

2 1

1 2 \

( , , ) ( ) [ ( , , ) (1 ) ( , , )]
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h t s h h
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Player i's proposal is accepted immediately if and only if the responder obtains at least 

as much as he would get in the case of rejection, which is zero in this case (i.e., wj(kt) ≥ 

0). Then, a proposer’s maximisation problem is given by, 
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Since an MPE is characterised by a time invariant rule mapping the state variable kt into 

the decision variables ixt and iIt, then the problem can be written in a recursive form (the 

Bellman equation). A proposer's optimisation problem becomes, 

1
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where Vi(kt) is the optimum vi(kt) or value function, and Wi(kt) is the optimal expected 

utility when player i is a responder, wi(kt). Condition (5) guarantees that the proposal at 

time t is accepted immediately. However, this is always satisfied since ixt belongs to 

[0,1] and iIt to [0, kt]. The indifference conditions are important instruments in deriving 

the solution of bargaining problems with a stationary structure. In our (non-stationary) 

game, the indifference conditions, which are (5) as an equality, cannot hold (unless the 

between cake discount factors αi are zero). When there is accumulation a responder is 
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able to obtain a positive surplus at some point in the future, and therefore his optimal 

expected utility Wi(kt) can be strictly positive3. 

Since any investment decision made by a player at time t, affects the whole stream of 

future profits (by the equation of motion of the capital stock), the bargaining stages are 

strongly interconnected even within a simplified bargaining structure such as the 

ultimatum framework. Given the ultimatum structure, the focus is on an MPE in which 

a proposer is able to consume the whole portion of the surplus not invested, in other 

words a proposer’s optimisation problem is as follows, 

 

1

1 1
0

( ( ) )
( ) max ((1 ) ( ) ( )) with

1i t t

t i t
i t i i i t i i t

I k

F k I
V k p W k pV k

η

α
η

−

+ +
≤ ≤

−
= + − +

−
 (6) 

1 (1 )    in case of acceptance and 0 otherwiset t i tk Ik λ+ = − +   (7) 

 

To solve the problem we use the guess and verify method. This consists in ‘guessing’ 

the form of the value function but leaving the coefficients undetermined, and then 

‘verifying the guess’ by showing that there are values of the coefficients that make the 

guess correct. The guess and verify method relies on the uniqueness of the solution. 

This is ensured by the assumption of concave utility functions, a linear production 

function (F(kt) = kt) and a linear equation of motion (see Stokey, Lucas and Prescott, 

1993 or Levhari and Srinivasant, 1969). Our ‘guess’ is that the value function is a 

function of the capital stock of the same form as the utility function. Then the players' 

optimisation problem can be written as follows, 

 

                                                           
3 In our framework, the equilibrium shares ixt cannot be larger than one. In other words, we exclude the 
case in which a proposer can extract all his opponent’s expected discounted utility in the case of 
acceptance, Wj(kt). This case, even though interesting, complicates the analysis, because it requires 
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φi kt
1-η /(1-η) = max ict

1-η/(1-η) + αi βi kt+1
1-η /(1-η) w.r.t. ict, (8) 

where kt+1 = kt(2 - λ) – ict if there is an acceptance, 0 otherwise.  (9) 

βi = piφi + (1- pi) µi       (10) 

 

with ict equal to the consumption level proposed by player i (i.e., kt - iIt) and pj = 1 – pi, 

pi in [0,1], with i = 1, 2. The coefficients φi and µi, and consequently βi with i =1,2, are 

undefined at this point. The expected maximum discounted utility of a responder at time 

t, µi kt
1-η /(1-η) is given by, 

 

µi kt
1-η /(1-η) = 0 + αi [(1- pi) µi/(1-η) + piφi /(1 - η)] (ϕj

 kt) 1-η  (11) 

 

where ϕj kt is the capital stock at time t +1, after player j has been a proposer at time t. 

