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Abstract
We analyze a cooperation game and a coordination game in an evo-

lutionary environment. Agents make noisy observations of opponent’s
propensity to play dove, called reputation, and form preferences over op-
ponents based on their reputation. A game takes place when two agents
agree to play. Socially optimal cooperation is evolutionarily stable when
reputation perfectly reflects propensity to cooperate. With some reputa-
tion noise, there will be at least some cooperation. Individual concern for
reputation results in a seemingly altruistic behavior. The degree of coop-
eration is decreasing in anonymity. If reputation is noisy enough, there
is no cooperation in equilibrium. In the coordination game, the efficient
equilibrium is chosen and agents with better skills to observe reputation
earn more.
JEL classification: C70; C72

Keywords: Cooperation; Coordination; Conditioned Strategies; Prisoners
Dilemma; Signaling; Reputation; Altruism; Evolutionary Equilibrium

1 Introduction

We analyze a cooperation game and a coordination game in an evolutionary en-

vironment where the matching of opponents is based on agents’ preferences over

possible opponents. Agents choose opponents based on a signal (interpreted as

reputation) which is a noisy observation of each agent’s true propensity to take

a certain action. In this setting we find that reputational concerns can explain

seemingly altruistic behavior. In the cooperation game, we show that if reputa-

tion perfectly reflects each agent’s true propensity to cooperate, then the payoff
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maximizing strategy in evolutionarily stable populations, when mutual cooper-

ation is socially optimal, is to cooperate and choose to play with cooperative

agents. When reputation is noisy the degree of cooperation is decreasing in rep-

utation noise. Only when the degree of noise is sufficiently high, all cooperation

ceases to exist.

In the coordination game, we show that if reputation sufficiently accurately

reflects the actual behavior, the efficient outcome is a unique stable equilibrium.

Since the payoff is strictly increasing in the agents ability to observe the true

propensity, evolutionary forces will favor prosocial behavior in the long run.

The literature on the problem of cooperation is huge and spans several dis-

ciplines, see e.g. Hammerstein (2003). Following Axelrod (1984), the tit for tat

strategy became widely known as the best strategy in repeated games. How-

ever, as pointed out by Boyd & Lorberbaum (1987), a population of cooperating

tit-for-tats can be invaded by nice but less retaliatory strategies, resulting in a

population vulnerable to invasion by defecting strategies.

Other important theories regarding the emergence of cooperation are based

on genetic relations (kin selection) and group selection. However, these ap-

proaches can not explain why cooperation arises even among genetically unre-

lated agents who meet only once. Theories of group selection must also explain

the absence of free riding within the group. Explanations based on punishment

of those who violate the cooperative norms have been suggested or discussed by

for example Ostrom et al. (1992), and Boyd & Richerson (1992). This type of

explanation only raises another question: Why would agents engage in costly

punishment of non-cooperators?

It is our belief that despite having many merits, existing theories do not

sufficiently explain under what circumstances agents cooperate at a personal

cost with unrelated strangers in one-shot interactions. We argue that a crucial

part of the strategy in repeated games is the choice of opponent. To substantiate
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our argument, we also apply reputation based choice to a classical coordination

game previously analyzed by e.g. Kandori et al. (1993) and Young (1993). Our

model produces the same results for this game.

2 The model

Consider a population I with a large even number N agents who are repeatedly

matched to play a symmetric 2× 2 game. The figures below show the game of
cooperation (left) and the game of coordination (right).
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In the cooperation game, Γ1 (α,β), we assume that α ∈ (0, 1) and β ∈
(−∞, 0) . This will include the Prisoner’s Dilemma as the special case when co-
operation is socially optimal (2α > 1 + β) . In the coordination game, Γ2 (γ, δ),

we assume that δ > γ > 0. The action set is A ≡ {H,D}, where a ∈ A. Actions
are taken in discrete time, t ∈ Z. We think of the actions H and D as playing

Hawk (hard, defect) and Dove (nice, cooperate) respectively.

