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abstract

A player’s basis utility is the utility of no payoff. Basis utility is neces-
sary for the coherent representation of the equal split bargaining solution.
Standard axioms for the Nash (1950) bargaining solution do not imply
independence from basis utility. Proportional bargaining is the unique
solution satisfying efficiency, symmetry, affine transformation invariance
and monotonicity in pure bargaining games with basis utility. All existing
cooperative solutions become translation invariant once account is taken
of basis utility. The noncooperative rationality of these results is demon-
strated though an implementation of proportional bargaining based on
Gul (1988). Quantal response equilibria with multiplicative error struc-
tures (Goeree, Holt and Palfrey (2004)) become translation invariant with
specification of basis utility. Equal split and proportional bargaining join
the Kalai-Smorodinsky (1975) solution in a family of endogenously pro-
portional monotonic pure bargaining solutions.
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1 Introduction

There is no representation of basis utility in games. Basis utility is a natural reference
point on a player’s utility scale that enables determination of the marginal utilities
of outcomes. The basis point in a game represents all players’s basis utilities.

The immediate context of this work is the formal representation of bargaining
games. The value to a player of a particular outcome is typically represented by
an expected utility function. The expected utility of a lottery over outcomes is the
utility of the outcomes weighted by their probability. Expected utility preferences are
(affine) transformation invariant, they do not change under translation by adding a
constant or rescaling from multiplication by a positive number.

A game theoretic solution concept is transformation invariant if affine transfor-
mation of a player’s utility function leads to the same transformation of her payoff
or allocation. Transformation invariance is necessary if a player’s real payoff is to be
independent of the representation of her preferences. Myerson (1991: 18) advises that
“we should be suspicious any theory of economic behavior that requires distinguishing
between such equivalent representations.”

Omission of a game’s basis point leads basis dependent solutions to appear transla-
tion dependent: A player’s implied basis utility is then the zero point of any expected
utility representation of his preferences both before and after translation. Section 2 of
this paper defines basis utility and shows that it is part of the common knowledge of
a complete information game. Minimax equilibria, stable sets, Nash equilibrium and
core-related solutions are based on inequalities provide little role for basis utility.2 It
is Nash’s (1950) axiomatic approach that allows basis utility an easy entry point into
game theory as a reference point in bargaining models.

Cooperative solutions are first taken up in section 3, which develops results for
three specific cases: (i) Representation of basis utility is necessary to properly charac-
terize the equal split bargaining outcome. (ii) Nash’s (1950) axioms are not sufficient
to identify a solution in games with basis utility. (iii) Proportional pure bargaining is
uniquely characterized by efficiency, symmetry, transformation invariance and mono-
tonicity in games with basis utility. Proportional allocations of this type have been
considered translation dependent.3 Conditions are then developed under which all
solutions for the standard characteristic function game are translation invariant.

Section 4 concerns noncooperative games. An implementation of proportional
bargaining based on Gul (1988) affirms the noncooperative rationality of basis util-
ity dependent cooperative solutions. In the limiting case, a player’s probability of
selection to propose is proportional to her expected payoff. The equilibrium is trans-
lation invariant when selection probabilities are based on marginal utilities. Goeree,

2von Neumann and Morgenstern (1944) clearly considered that marginal utilities, and thus, basis
utilities, could be determined. See the first paragraph of section 3.8.2, p. 30 in the 1947 edition.

3E.g., Aumann and Maschler (1985: 210), fn. 26 and Hart and Mas-Colell (1996: 595), fn. 10.
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Holt and Palfrey (2004) find that quantal response equilibria with multiplicative error
structures better model experimental data than additive error models. These models
are shown to be basis dependent and not translation dependent.

Section 5 returns to cooperative pure bargaining. Equal split is characterized
in general pure bargaining games. The similarity of equal split, Kalai-Smorodinsky
(1975) and proportional bargaining and their relationship to the proportional solu-
tions of Kali (1977) and Roth (1979) are considered. Several approaches are offered
to structure the expanded universe of pure bargaining solutions.

2 Basis Utility

Definition 2.1 The basis utility of a player in a game is the utility of no payoff.

Basis utility enables determination of the marginal utility of all potential payoffs.4

Nash (1950) writes that players in a game have “full knowledge of the tastes and
preferences” of other players. Knowledge of the utility of a probabilistic payoff must
be considered common knowledge (up to transformation invariance) in cooperative
and noncooperative games. This implies knowledge of basis utility. Assume player i
assigns U i

j(A) as the utility to j of receiving real payoff A and U i
j(A|p) to receiving

A with probability p. Represent i’s measure of j’s basis utility by U i
j(∅). Since these

are expected utilities, i can infer that U i
j(∅) = 1/(1− p) U i

j(A)− p/(1− p) U i
j(A|p).