The FOC for the problem (8) – (10) is the following, 

 

ict
-η - αi βi (kt (2-λ) – ict)-η = 0,     (12) 

which implies, 

  

ict = (2-λ) kt /(1 + αi 1/ηβi
1/η).       (13) 

 

Optimal consumption is a linear function of the capital stock. Moreover, if the expected 

utility in the continuation game (αi βi) is higher for a given level of capital stock, a 

proposer consumes less and invests more. Using (13), the equation of motion can be 

written as, 

                                                                                                                                                                          
another state variable apart from the capital stock to keep track of the responder’s expected payoff before 
making an offer. 
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kt+1 = ϕi
 kt, where ϕi = (2-λ) αi 1/ηβi

1/η/(1 + αi 1/ηβi
1/η).   (14) 

 

After the guess, it is necessary to verify that there is a solution for the coefficients, φi, µi 

such that they are well defined. By using (13), we obtain two equations, (10) and (11), 

in the two undefined coefficients, φi and µi. Then, if there is a solution to this system, 

the guess was right and the verification phase ends. The solution of the system (10) and 

(11) also gives the optimal investment path. Moreover, this solution is unique. We show 

the conditions under which the solution exists. This is sufficient to complete the 

verification. 

The solution to the problem is completed with another constraint, the so-called 

transversality condition, which imposes that at the limit as t tends to zero, the utility 

value of the discounted capital stock (αi
t kt dVi(kt)/dkt) goes to zero. This is as follows,  

 

 lim (αi)tφi
 kt

1-η = 0 as t → ∞ for any i = 1,2.    (15) 

 

The solution to the problem (8) – (10) given the constraint (15) is characterised by the 

following remark and proposition. 

 

Remark 1: In this game, a unique MPE can be established under the conditions 

identified in Appendix A.  

 

Proposition 1: In the unique MPE, there is a player who invests more, for a given 

capital stock kt. This player is characterised by possessing a sufficiently high between-

cake discount factor. 
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Proof: From Appendix A, in general in equilibrium there is a player, say i, such that 

αi > αjψj/ψi. From (A.5) in Appendix A, this implies that φi > φj. Then, from the FOC, 

player i has a smaller consumption level than j, for a given capital stock kt, if αiβi > αjβj. 

But this inequality holds, since βi = ψiφi and αiψiφi > αjψjφj. Then player i successfully 

proposes to invest more for a given capital stock, when αi > αjψj/ψi. 

� 

Given the ultimatum procedure, a proposer can optimise his expected utility without 

fearing a rejection in equilibrium. Since in general there is a player who minds 

relatively more about the future, such a player invests more than his opponent, given the 

capital stock kt. As a result the growth path is higher and when at one point in the future 

this player will propose again he will be able to extract a larger surplus.  

In spite of the simplicity of the bargaining structure, an explicit solution of the 

accumulation problem is not straightforward. However, the existence, uniqueness and 

characterisation of the MPE can be established. Moreover, for the special case of η = ½ 

a more detailed analysis can be done. We conclude this section with the results of the 

model when players still have concave utility function but in a specific form, η = ½.  

 

Lemma 1: In the case of symmetry, that is αi = α, δi = δ and pi = ½ for any i, with η 

= ½, for α(2-λ)1/2 < 1, there is a unique MPE. This is characterised by the investment 

plan (13) with coefficients defined as follows, 

 

φi = [(2 - λ)/(1 – (2-λ)ψi
2α2)]1/2,      (16) 

βi = ψiφi and µi = α2 φi (2-λ)ψ2
i,      (17) 

 

where ψ1 = ψ2 = [1 - (1- α2(2-λ))1/2]/α2(2-λ) < 1.  
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Proof: Appendix B.  

� 

In the case of symmetry, the unique MPE is symmetric. Moreover, when production 

becomes quicker (α increases) a proposer consumes less and invests more (by using 

(13), (16) and (17), since the solution (ψ1, ψ2) is an increasing function of the between-

cake discount factor α). Indeed, in this case the future becomes more important to 

players and therefore the investment path is higher so that in the future a proposer can 

extract larger surpluses. 

When the symmetry assumption is relaxed the computation of the equilibrium (in 

particular ψ*j for j=1,2) is less straightforward (in particular, if a component of the pair 

(ψ*1, ψ*2) belongs to Ti, the other component may not belong to Tj, with i, j = 1,2, i ≠ j, 

and then the equilibrium is undefined). However, even in the case of an extreme 

asymmetry between players, a simple example in which there is still a solution, is when 

at the limit, one of the players, say 1, has a very high probability to propose, pi tends to 

1. In this case, the unique real solution is defined by ψi = pi with i = 1,2, where the 

relevant interval for ψ*i is Ti equal to [pi, min{((2- λ)1/2αi)-1,((2-λ)αjαi)-1})), with λ 

sufficiently high, (2-λ)1/2αi < 1, for i = 1,2. Indeed, the overall payoff to player 1 as a 

proposer is as the payoff in the continuation game, for a given capital stock (i.e., βi = 

φi). If player 2 becomes a responder (even though with a probability that tends to zero) 

his expected payoff is zero (µ2 = 0).  