We use the term propensity as a measure of inclination to D, formally defined

as follows:

Definition 1 The propensity P ti of agent i ∈ I at time t is a recursive function
P ti , where P

t
i ≡ ρPr (ati = D | ·) + (1− ρ)P t−1i and ρ ∈ (0, 1).

The propensity in period t is defined as a weighted average of the probability

to play D in period t and the propensity in the previous period.
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It is unlikely that agents are able to perfectly observe the propensity of other

agents, therefore we assume that every agent i ∈ I observes the reputation rt−i
of an opponent −i, which is a realization of the stochastic variable Rt

−i. R
t
−i

is symmetrically and unimodally distributed around P t−i, see figure below. The

value of rt−i is private information for i.

R t
i−  

t
iP−

Let Ri,I be the stochastic vector of all agents in I ordered according to rep-

utation by agent i. Denote the vector of all agents in I ordered decreasingly

according to propensity PI , where P kI denotes the agent with k highest propen-

sity. Let Ri,I be a realization of Ri,I . Let the observational skills, denoted

Oi ∈ R+,∀i ∈ I, satisfy:

Assumption 1
∂ corr[Ri,I ,PI ]

∂Oi
> 0, and Oi =∞⇒ Ri,I = PI ,∀i ∈ I.

By observing the reputation of potential opponents, agents form preferences

over opponents. Let Ψ denote the set of all complete and transitive orderings

of the agents in I. The preferences for agent i will be denoted %i.

Assumption 2 %i∈ Ψ,∀i ∈ I.

Let S denote the set of all pure strategies. A pure strategy s ∈ S is a
mapping from own propensity, and the reputation of the rest of the population

onto A and Ψ. More formally we have s : [0, 1]N 7→ A ×Ψ. Denote the set
of strategies where the action is conditioned on the reputation of the opponent

Sc ⊂ S.
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2.1 Matching of the Agents

The games Γ1 and Γ2 are played repeatedly by the agents in the population.

The matching of the agents is conducted through a procedure defined as follows.

Let Ci ≡
¡
C1i , C

2
i , ..., C

N
i

¢
where Cki denotes agent i’s k-preferred choice. Thus,

C1i denotes i’s most preferred opponent, C
2
i her second best, and so on. Agent

i will be matched against j if C1i = j and C
1
j = i.

The procedure makes use of a randomized choosing order, assumed (with-

out loss of generality) to coincide with the numbers 1 to N. First, agent 1 asks

her most preferred opponent, who accepts if agent 1 is her most preferred op-

ponent. Then agent 2 asks her most preferred opponent, and when all agents

have proposed to their first best choice, the procedure is repeated for second

best choices. The procedure continues until all agents are paired. Formally, the

matching procedure can be described by the following algorithm, which orders

all agents in I into matched pairs in the set of matched pairs I.

Algorithm 1 (Matching procedure) Let I be the set of matched pairs.

Step 0. Let I = ∅, i = 1, and l = 1.

Step 1. If there exists an m ∈ [1, l] such that if ¡Cli = j¢ ∩ ¡Cmj = i
¢ ∩ (i, j /∈ I),

then (i, j) ∈ I.

Step 2. Increase i by 1. If i ≤ N, go to step 1.

Step 3. Increase l by 1 and let i = 1. If l ≤ N, go to step 1.

This procedure is assumed to be repeated an infinite number of times within

each period. This ensures that the realized payoff for every agent at each period

is equal to the expected payoff. This could be interpreted as inertia in the

observations of the opponents’ reputation such that the agents react ”sluggishly”

on any changes in strategies. The probability for agent i to play D within each

procedure at each t is equal to Pr (ati = D | ·).

5



For technical reasons, we allow agents to be matched up with themselves.

This can be seen as if all agents appear in pairs or that an agent sooner or later

will have an identical offspring. Finally, note that when observational skills are

non-existent, this matching procedure is equivalent to random matching.