Proposition 2.1 Basis utility is part of the common knowledge of a complete infor-
mation game.

Utilities and marginal utilities constructed for a player i are, of course, not compa-
rable with those for a player j. However, knowledge of basis utility makes it possible
make valid comparisons between players regarding ratios of the marginal utility of
outcomes to the marginal utility of individual worths. This requires that all play-
ers (and observers) calculate the same ratios. Consider a cooperative game w where
player j’s individually rational payoff is strictly greater than her basis utility. As-
sume that the game w is an observer’s representation of the game and that wi is
representation of any player i.

Proposition 2.2 The ratio of the marginal utility of an outcome Z to any player j
divided by the marginal utility of j’s individual payoff is the same according to the
utility function constructed by any player in the game w or any observer, provided
that w(j) 6= Uj(∅).

4Other definitions might be appropriate under specific circumstances. For example, in an arbitra-
tion, parties might agree that certain funds received by one party should not be taken into account
in determining its current economic status. Specific types of games might also warrant different
definitions of basis utility. In market games players’s individual worths are generally the utility of
their endowments, which might be thought the proper measure of basis utility.
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Proof: Let the observer’s utility scale for player j be Uj. For any player i there must
be constants ai and bi > 0 such that Uj = ai + biU i

j . Then

U i
j(Z)− U i

j(∅)

wi(j)− U i
j(∅)

=
(ai + biUj(Z))− (ai + biUj(∅))

(ai + biw(j))− (ai + biUj(∅))
=

Uj(Z)− Uj(∅)

w(j)− Uj(∅)
.

¤

3 Cooperative Games

3.1 Soft bargaining and the equal split solution

In the equal split solution players split the payoff equally, irrespective of disagreement
payoffs. This soft bargaining – in contrast the commonly expected hard bargaining
– might be justified by fairness considerations that are rational in a larger context.5

Soft bargaining is observed in a variety of experiments, most dramatically in the
ultimatum game.6 This example demonstrates the basis dependence of the equal
split solution and defines key elements of the formal bargaining framework employed
in this paper.

Assume players 1 and 2 can share $100 if they can agree on its division. Otherwise
they receive $10 and $30, respectively. Start with players’s utilities defined as equal
to the dollars received. The bargaining game is then B = (d, S), where d = (10, 30)
is the disagreement point and S = { (x, y) ∈ R2|x + y ≤ 100} is the set of feasible
bargaining outcomes. Refer to d and S as elements of the bargaining game B.

Definition 3.1 A bargaining game is symmetric if all comparable elements of the
game are symmetric. All elements are comparable unless specifically excluded from
comparison. An element Z is symmetric if and only if for any players i and j in the
game and any vector x ∈ Z, y ∈ Z as well, where yi = xj and yj = xi and yk = xk

for all k 6= i, j.

Definition 3.2 If a cooperative solution is symmetric then all players receive equal
allocations in a symmetric game.

Definition 3.3 A cooperative solution is efficient if, for x = F (d, S), there is no
y ∈ S such that y ≥ x and y 6= x.

5See, e.g., Huck and Oechssler (1999) and Lopomo and Ok (2001).
6In the ultimatum game one player makes a take-it or leave-it offer to another, and each player

receives zero if it is rejected. Equal split does not describe the structure of an ultimatum game, but
the choice between equal split and, say, Nash bargaining provides a useful cooperative perspective.
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Proposition 3.1 The TU equal split solution identified by efficiency, symmetry and
the noncomparability of disagreement payoffs is basis dependent.

Proof: Efficiency, symmetry and the noncomparability of disagreement payoffs de-
termine ES(B) = (50, 50). Define B∗ by adding 100 to player 1’s utility function:
B∗ = (d∗, S∗), where d∗ = (110, 30) and S∗ = { (x, y) ∈ R2|x + y ≤ 200}. The
axioms again imply a symmetric outcome: ES(B∗) = (100, 100). But this corre-
sponds to 100 − 100 = $0 for player 1. Translation invariance implies the outcome
(150, 50) = ES(B) + (100, 0) = (150, 50). The basis points of B and B∗ are clearly
(0, 0) and (100, 0). B∗ is no longer symmetric if basis utility is made a comparable
element. Translation of B∗ to make it symmetric restores the proper allocations. ¤

Representation of the basis point allows for a natural transformation invariant
representation of equal split. This is done now for the case of linear utility functions.
Generalization to general pure bargaining games is deferred to theorem 5.1.