 

2.2 A Note on the Linear-Quadratic Form 

 

The most studied recursive optimisation problems are linear quadratic, (i.e., the 

constraint is a linear function of the state variable and the per-period objective function 
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is quadratic), since such problems are characterised by a simple solution (the ‘guess’ is 

not required, as the solution is known to be linear, see Ljugqvist and Sargent, 2000). 

Our bargaining problem with dynamic accumulation can also be transformed into the 

linear quadratic form. Indeed, the model can be expressed in term of differences 

between the actual and an unreachable target and players minimise a quadratic loss 

function with respect to the difference between the actual level of consumption and a 

target level. It can be shown that this transformation does not change the qualitative 

results established in Remark 1 and Proposition 1 (see Flamini, 2002). The only 

simplification is in the analytical derivation of the conditions for the existence of a 

solution. However, since in classic bargaining theory players have concave/linear utility 

functions rather than quadratic loss functions, we prefer to maintain the standard 

framework.  

 

 

3 The Social Planner’s Accumulation Plan 

 

In this section, we show that if there is a social planner who is able to choose the 

consumption and investment levels for the two players, he would always invest more 

than the non-cooperative players. Moreover, instead of leaving the whole consumable 

surplus to a player, the social planner would divide it equally between players (given the 

symmetry of players’ per-period utility).  

To prove this we first solve the social planner’s optimisation problem. We then 

compare the social optimum with the MPE investment level. To simplify the problem 

players are symmetric. The social planner’s optimisation problem is a classic growth 

problem, where the optimal consumption plan is to divide the surplus equally between 
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the players (since the players are symmetric). The optimum investment plan is given by 

the solution of the following recursive problem, 

 

S

1 1 1
1

s
( ) 2max

1 1 1t

t t t t

I

k k I kη η η η

φφ α
η η η

− − −
+−

= +
− − −

    (18) 

      

where, φS is the undefined coefficient of the value function related to the social 

planner’s problem. This is a standard recursive accumulation problem. It can be shown 

(e.g., in Ljungqvist and Sargent, 2000) that the optimal investment plan for the social 

planner, It, is given by, 

 

It = kt [α1/η (2- λ)(1-η)/η - (1-λ)]    with α(2- λ)1-η < 1.   (19) 

 

Therefore, the social planner invests more if the depreciation rate increases and/or 

production becomes quicker (α increases). 

To facilitate the comparison between the growth path with and without bargaining, 

we assume that η = ½. Then, the social optimum in (19) is as follows,  

 

It = kt [α2(2- λ)- (1-λ)]    with α(2- λ)1/2 < 1    (20) 

 

While using (13), the optimum non-cooperative investment level in the case of 

symmetry with η = ½ is given by, 

 

1 (1 )         with i  j and i, j = 1,2 t t tk k Iλ+ = − + ≠
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 iIt = kt (2-λ)(α2β2-(1-λ))/(1 + α2β2),  with α(2- λ)1/2 < 1  (21) 

 

where α = αi and βi = β for any i. The social planner’s level of investment is at least as 

large as the non-cooperative level if the following inequality holds, 

 

  [α2(2- λ)-(1-λ)] ≥ (2-λ)(α2β2-(1-λ))/(1 + α2β2),    (22) 

 

Then, it is sufficient to show that β2(1-α2(2-λ)) is not larger than (2-λ). Given Lemma 1, 

β2 = ψ2φ2 = (2-λ)ψ2/(1-(2-λ)ψ2α2), with ψ < 1. After some manipulation (22) can be 

written as ψ2 ≤ 1, which is always true. Then, the social planner always invests more 

than the non-cooperative players. The intuition is that since a proposer does not fear a 

rejection, he can fund the current level of investment by reducing his own level of 

consumption. Additionally, the proposer’s intertemporal optimisation will also take into 

account the fact that in the future his opponent can propose with a positive probability 

and therefore his consumption will be very different. In the context of the social 

planner’s problem the incentives are different for two reasons. First, both players share 

the cost of the investment; second, they equally share the benefits of this investment.  