2.2 Evolutionary Stability

To analyze evolutionary stability in the two games, we assume that every agent

in the population in each period with a small probability will change to another

mutant strategy. In each time period there is never more than one mutation.

The question whether a mutant strategy could invade the current incumbent

strategy distribution becomes complicated by the fact that if an agent switches

strategy, then the propensity (in almost all cases) will change which in turn

could trigger new response actions from its opponents. For this reason, we need

to modify the concept of evolutionary stability.

A mixed strategy is denoted σ and is defined as a probability distribution

over S. Formally, σ ≡ (σs)s∈S , σs ∈ [0, 1] ,∀s ∈ S and
R
s∈S σs = 1. Any mixed

strategy can consequently be seen as a vector σ ∈ R∞+ , that belongs to the unit
simplex ∆σ, where

∆σ ≡
½
σ ∈ R∞+ |

Z
s∈S

σs = 1

¾
.

Let qtσ ∈ [0, 1] denote the fraction of individuals in I at period t with strategy
σ. Thus it is possible to characterize any combination of mixed strategies in the

population as a point QI in the simplex denoted ∆Q:

∆Q ≡
½
QI ∈ R∞+ | QI = (qσ)σ∈∆σ ,

Z
σ∈∆σ

qσ = 1

¾
.

Note that QI both can be viewed as a point in R∞+ and as a set of strategies. We

use QI\i to denote the strategy mix in the population I \ i. In the same manner,
let OI\i denote the observational skills of all agents I \ i. The expected payoff
for agent i with strategy σi at period t will be πti

¡
σi, Oi;QI\i, OI\i

¢
. When
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there is no risk of confusion, let Q = QI . We use the following evolutionary

property:

sign

µ
qt+1σ

qtσ
− q

t+1
σ0

qtσ0

¶
= sign

¡
πt (σ, ·; ·)− πt (σ0, ·; ·)¢ . (1)

This specification means that strategies with higher payoffs will have a higher

representation in the population in the next period. The offsprings are assumed

to inherit both strategy and propensity from the parent.

Note that the payoff of an agent i depends both on the agent’s strategy σi

and on the opponent’s strategy σ−i. Also, the opponent’s actions can depend

on the agent’s reputation r−i,i, just as the agent’s action can depend on the

opponent’s reputation r−i. This implies that if an agent changes strategy, her

actions and thus her propensity can change, which could trigger different actions

from other agents and thereby change their propensity, which in turn might lead

to other agents changing their actions ad infinitum.

The following assumption help us avoid such cumbersome dynamic.

Assumption 3 The adjustment process of the propensity is much faster than

the growth/learning process, which in turn is much faster than the process of

mutations.

This will imply that the population on average can be considered stationary

in so far as the pair σi, Pi is fixed ∀i ∈ I. This also renders the index for time
redundant in most cases.

Another consequence of assumption 3 is that there exists a well-defined cor-

respondence between the propensity and the strategies: For all strategy mixes

Q ∈ ∆Q, there exists a corresponding propensity distribution.

Definition 2
−−→
QQ0 denotes a sequence

©
Qj
ªM
j=1

of adjacent points in ∆Q be-

tween Q = Q1 and Q0 = QM , where

• Qj can evolve to Qj+1 through growth, or
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• ∃σ0i such that πi
¡
σi, ·;QI\i, ·

¢ ≤ πi

³
σ
0
i, ·;QI\i, ·

´
for some i ∈ I, where

QI\i ∪ σi = Qj and QI\i ∪ σ0i = Qj+1,∀j ∈ (1...M − 1).

−−→
QQ0 implies that there exists a path where the strategy mix in the population

evolves from Q to Q0 either through growth or through that agents, one at the

time, change strategy to another with at least as high payoff.

Let us now define a Mutation Proof Attraction Set (MAS), which basically

is a modified Absorbing set (see e.g. Samuelson (1998)), where the set is closed

under the growth mechanism and mutations.