Definition 3.4 A proper n-player pure bargaining game is represented by the triple
B = (ξ, d, S), where ξ ∈ RN is the basis point, d ∈ RN is the disagreement point,
S ⊂ RN is the set of feasible alternatives and RN is the n-dimensional space indexed
by the set N of the n players i = 1, . . . , n.

Definition 3.5 Direct or Hadamard multiplication is represented by the symbol ¯.
If a and b are both n-vectors, then a ¯ b = (a1 b1, a2 b2, . . . , an bn). If a ∈ RN and B
is a subset of Rn, then a¯B = {x ∈ Rn| y ∈ B and x = a¯ y}.

Definition 3.6 Direct addition and subtraction are represented by the symbols ⊕ and
ª. If a ∈ RN and B is a subset of Rn, then a⊕B = {x ∈ Rn| y ∈ B and x = a + y}
and direct subtraction is defined analogously. Direct multiplication has precedence.

Definition 3.7 A solution F for a proper n-player pure bargaining game B = (ξ, d, S)
is affine transformation invariant if and only if F (s ¯ ξ + c, s ¯ d + c, s ¯ S ⊕ c) =
s¯ F (ξ, d, S) + c for any s > 0N ∈ RN and c ∈ RN .

Proposition 3.2 Assume, in a two-player bargaining game B = (ξ, d, S), that the
efficient surface of S is linear and that the bargaining solution is efficient, symmet-
ric, independent of individual payoffs, and affine transformation invariant. Let the
maximum utility obtainable by player 1 while player 2 obtains at least ξ2 be M1 and
the similar maximum for player 2 be M2. The solution is then the equal split solution
and the payoffs are

ES(ξ, d, S) =

(
1

2
(M1 + ξ1),

1

2
(M2 + ξ2)

)
.
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Proof: First translate utilities so that the basis point is zero. Then rescale so that
players’s utility is one-to-one transferrable by multiplication with constants x =
(1, (M1− ξ1)/(M2− ξ2)). Symmetry gives the outcome (1/2(M1− ξ1), 1/2(M1− ξ1)).
Reverse transformation completes the proof. ¤

3.2 The Nash bargaining solution

Changes in basis utility have no effect on the Nash (1950) bargaining solution. How-
ever, in proper pure bargaining games this independence must be assumed since it
cannot be inferred from Nash’s axioms of efficiency, symmetry, transformation invar-
iance and independence from irrelevant alternatives7

Let xN be the 1 × n vector with xN
i = x for all i ∈ N . The game normalized so

that the disagreement point is 0N and the Nash solution is 1N can no longer be made
symmetric by IIA in the sense of definition 3.1 because it cannot be guaranteed that
basis utility will be symmetric as well.

Proposition 3.3 Characterization of the Nash bargaining solution in a proper pure
bargaining game B = (ξ, d, S) requires that basis utility be declared a noncomparable
element of the game.

Basis utility is readily identified in Nash’s detailed bargaining example. Two
players, Bill and Jack, bargain over personal items. Table 1 reports the utility of
these items to each player. Nash assumes utilities are additive. This requires that
these are marginal utilities and that the basis point in the example is ξ = (0, 0).
When the game is normalized ξ∗ = (−1,−1.2). This is illustrated in Figure 1.

If the reported utilities need not be marginal utilities, then adding one to Bill’s
utilities would have no effect on the bargain reached. The Nash solution of the original
game is (24, 11) for Bill and Jack. In the transformed game the outcome is (30, 10.33).
Translation invariance is clearly violated: Jack’s utility changes.8

3.3 Proportional bargaining

Kalai (1977) and Roth (1979) study a type of proportional solution that is indepen-
dent of basis utility. Individual worths are normalized to zero so that the feasibility
set completely represents the standard pure bargaining game. Kalai’s principal result
is that a solution that is weakly Pareto optimal, homogeneous (i.e., c F (S) = F (c S)

7Independence of irrelevant alternatives in proper pure bargaining games requires that if B =
(ξ, d, S), B∗ = (ξ, d, S), S ⊂ T , x = F (B∗) and x ∈ S, then x = F (B).

8In the original game Bill gives Jack the book, whip, ball and bat. Jack gives Bill the pen, toy
and knife. In the transformed game, with 1/3 probability the original solution obtains and with 2/3
probability the exchange is the same except that Bill keeps his ball.
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for c > 0), strongly individually rational and monotonic must be proportional. Strik-
ingly, however, the proportions are exogenously determined.

Social choice models of endogenous proportional allocation where individual worths
determine relative shares are studied by O’Neill (1980), Moulin (1987) and Young
(1988). There have been no endogenous proportional pure bargaining solutions simi-
lar to these models because the basis point was not represented in the pure bargaining
game. Its inclusion allows the disagreement point to determine the vector of propor-
tionality. Since individual worths are the only measure of the strength of players in
a pure bargaining game, this result has an obvious natural interpretation.