This result is related the conventional hold up problem, in which there is 

underinvestment since a player incurs all the costs of investment but cannot appropriate 

all the benefits from the bargaining process. An important difference between the 

conventional hold-up problem and our game is that in the latter the accumulation 

problem is dynamic in that it is repeated more than once4.  However, the main incentive 

to under-invest still holds.  

                                                           
4 In the literature the hold-up problem has been solved in a number of ways, for instance, when players 
have a matching problem (see, Cole at al, 2001), when the investment cost is not sunk (Muthoo, 1996) or 
when the investment decision is unobservable and there are repeated-offers (Gul, 2001). 
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4 The Bargaining Procedure 

 

The bargaining procedure in our model is relatively simple. The assumption that the 

game ends in the case of rejection allowed us to tackle the accumulation problem that 

the players face. Consider the two following alternatives. In the first one, we assume 

that only the surplus disappears after a rejection, but a new production stage can take 

place. Then, capital depreciates and the new capital stock is kt+1 = (1-λ)kt. In the second 

alternative, players play the bargaining stage (potentially forever) until an agreement is 

reached - either as in Rubinstein (1982) with an alternating-offer structure or with 

random proposers. In this case there is no production (and therefore no depreciation) 

after a rejection. As a result the capital stock in the next bargaining round is simply5 kt. 

The two cases are very similar in terms of the continuation game, since there is still a 

positive capital stock after a rejection. This feature makes the problem technically very 

demanding, since the optimisation for a proposer who attempts to make an acceptable 

offer is now constrained by the acceptance condition. In other words, a proposer’s 

problem has a recursive structure which includes a constraint, the acceptance condition, 

which in turn embodies another recursive problem (i.e., the responder’s optimisation 

problem in the case of rejection). The solution of a recursive problem constrained by 

another recursive problem is unsolved as far as we know. It is possible to show that 

there is an MPE like the one defined for the ultimatum structure if the constraint is not 

binding (at all points in time and for each player)6. However, many MPE (with and 

without delay) can also be sustained, given the non-stationary structure of the game. In 

an ultimatum bargaining framework this feature does not hold, since a proposer can 

focus on his intertemporal optimisation without fearing a rejection. 
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In conclusion, a dynamic accumulation problem within a bargaining game is often 

intractable. The problem becomes tractable, when either the bargaining stage is simple 

(as the one considered in section 2) or the accumulation problem is simple (as in 

Muthoo, 1999, where the level of investment is such that the surplus has always the 

same size). 

 

 

6 Conclusion 

 

As far as we know our model is the first attempt to solve an accumulation problem 

within a bargaining model. This is characterised by parties who need to agree not only 

on how divide a surplus for their consumption, but also on how much to invest, which 

affects the size of surpluses available in the future. When a rejection of a proposal 

induces the end of the game, we showed that there is a unique Markov perfect 

equilibrium (MPE) in which a proposer consumes the whole surplus not invested. This 

equilibrium can also be sustained under more complicated bargaining procedures (for 

instance in a potentially infinite bargaining game, or when a production stage follows 

the rejection of a proposal). However, in these cases the analytical solution of the 

recursive optimisation problem is technically very demanding, since the maximisation 

problem of a proposer embodies another recursive problem (via a constraint). Only 

when either the bargaining or the investment problem is simplified can a full 

characterisation of the solution be derived.  

With a focus on the former, it was shown that when the proposer has a sufficiently high 

discount factor, his MPE investment level is higher than his opponent’s, for a given 

                                                                                                                                                                          
5 In this case, a within-cake discount factor applies after a rejection, as in the classic bargaining problem 
(Rubinstein, 1982 see also Muthoo, 1995, where there are between- and within-cake discount factors).  
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capital stock. Moreover, it is smaller than the optimal level of investment chosen by a 

social planner for the same mechanism at work in the standard hold-up problem.  

In general, the capital stock in our framework does not need to be physical, but can 

simply derive from the ongoing relationship itself. Therefore, this framework can 

represent an important first step for further investigation of the dynamic accumulation 

problem in many bargaining situations. 

 

 

Appendix A 

 

Proof of Remark 1. The proof consists in two parts. In part (i) we show that the 

unknown parameters φi, βi and µi can be written as functions of interdependent variables 

ψi and ψj. In part (ii) we show under which conditions the two auxiliary variable ψi and 

ψj are uniquely defined. This proof extends results contained in Lockwood et al. (1996) 

in several respects. Lockwood et al. do not deal with a bargaining problem. Moreover, 

their players possess the same rate of time preference and face a linear-quadratic 

problem which is the simplest form that the optimisation problem can assume.   