Definition 3 (MAS) QMAS (Γ) is a set of strategy mixes Q ∈ QMAS (Γ) such

that

• ∃ −−→QQ0, ∀Q0 ∈ QMAS (Γ) ,

• ∃ −−→Q0Q, ∀Q0 ∈ QMAS (Γ) , and

• @ −−→QQ00 for any Q00 /∈ QMAS (Γ).

Let ∆MAS (Γ) ≡ SQMAS (Γ).

Property 1 ∆MAS (Γ) 6= ∅,∀Γ.

A population I belongs to a MAS, precisely if the strategy mix Q in the

population belongs to an attraction set QMAS (Γ) such that ∃ −−→QQ0, ∀Q0 ∈
QMAS (Γ) and ∃ −−→Q0Q, ∀Q0 ∈ QMAS (Γ). That is, each combination of strategies

in the population that belongs to the attraction set QMAS (Γ) must be able to

evolve to any other point in the attraction set through growth and/or individual

changes to strategies that yields at least as high payoff, i.e. through drift.

Moreover, there must not exist any feasible path such that the population could

evolve to a point Q00 /∈ QMAS (Γ). Note that MAS yields identical equilibria on

unconditioned strategies as NSS (see Maynard Smith (1982)).
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An alternative way to view MAS is through a phase diagram. Each point in

∆Q is associated with a directional vector whereto the strategy mix Q can evolve

through growth as expressed in equation 1, and/or through mutations (drift).

An absorbing set is a vector field where there does not exist any directional

vectors from the the growth mechanism pointing outside the set. A MAS is

consequently an absorbing set with a hull such that the combined set is closed

under both the growth mechanism and mutations. That is,MAS is an absorbing

set that will prevail minor perpetrations such as mutations.

3 Evaluating the Cooperation Game

Let us first consider Γ1 (α,β). The payoff is strictly increasing in the propensity

of the opponent.

Property 2 ∂πi(Γ1)
∂P−i

> 0.

Regardless of whether an agents intends to play H or D, she will earn more

if the opponent is more likely to play D . From the definition of reputation we

know that the expected value of the reputation equals to the propensity.

Property 3 ∂πi(Γ1)
∂ri,−i

> 0.

Denote by D the set of preferences such that the agent prefers opponents

with higher reputation:

Definition 4 D ≡ {%i| ri,j ≥ ri,k ⇔ j %i k,∀j, k ∈ I}.

D implies that agent i prefers agent j as an opponent over agent k if and

only if i perceives the reputation of j to be higher than that of k.

3.1 Perfect Observational Skills

Let us begin by analyzing the model when reputation perfectly reflects propen-

sity: Oi = ∞,∀i ∈ I. This implies that the reputation is identical to the
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propensity. From property 2 we know that payoff is strictly increasing in the

opponent’s propensity. Since all agents will be able to avoid opponents with

lower propensity, agents will only be matched up against opponents with iden-

tical propensity.

Definition 5 Let zi ≡ Pr (ai = D).

Since all agents have identical propensity, zi = z−i ≡ z. The payoff for an
arbitrary agent i is: πi (·) = αz2 + z (1− z) (1 + β), which is maximized for

z =
1

2
+
1

2

α

1 + β − α
. (2)

When cooperation is socially optimal, 2α ≥ 1 + β, this implies z = 1. If

2α < 1 + β, the payoff is maximized for mixed strategies where the probability

of playing D is equal to 1
2 +

1
2

α
1+β−α > 1

2 . Thus, the probability of playing

action D is strictly increasing in α, and always higher than 50 percent.

Let P ∗ denote the propensity associated with the payoff maximizing strate-

gies when all agents have identical propensity. Thus, when 2α ≥ 1 + β we have

that P ∗ = 1. When 2α < 1 + β, P ∗ is associated with strategies such that

z = 1
2 +

1
2

α
1+β−α >

1
2 .