The set S of feasible bargaining outcomes is required to be convex, compact,
comprehensive and nonlevel. Comprehensive means that if y ∈ S and x < y, then
x ∈ S as well. Nonlevel means that if x is a weakly efficient allocation, then it must
be (strongly) efficient as well. That is, if x ∈ S and there is no y ∈ S such that y > x,
then there is no y ∈ S such that y ≥ x and y 6= x.

Definition 3.8 The proportional solution for the bargaining game B = (ξ, d, S) with
d > ξ is the unique point z on the efficient surface of S such that, for some c > 0,

c =
zi − ξi

di − ξi

, i = 1, 2, . . . , n. (1)

Definition 3.9 A bargaining solution F is monotonic if and only if given any two
bargaining games B = (ξ, d, S) and B∗ = (ξ, d, T ) where S ⊂ T , F (B∗) ≥ F (B).

Theorem 3.1 The proportional bargaining solution is the unique pure bargaining so-
lution that is efficient (def. 3.3), symmetric (def. 3.2), affine transformation invariant
(def. 3.7) and monotonic in all proper pure bargaining games with d > ξ.

Proof: Create a normalized game B∗ = (ξ∗, d∗, S∗) from B = (ξ, d, S) where d > ξ
with ξ∗ = 0N and d∗ = 1N as follows. Let S0 = Sªξ (def. 3.6). Then define δ = d−ξ
and let S∗ = δ−1 ¯ S0, where δ−1 = (1/δ1, 1/δ2, . . . , 1/δn).

Define c = max{c | c 1N ∈ S∗}. Let πi be an n-vector with πi
i = c + ε, ε > 0,

and πi
j = 0 for i 6= j. Define T to be the comprehensive set based on the convex hull

generated by the points {c 1N , π1, π2, . . . , πn}. Choose ε small enough that T ⊂ S∗

and note that c 1N ∈ T and T is symmetric with respect to players. By symmetry
cN = F (0N , 1N , T ). Monotonicity now requires that cN = F (0N , 1N , S∗). Any other
outcome will require at least one player to receive less than c.

Restoring the utility scales of the original game, we find that, for every player i,
Fi(ξ, d, S) = (di − ξi)c + ξi, or c = (Fi(ξ, d, S)− ξi)/(di − ξi) for every player i. ¤
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3.4 General cooperative games

The worth of the null coalition currently conveys no information. One way to repre-
sent basis utility in coalitional games is to let the null coalition represent the basis
point. In continuity with the notation already used, let w(∅) = ξ.

Definition 3.10 A game w in proper characteristic function form is a set function
from the coalitions S ⊂ 2N , S 6= ∅, to RS, with w(∅) ≡ ξ.

Note that affine transformation of the characteristic function requires that the
worth of the null coalition must be transformed as well. This definition simplifies for
transferrable utility games. Any game in proper form has a marginal representation.

Definition 3.11 Let w be a proper game with w(∅) = ξ ∈ RN . Let w∗ be the
marginal form of w. For any coalition S ⊂ N , let ξS be the restriction of ξ to the
players in S, with ξ∅ ≡ 0. Then w∗(S) = w(S)ª ξS (def. 3.6).

In a marginal form game w∗(∅) = 0N . Proposition 2.1 shows that the basis point
is part of the common knowledge of the game. Therefore, it seems reasonable to
assume that ξ = 0N unless explicitly stated otherwise, and, hence, that the standard
characteristic function is, effectively, a marginal form game.

Definition 3.12 A solution function is in marginal form if it does not reference the
basis point.

Definition 3.13 Let φ∗ be a solution function with marginal form and let w be a
cooperative game in proper characteristic function form with w(∅) = ξ and marginal
representation w∗. Then define

φ∗(w) = φ∗(w∗) + ξ.

The result of the application of a solution function in marginal form to a proper
form game is defined to be the solution on the marginal form game plus the basis point.
The marginal form is directly analogous to the 0-normalized standard characteristic
function game. The proper form of the solution function can now be inferred. The
following proposition trivially follows.

Proposition 3.4 All marginal form solutions are translation invariant.

Definition 3.14 Let φ be a solution function defined on proper characteristic func-
tion games. Let v = w, except that v(∅) 6= w(∅). Basis utilities change in v. If
φ(v) = φ(w) for any game w and any value v(∅), then φ is basis independent.
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Proposition 3.5 The property identified as translation invariance in standard form
games without representation of basis utility is actually basis independence.