(i)  Using (13) and the equation of motion, after some manipulations, problem (8) can 

be written as, 

 

  φi = (2 - λ)1-η (1 + αi
1/ηβi

1/η)η.        (A.1) 

 

Moreover, (11) can be written explicitly for µi for any i = 1,2, 

 

                                                                                                                                                                          
6 See Flamini (2002). 
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  µi = αi piφiϕj
 1-η/ (1 - αi(1-pi) ϕj

 1-η).      (A.2) 

 

By using (A.2), (10) can be solved for βi,  

 

  βi = ψiφi, where ψi = pi/(1-αi(1-pi)(ϕj)1-η).    (A.3) 

     

By using (A.3), (A.1) becomes an equation in φi, 

 

  φi = (2 - λ)1-η (1 + αi
1/ηψi 1/ηφi

1/η)η.     (A.4) 

 

The solution to (A.4) is the following, 

 

  φi = (2 - λ)1-η /(1 – (2-λ)(1-η) / ηψi 1/ηαi
1/η)η.    (A.5) 

 

Using (A.5) and βi = ψiφi, ϕi as defined in (14), can be written as follows, 

 

  ϕi  = (2 - λ)1/η ψi 1/ηαi
1/η.      (A.6) 

 

This implies that ψi in (A.3) can be written as a function of ψj, 

  

  ψi = pi / (1-αi
1/η(1-pi)(2 - λ)(1-η) / η ψj (1-η)/ η).    (A.7) 

 

Since by definition, βi = piφi + (1-pi)µi, by using (A.3), 

 

  µi = (ψi – pi)φi /(1-pi).       (A.8) 
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System (A.7) consists of two equations in two unknowns ψi and ψj. If there is a solution 

(ψ*1, ψ*2) to (A.7), then this implies a solution to (A.5), (A.3) and (A.8). This defines a 

‘non-negative equilibrium’, if the transversality condition and the following non-

negative constraints hold: φi ≥ 0, βi ≥ 0 and µi ≥ 0. Note that the condition of immediate 

acceptance is equal to the non-negative constraints µi ≥ 0 for any i. 

 

ii) System (A.7) can be written as a pair of equations where ψi is the explicit variable. 

That is to say, 

  ψi = fi(ψj) = pi / (1- ai
 ψj (1-η)/ η)     (A.9) 

  ψi = fj(ψj) = (ψj – pj)η/(1-η) / (ajψj η/(1-η))              (A.10) 

 

with ai = αi
1/η(1-pi)(2 - λ)(1-η) / η and aj = αj

1/(1-η)(1-pj)η/(1-η)(2 - λ), with i ≠ j and i, j = 1,2. 

This implies, 

 piajψj η/(1-η) = (ψj – pj)η/(1-η) (1 - ai
 ψj (1-η)/ η). (A.11) 

 

We now investigate the properties of the two functions f and define under which 

conditions there is a unique non-negative equilibrium. First of all, note that the function 

fi is increasing in ψj, with a discontinuity at dψj = 1/ai (see figure 1). Moreover, the 

function fi is negative for ψj larger than dψj. However, for the non-negative constraints 

and the requirement of a finite value function, it must be that the upper bound for ψj is 

dψj. On the other hand, a lower bound for ψi is pi, since fi(0) = pi. Regarding function fj, 

this is increasing in ψj, with an upper bound in dψi = 1/aj. Moreover, fj(pj) = 0. This 

implies that the function fi must be convex (its second derivative is positive), while fj 

must be concave (its second derivative is negative) between pj and dψj. Given the 
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properties of the functions fi, with i =1,2, these intersect at most twice in the space       

[pi, dψi) x [pj, dψj), although the equation (A.10) is of degree not smaller than ((η/(1-η))2 

+ 1 if η > ½ and ((1-η)/η)2 + 1 otherwise). An intersection point is indicated by ψ* = 

(ψ1*, ψ*2).  