However, when all agents have identical propensity, the population will be

vulnerable to a neutral invasion of agents with the same propensity as the in-

cumbents, but with %i 6= D.

Lemma 1 Pi = Pj ,∀i, j ∈ I ⇒ πi (D) = πi (%i 6= D) ,∀i ∈ I.

In other words, the population will through mutations drift away from all

agents preferring opponents with higher reputation.

Proposition 1 If Q ∈ ∆MAS (Γ1) and Oi =∞,∀i ∈ I then

• 2α ≥ 1 + β ⇒ lim
t→∞Pr (ai = D) = 1, and
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• 2α < 1 + β ⇒ lim
t→∞Pr (ai = D) =

1
2 +

1
2

α
1+β−α ,∀i ∈ I.

The intuition is as follows: Since agents with %i 6= D only can make a

neutral invasion, they will only represent a small fraction of I. This fraction

can be exploited by strategies more inclined to play H, with preferences D. The
later category will initially yield more than all other strategies in the population.

However, strategies with %i 6= D will yield less than all other strategies and thus
also grow slower. This implies that agents with low propensity strategies to a

higher degree will become matched up themselves, and thus earn a lower payoff.

This process will eventually stabilize when the expected payoff for agents with

%i 6= D equals that of agents with low propensity strategies.

3.2 Imperfect Observational Skills

Assume now that reputation is noisy and only imperfectly reflects propensity.

Lemma 2 Oi < ∞,∀i ∈ I, and ∃Pi 6= Pj , for some i, j ∈ I ⇒ π (σ | D) >
π (σ |% 6= D) ,∀σ ∈ Q.

When the population contains agents with different propensity, preferences

D will yield payoff.

Consider an incumbent strategy σ and a mutant strategy σ0 with correspond-

ing propensities P and P 0, such that P 0 < P ≤ P ∗. Let dP,P 0 ≡ |P − P 0|. Let
xP,P 0 be the probability that an arbitrary agent with observational skills O per-

ceives a potential opponent with propensity P to have a higher reputation than a

potential opponent with propensity P 0, formally xP,P 0 ≡ Pr (r ≥ r0 : P ≥ P 0, O).
From the definition of reputation we have the following general property:

Property 4 ∂xP,P 0
∂dP,P 0

> 0, and
∂xP,P 0
∂O > 0.

Now consider the payoffs π (σ) and π (σ0). For any population size N and

for each pair P,P 0 there exists a minimum xP,P 0 for which σ has a higher payoff

11



than σ0. Denote this value xminP,P 0 . When dP,P 0 is smaller, O must be higher to

ensure that the incumbent strategy σ yields more:

Lemma 3 lim
P 0→P

xminP,P 0 = 1,∀P ∈ (0, 1].

Corollary 1 For any given level of observational skills, there exists a population

size N∗ such that all populations larger than N∗ can be invaded.

In other words, unless observational skills are perfect, a sufficiently large

population can always be invaded by agents with P 0 < P . Hence, from lemma

2 it follows that:

Corollary 2 Oi <∞,∀i ∈ I, and Q ∈ ∆MAS (Γ1)⇒%i= D,∀i ∈ I.

Less than perfect observational skills are sufficent for incumbents to earn

more than mutants with P 0 = 0, given that incumbents have sufficiently high

propensity, P ≥ bP :
Lemma 4 xminP,0 < 1,∀P ∈

³ bP, 1i.
From Lemma 3 and 4, we can draw a qualitative figure over xmin1,P as in the

left hand figure below. Assume that 2α > 1 + β, which implies that P ∗ = 1.

The exact shape of xmin1,P depends on the agents’ observational skills, and the

payoffs α and β. If the propensities of two agents are arbitrarily close, it will be

impossible to discriminate them. If reputation symmetrically and unimodally

distributed around P , we expect the probability xPi,P−i to be as depicted by

the dotted line in the left-hand figure below. Since we know from lemma 3 that

lim
P 0→P

xminP,P 0 = 1, it follows that there exists an interval immediately below P ∗

where invasions are successful. Denote this interval eP−P0 and let P 0 ≡ P ∗.
Consider the case when

¯̄̄ eP−P ¯̄̄ < P , i.e. when there exists an interval where
invasions are not possible. Assume there is a complete invasion at P 1 ∈ eP−P0 .