Proof: If a solution appears translation invariant in standard characteristic function
games, it must be independent of basis utility as the implied basis point is always
(0, 0), even after translation. If a solution is basis dependent, it must appear trans-
lation dependent because the implied basis point is not subjected to translation. ¤

4 Noncooperative games

The principal task of this section is to demonstrate the noncooperative rationality
of basis utility with a translation invariant model of proportional bargaining. Ad-
ditionally, quantal response equilibrium is shown to provide a pure noncooperative
application of basis utility. There is at least one prior point of contact between basis
utility and noncooperative games. A player in the Hart and Mas-Colell (1996) model
of the consistent NTU value that is ‘removed’ due to a breakdown in negotiations
receives zero terminal payoff. This payoff must function like the player’s basis utility
if the game is be translation invariant.

4.1 Noncooperative proportional bargaining

Proportional bargaining (th. 3.1) is modeled using the basic setup developed by Gul
(1998) to implement the Shapley value. Two players are endowed with productive
assets that yield an income stream. In each time period, a player is selected to bid
a constant stream of payments for the other’s resources. If the bid is accepted, the
bidder receives the assets of the acceptor, the acceptor receives the promised payments
and bargaining ends. If the bid is rejected, this stage game repeats.

Let w(12 ) be the worth of the joint assets, let w(1) and w(2) be the individual
worths and let w(∅) = (ξ1, ξ2). The game must be superadditive: w(12 ) > w(1 ) +
w(2 ). The common discount factor is δ, with 0 < δ < 1. Let ci

t be the value of
the assets owned by player i at time t. The utility provided to player i at time t is
defined to be (1− δ) ci

t. The present discounted utility at time t0 to player i given an
prospective asset holding history {ci

t}∞t=t0
is then

U i(t0) =
∞∑

t=t0

δt−t0 (1− δ) ci
t. (2)

The selection of players to propose differs from the Gul model. Both players
submit bids before the bidder is selected. The probability of selecting player i to bid
is set proportional to player j’s bid for i’s assets. This selection procedure can be
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seen as a natural way to reflect the impact of a player’s strength on the bargaining
process. Let bji

t be the bid by player j for i’s assets at time t. The probability pi
t of

i’s selection to bid in period t, conditional on bji
t and bij

t is

pi
t =

bji
t − ξi

(bji
t − ξi) + (bij

t − ξj)
. (3)

Computing probabilities based on the marginal utility of bids makes selection prob-
abilities independent of the translation of players’s utility scales.

Given that no bid has been accepted, the complete history of the game prior to
time t, is ht−1 = (bij

k , bji
k )k=t−1

k=1 . The complete set of all such possible histories prior
to time t is Ht−1. A strategy for player i at time t given a history ht−1 ∈ Ht−1 is
σi

t(w, δ, ht−1) = (bij
t , ri

t), where i will accept any bid bji
t ≥ ri

t if j is selected to bid.
Let σi

t contain a single strategy for each possible history to time t − 1. A complete
strategy for i is Σi = (σi

t)
t=∞
t=1 , the set of all strategy profiles is Σ = Σ1 × Σ2 and a

complete description of the game is then Γ1 = (Σ, (U1, U2), w, δ).

Theorem 4.1 In the unique stationary subgame perfect equilibrium of Γ1 i offers j

b̄ij = δ
w(j)− ξj∑i=2
i=1 w(i)− ξi

(w(12)− ξ1 − ξ2) + (1− δ)(w(j)− ξj) + ξj,

and r̄j = b̄ij. The expected utilities during bargaining and at any time t before a bidder
is selected are the allocations determined by proportional pure bargaining (eq. 1)

Ū i =
w(i)− ξi∑j=2

j=1 w(j)− ξj

(w(12 )− ξ1 − ξ2) + ξi, i = 1, 2.

Proof: Considering stationary strategies, history is irrelevant and each player com-
putes optimal strategies under the assumption that if the current bid is rejected that
agreement will be reached in the next time period. Expected utility before selection
of a bidder is

Ū i = pi
(
w(12 )− b̄ij

)
+ pj b̄ji, i = 1, 2; j 6= i.

Equilibrium bids are player’s continuation values and are the solution of the equations

b̄ij = δŪ j + (1− δ) w(j), i = 1, 2; j 6= i.

¤
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Proposition 4.1 The game Γ1 is translation invariant.

Proof: Let w∗(∅) = ξ∗ = (ξ1 + x, ξ2), w∗(12) = w(12) + x, w∗(1) = w(1) + x and
w∗(2) = w(2). Then b̄ji∗ = b̄ji + x, Ū i∗ = Ū i + x, b̄ij∗ = b̄ij and Ū j∗ = Ū j. ¤

Remark 4.1 Theorem 4.1 easily generalizes to n-player pure bargaining games.