We now refine the space of interest for the solution (ψ1*, ψ*2) to take into account 

the constraints that a non-negative equilibrium must satisfy, namely, condition (15), and 

the non negative-constraints. By using (A.5) and the non-negative condition for βj, ψj 

must be smaller than uψj = 1/[(2-λ)1-ηαj], with j=1,2. Moreover, the transversality 

condition is satisfied if αiϕj
(1-η) < 1, with7 ϕj = max {ϕ1, ϕ2}, for any i, j = 1, 2. This 

implies ψj < TCψj = 1/[αj(2-λ)αi
η/(1-η)] with i, j = 1,2. Therefore, the upper bound for ψj 

is UBψj = min {dψj, uψj, TCψj}, while the lower bound is simply LBψj = pj. A solution 

(ψ*1, ψ*2) implies a non-negative equilibrium, if it lies in the space T = T1xT2, with Ti 

= [LBψi, UBψi) and i = 1,2.  

A necessary condition for the existence of an equilibrium is that LBψi < UBψi. 

Additionally, we require that the two functions, fi for any i, are sufficiently curved so 

that they cross at least once. An explicit solution for a general η is not straightforward. 

We investigate the existence of a non-negative equilibrium in more detail when η 

assumes a specific value, η = ½ (see Appendix B). For the general case, we can 

conclude that if the two functions, fi for any i, cross once, at ψ*, then there is a unique 

solution if ψ* is in T. If the functions fi, for any i, cross twice, at -ψ* = (-ψ*1, -ψ*2) and 

+ψ* = (+ψ*1, +ψ*2), then there is a unique solution if either -ψ* or +ψ* is in T. If neither 

or both the solutions -ψ* and +ψ* are in T, then the guess and verify method has failed 

to yield the solution, since this is based on the uniqueness of the solution.  

                                                           
7 This is a stronger condition, it is sufficient αi(pjϕj

 + piϕi)(1-η)  < 1. 
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 fj fi  

     dψi  

         

     

        pi 

           0 pj                         dψj 

 

Figure 1: Representation of system (A.9) and (A.10). 

 

Appendix B  

 

Proof of Lemma 1. When η = ½, the equation (A.11) can be written as follows, 

 

  aiψj 2 - (1- ajpi + aipj) ψj + pj = 0.     (B.1) 

 

There are at most two positive solutions to (B.1) if (i) (1- ajpi + aipj) > 0 (following the 

Descartes' rules of signs) and (ii) the discriminant of (2.1), ∆, is non-negative. Condition 

(i) can also be written as b > 0, where  

 

 b = 1 + (2-λ)[(1 - 2pi )αi
2 + (αi

2 -αj
2) pi

2 >0 

 

Then (i) is guaranteed by pi ≤ ½ and αi ≥ αj. Regarding (ii), after some manipulation the 

discriminant can be written as  
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∆ = (2-λ)(αi
2- αj

2 ) pi
2 – 2αi (2-λ)1/2 (αi(2-λ)1/2 – 1)pi + (αi(2-λ)1/2 – 1)2. 

 

In addition to the condition for (i), ∆ is positive for any p, if αi ≤ (2-λ)-1/2. Since if αi > 

(2-λ)-1/2 then (ii) requires that p must be sufficiently small8, to simplify let αi be smaller 

than (2-λ)-1/2. To sum up, a necessary solution for a positive solution to , is pi ≤ 1/2 and 

αj≤ αi ≤ (2-λ)-1/2. 

The solutions to  are as follows,  

 

  ψ*j = [b ± √∆]/2ai with i, j =1, 2 and i ≠ j.     (B.2) 

 

If there are two positive solutions, they are named -ψ*j and +ψ*j, (with -ψ*j < +ψ*j, and j 

= 1,2). Under symmetry (i.e., αi = αj = α and pi = ½), the solutions are as follows, 

 

  ψ*j = [1 ± √(1- α2(2-λ))]/α2(2-λ).     (B.3) 

 

These are real if α2(2-λ) < 1. Then, the non-negative equilibrium is given by -ψ*j since 

this belongs to Tj, while +ψ*j does not, where Tj = (½, 1/(α(2-λ)1/2)), with j = 1,2. Then 

the payoff to a proposer is higher than the payoff to a responder for a given level of 

capital (i.e., φi > βi, then φi > µi for any i), since -ψ* < 1.  

 

                                                           
8 It must be p < (2-λ)1/2 (αi(2-λ)1/2 – 1)(αi -αj)/(2-λ)(αi

2- αj
2 ) < 1/2. 
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