This implies that the entire population will have the propensity P 1. Now there
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exists an interval eP−P1 where invasions will be successful. Envision a complete

invasion at P 2 ∈ eP−P1 . If P 2 < P 0−
¯̄̄ eP−P0

¯̄̄
then, in addition to the interval with

lower propensity eP−P2 , there exists an interval eP+P 2 , where agents with higher

propensity P > P 2 +
¯̄̄ eP−P0

¯̄̄
can invade. These agents’ probability of matching

with each other is high enough to ensure a higher average payoff.
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Thus, there exists a positive probability that a complete invasion will take place

at P 0, in which case the process starts over. Finally, note that if invasions are

incomplete, all populations will contain agents with different propensities.

Property 5 If
¯̄̄ eP+P=0 ¯̄̄ > 0 and invasions are complete, then there exists a

P 0 6= P where invasions will be successful. If
¯̄̄ eP+P=0 ¯̄̄ > 0 and invasions are in-

complete, then qσ, qσ0 > 0 where σ and σ0 have different corresponding propen-

sities, P 6= P 0.

That is, if observational skills allow successful invasions of a population

with propensity P = 0, then there will exist periods with agents of different

propensity in the population. Regardless of whether invasions are complete or

not, we find that:

Proposition 2
¯̄̄ eP+P=0 ¯̄̄ > 0 and Q ∈ ∆MAS (Γ1)⇒ ∂πi

∂Oi
> 0,∀i ∈ I.
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The intuition for Proposition 2 is that when observational skills are good

enough to ensure some degree of cooperation, agents with better observational

skills will earn more because they will be more successful in avoiding agents

with lower reputation and more successful in being matched against opponents

with higher reputation. For the same reason, evolutionary pressure will con-

tinuously improve observational skills. Since mutations are rare, all agents will

have identical observational skills, improving over time:

Corollary 3
¯̄̄ eP+P=0 ¯̄̄ > 0 and Q ∈ ∆MAS (Γ1) ⇒ Oi = O,∀i ∈ I and lim

t→∞O =

∞.

Since the interval
¯̄̄ eP−P ¯̄̄ is decreasing in observational skills, it follows that

there exists a crucial observational skill which we call O∗ such that if Oi ≥ O∗

for at least some agent, then there will be at least some cooperation in the

population. Moreover, in the long run observational skills will improve until the

population eventually reaches the case of perfect observational skills.

Denote a strategy mix where all choose action D and H respectively:

QD ≡ {Q | zi = 1,∀i ∈ I} , and QH ≡ {Q | zi = 0,∀i ∈ I} .

Now consider the case when
¯̄̄ eP−P ¯̄̄ ≥ P , i.e. when invasions are possible

anywhere below P . In this case, the observational skills are so poor that more

hawkish behavior is always beneficial. Thus, if observational skills are poor

enough, Oi < O∗,∀i ∈ I such that
¯̄̄ eP−P ¯̄̄ ≥ P,∀P ∈ [0, 1], we have the following

result:

Proposition 3
¯̄̄ eP−P ¯̄̄ ≥ P,∀P ∈ [0, 1] ⇒ @

¯̄̄ eP+P 0

¯̄̄
> 0 for any P 0 ∈ [0, 1].

Corollary 4 Oi < O∗,∀i ∈ I ⇒ QH = ∆MAS (Γ1).

Having described the two cases when Oi =∞ and Oi < O∗ ∀i ∈ I, we now
turn to the intermediate case when O∗ < Oi <∞, ∀i ∈ I.
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Lemma 5 ∂ Pr((i,j)∈I|Pi=Pj)
∂O > 0,∀i, j ∈ I.