Remark 4.2 Selection probabilities can be based on the average of both players’s
proposals, e.g., pi = (bji + bii)/((bji + bii) + (bij + bjj)). The outcome in the limit,
as δ → 1, is the same. However, expected utility for δ < 1 is no longer exactly the
proportional solution.

Remark 4.3 Complete translation invariance can easily be shown in (NTU) hyper-
plane games, and with some work, in general NTU games.

Remark 4.4 A TU and NTU implementation of proportional pure bargaining based
on the game of Hart and Mas-Colell (1996) is included in Feldman (2002).

4.2 Quantal response equilibria

Quantal response equilibria (QRE) are a refinement introduced by McKelvey and Pal-
frey (1995). “Trembles” or misperceptions of payoffs cause deviations from best re-
sponse and are modeled with a statistical response function. Under general conditions
a unique equilibrium is selected as the size of trembles goes to zero. QRE is defined
with an additive error structure. This guarantees translation invariance. Goeree,
Holt and Palfrey (2004) (GHP) introduce regular QRE. One feature of these equilib-
ria is that they allow a multiplicative error structure, which the authors find provides
a better fit to experimental data. GHP consider the multiplicative error model to
be translation dependent and thus that “[t]ranslation invariance is not plausible in
settings where the magnitudes of perception errors or preference shocks depend on
the magnitudes of expected payoffs.” (2004: 19.)

A regular n-player QRE for may be defined as follows. Let Si = (si1, si2, . . . , siJi
),

be i’s pure strategy set, where Ji is the number of i’s pure strategies. Let σi ∈ Σi be
a mixed strategy over Si, let σ ∈ Σ be a complete profile of mixed strategies, and let
σ−i represent the strategy profile of all players except i. Player i’s expected payoff
from a strategy profile σ is πi(σ).

Represent undisturbed payoffs as a function of strategy choice to any i given σ−i

by the function π̄i(σ) = (πi(si1, σ−i), πi(si2, σ−i), . . . , πi(siJi
, σ−i)). Collect the π̄i into

the profile π̄(σ) = (π1(σ), π2(σ), . . . , πn(σ)). Player i’s perceived payoff from strategy
j, π̂ij(sij, σ−i), is affected by a privately observed random disturbance that may be a
function of her strategy choice: π̂ij(sij, σ−i) = g(π̄i(sij, σ−i), εij).
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Let Pi : π̄i → Σi be the regular quantal response function for player i. The regular
QRE is a reduced form approach because Pi implies g(π̄i, εi) and the distribution of
εi. GHP place restrictions directly on the response functions of regular QRE that
ensure representation of boundedly rational choice behavior. A strategy profile σ is
a regular QRE if and only if Pi(π̄i(σ−i)) = σi for all i = 1, . . . , n.

The canonical quantal response function based on multiplicative error is the power
model, under which the probability of i playing strategy j is

Pij =
(πij)

1
µ

∑Ji

k=1(πik)
1
µ

, (4)

where µ ≥ 0 is a constant determining players’s discrimination ability. As µ → 0
the probability of all players playing their best response goes to one. McKelvey and
Palfrey prove, for logit response functions, that there is generically a unique branch of
the equilibrium correspondence based on the discrimination parameter that contains
the unique regular QRE under no discrimination and a perfect discrimination QRE
that is also a Nash equilibrium. This branch can be thought of as representing a
learning process that leads to a unique Nash equilibrium.

Figure 2 shows a simple three-player coordination game Γ2. The strategy profiles
(U,L, W ) and (D, R, E) are both Nash equilibria. The QRE equilibrium using the
power response function is (U,L,W ) when x = 0. However, increasing all of player
3’s payoffs by one by setting x = 1 leads to the selection of (D, R,E). This apparent
translation dependence disappears if response probabilities in eq. 4 are determined
by marginal utilities. Basis and not translation dependence appears in the quantal
power response function.

Proposition 4.2 All quantal response functions using marginal utilities, payoffs rel-
ative to basis utilities, are translation invariant.

5 Focal Points, Monotonicity and Pure Bargaining

This section completes the presentation of pure bargaining results and provides some
interpretation. Equal split is first characterized in proper pure bargaining games.

5.1 Equal split in general pure bargaining games

Definition 5.1 Let B = (ξ, d, S) be an n-player pure bargaining game. Consider a
set xi ∈ S, i = 1 . . . , n and a y ∈ RN . For any i, let xi ∈ S maximize xi

i subject to
the further restriction that xi

j ≥ yj for all j 6= i. Then the maximal aspirations point
relative to y is My = M(y, S) = (x1, . . . , xn). Define Mξ = M(ξ, S) as the ξ-maximal
aspirations point of B and Md = M(d, S) as the d-maximal aspirations point of B.
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The ξ-maximal aspirations point shows the most a player can receive when all
other players receive at least their basis utility. The standard d-maximal aspirations
point represents the most a player can receive when all others receive at least their
disagreement payoffs.

Definition 5.2 Let B = (ξ, d, S) and B∗ = (ξ, d, T ) have a common maximal as-
pirations reference point y. A solution F is restricted monotonic if and only if
My = M(y, S) = M(y, T ) and S ⊂ T imply that F (B∗) ≥ F (B).

Restricted monotonicity weakens the definition of monotonicity (def. 3.9) by re-
quiring that two feasibility sets share the same maximal aspirations point.

Theorem 5.1 The equal split solution is the unique solution for the game B =
(ξ, d, S) that is efficient (def. 3.3), symmetric (def. 3.2), affine transformation in-
variant (def. 3.7), restrictedly monotonic (def. 5.2), and shows noncomparability of
disagreement payoffs and comparability of Mξ = M(ξ, S) (see def. 3.1).

Proof: Normalize B so that ξ∗ = 0N and M∗
ξ = 1N and define c = max{c | c 1N ∈ S∗}.

Let πi be an n-vector with πi
i = 1, and πi

j = 0 for i 6= j. Define T to be the compre-
hensive set based on the convex hull generated by the points {c 1N , π1, π2, . . . , πn}.
By symmetry cN = F (0N , 1N , T ). Restricted monotonicity then requires that cN =
F (0N , 1N , S∗) as well. ¤

The equal split solution is the point on the line between ξ and Mξ that intersects
the efficient surface of S. The sense of equality in the general equal split solution
is in the nature of a proportionality property. Consider the range from any player’s
maximal expectations to their basis utility. Each player loses relative to maximal
aspirations or gains relative to basis utility in equal proportion.

Proposition 5.1 Let x = ES(ξ, d, S) be the equal split solution, let b be the ξ-
maximal aspirations point and let b be strictly greater than ξ. Then there is a k
such that

bi − xi

bi − ξi

= k and
xi − ξi

bi − ξi

= 1− k, i = 1, 2, . . . , n.

5.2 Monotonic solutions

As can be seen by the proof, equal split is a direct variation on the Kalai and
Smorodinsky (1975) bargaining solution where basis utility replaces the disagree-
ment point and ξ-maximal aspirations replace d-maximal aspirations. There is an
analog to proposition 5.1 for Kalai-Smorodinsky bargaining. Thus equal split, Kalai-
Smorodinsky and proportional bargaining are all monotonic and have proportional

12



qualities. The relationship between monotonicity and proportionality shown by Kalai
(1977) also appears in these endogenously proportional solutions. However, Kalai’s
(1975) solutions are homogeneous and not translation invariant because the exogenous
proportionality vector is translation dependent.

There is an essential similarity between equal split, Kalai-Smorodinsky and pro-
portional bargaining. Given efficiency, symmetry, transformation invariance and the
appropriate monotonicity axiom, the salience of any two reference points identifies a
solution. These solutions are intuitive. Two points determine a line. The solution is
the intersection of this line with the efficient bargaining surface. Monotonicity merely
identifies this intersection mathematically. This simplicity can seem like a weakness.
There is little subtlety and no sense of marginal equilibrium. However, this simplicity
is likely a strength. Schelling writes

[G]ame characteristics that are relevant to sophisticated mathematical
solutions ... might not have the power of focusing expectations and influ-
encing the outcome ... except when the same solution can be reached by
an alternative less sophisticated route. (1960: 113, edited)

Indeed, the less sophisticated the nonmathematical route, the greater the power of
focusing expectations might reasonably be. The salience of two reference points makes
a monotonic solution a focal point.

5.3 Pure bargaining choices

Section 5.2 provides a reference-point based approach focusing expectations in bar-
gaining. Given such a focus, bargaining mechanisms consistent with these expecta-
tions might then be favored. If the salience of only the disagreement point is thought
to guide or allow expectations to move toward Nash bargaining, this approach be-
comes more complete.

Figure 4 illustrates another approach to solution selection, one based on the char-
acteristics of bargaining outcomes. The primary choice is between equal and propor-
tional gain. There is no ‘soft’ variant of proportional pure bargaining because the
disagreement point is essential to proportional outcomes. The next choice is then
between the soft and hard variants of equal gain bargaining, with equal split being
the soft bargaining solution. There are two variants of equality-based hard bargain-
ing. Monotonic Kalai-Smorodinsky bargaining provides gains that are in strict equal
proportion relative to the disagreement and maximal aspirations points. IIA-based
Nash outcomes deviate from this strict equality when and to the extent that doing
so will increase the product of player’s payoffs relative to the disagreement point.

The nature of noncooperative implementations provides the last approach to com-
paring pure bargaining models. Nash bargaining results when players have equal
participation in the game (e.g., Binmore, Rubinstein and Wolinsky (1986) and Hart
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and Mas-Colell (1996)). Theorem 4.1 and Feldman (2002) show that proportional
bargaining results when players’s probability of proposing is proportional to their
expected payoff. Moulin (1984) shows that Kalai-Smorodinsky bargaining can be
implemented in a game where players first bid probabilities for the right to propose,
the player with the highest bid proposes first and the second player has the right to
make a last counteroffer with the probability of the winning bid. Finally, Huck and
Oechssler (1999) find equal split is the equilibrium outcome in an evolutionary setting
and Lopomo and Huck (2001) find equal split in cases of interdependent preferences.
None of these models can be considered inherently more rational than the others, but
each has aspects that make it more relevant to particular bargaining environments.

6 Conclusion

Recognition of basis utility expands pure bargaining theory with two new endogenous
proportional solutions. Equal split provides a model of commonly observed experi-
mental outcomes. Pure proportional bargaining is the pure bargaining version of the
TU proportional value of Ortmann (2000) and the NTU proportional value of Feldman
(1999, 2002). With the Kalai-Smorodinsky (1975) bargaining solution they form a
versatile family of monotonic pure bargaining models. Basis utility also allows moves
of nature in noncooperative games, such as the selection of proposers and trembles,
to be conditioned on payoffs without creating translation invariant equilibria.

Endogenous proportionality was lost without basis utility, which was obscured in
part by the mechanics of translation invariance. Basis utility expands the range of
interpersonal comparisons that can be made in the expected utility framework beyond
those of Kalai (1977) and Myerson (1977). Thompson’s (1998: 197) negotiation text
sees consensus interpersonal comparison and proportionality as “the heart of equity
theory.” Proportionality, here, should be taken in the sense of the ratios of Kalai
(1977) and propositions 2.2 and 5.1 and not simply proportional bargaining. This is
not a new idea. Moulin (1999) quotes Aristotle in his survey of social choice allocation
rules: “Equals should be treated equally, and unequals, unequally in proportion to
relevant similarities and differences.”
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Moulin, Hervé (1984): “Implementing the Kalai Smorodinsky Bargaining Solution,”
Journal of Economic Theory, 33:32-45.

(1987): “Equal or Proportional Division of a Surplus, and Other Methods,” Inter-
national Journal of Game Theory 16:161-186.

(1999): “Axiomatic Cost and Surplus-Sharing,” Chapter 17 in the Handbook of Social
Choice and Welfare, ed. by Arrow, Sen, and Suzumura.

Myerson, Roger B. (1977): “Two-Person Bargaining Games and Comparable Utility,”
Econometrica 45:1631-1637.

(1991): Game Theory: Analysis of Conflict. Cambridge: Harvard University Press.

Nash, John F., Jr. (1950): “The Bargaining Problem,” Econometrica, 18:155-162.

O’Neill, Barry (1980): A Problem of Rights Arbitration from the Talmud, Northwest-
ern University Center for Mathematical Studies in Economics and Management Science,
Discussion Paper 445.

Ortmann, K. M. (2000): “The Proportional Value of a Positive Cooperative Game,”
Mathematical Methods of Operations Research, 51:235-248.

Roth, Alvin (1979): “Proportional Solutions to the Bargaining Problem,” Econometrica,
47:775-778.

Thompson, Leigh (1998): The Mind and Heart of the Negotiator. Upper Saddle River,
New Jersey: Prentice Hall.

Young, Peyton (1988): “Distributive Justice in Taxation,” Journal of Economic Theory,
44:321-335.

15



Item Utility to Bill Utility to Jack

Bill’s items:
book 2 4
whip 2 2
ball 2 1
bat 2 2
box 4 1

Jack’s items:
pen 10 1
toy 4 1
knife 6 2
hat 2 2

Table 1: Bargaining example from Nash (1950).
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Figure 1: Nash (1950) example normalized and including basis
utility point ξ = (−1,−1.2).
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Figure 2: Coordination game Γ2.
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Figure 3: Quantal response graph for Γ2 showing apparent trans-
lation dependence.
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Figure 4: Tree of IIA and monotonic bargaining solutions.
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