The probability that agents with identical propensity are matched up is

strictly increasing in observational skills. Better observational skills also mean

that agents with higher propensity will be more successful in avoiding agents

with lower propensity. This leads to the following conclusion:

Proposition 4 The degree of cooperation in the population is strictly increasing

in observational skills when Oi ≥ O∗,∀i ∈ I.

To summarize the analysis of the cooperation game, if observational skills

are poor enough, such that @ Pi 6= Pj , for any i, j ∈ I, then QH = ∆MAS (Γ1).

If on the other hand the population for a given observational skill is in a MAS,

such that ∃ Pi 6= Pj , for some i, j ∈ I, then evolutionary pressure will lead to
increasing observational skills. If agents are able to evolve better observational

skills, then ∆MAS (Γ1) will eventually converge to QD , where all agents are

playing D.

4 Evaluating the Coordination Game

Let us now consider the coordination game Γ2 (α,β). First define H as the set

of preferences such that the agent prefers opponents with lower reputation:

Definition 6 H ≡ {%i| ri,j ≤ ri,k ⇔ j %i k,∀j, k ∈ I}.

4.1 Perfect Observational Skills

Definition 7 Let σD be the the set of strategies such that σ ∈ σD ⇔ σ ∈ Q ∈
QD ⊂ ∆Q, and σH such that σ ∈ σH ⇔ σ ∈ Q ∈ QH ⊂ ∆Q.

First, we analyze the case when reputation perfectly reflects propensity:

Oi =∞,∀i ∈ I. In a MAS, all agents utilize σD .
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Proposition 5 Oi =∞,∀i ∈ I ⇒ QD = ∆MAS (Γ2).

As in the cooperation game above, the population is vulnerable to a neutral

invasion by σD where % 6= D. However, when a mutation with a propensity
corresponding to the preferences of the drifting strategies occurs, both strategies

will yield a lower payoff than the incumbent strategy.

We now turn to the more interesting case of imperfect observational skills.

4.2 Imperfect Observational Skills

Let us first focus on strategies such that σs = 0,∀s ∈ Sc , i.e. where the

probability to play D is independent of the opponent.

Lemma 6 Oi < ∞,∀i ∈ I, and ∃Pi 6= Pj , for some i, j ∈ I ⇒ ∀Q ∈ ∆Q
we have that πi (D) > πi (%i 6= D) or πi (H) > πi (%i 6= H), for σ where σs =
0,∀s ∈ Sc.

Less formally, if the observational skills are imperfect and there exist agents

with different propensities, then for all unconditioned strategies the payoff is

maximized by either D or H.
Using lemma 6 it can be shown that for any Q ∈ ∆Q to be a MAS, either

all agents will play D or all agents will play H.

Proposition 6 Oi <∞,∀i ∈ I ⇒ QH ⊆ ∆MAS (Γ2) and QD ⊆ ∆MAS (Γ2).

In any MAS, agents with better observational skills will earn more:

Proposition 7 Oi <∞,∀i ∈ I, and Q ∈ ∆MAS (Γ2)⇒ ∂πi
∂Oi

> 0.

The intuition for this is that agents with better observational skills will be

more successful in avoiding mutant strategies.

Proposition 8 ∃O∗ < ∞ such that if ∃i ∈ I where Oi ≥ O∗ then QD =

∆MAS (Γ2).
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Corollary 5 Oi < O∗,∀i ∈ I ⇒ QH ∪QD = ∆MAS (Γ2).

To summarize, evolutionary pressure will lead to increasing observational

skills. If agents are able to evolve better observational skills, then ∆MAS (Γ2)

will eventually converge to QD , where all agents are playing D.

5 Conclusions and Remarks

We have shown that reputation based choice of opponents in games of coop-

eration and coordination is a mechanism that can explain the emergence and

stability of cooperation and prosocial behavior. If the observational skills are

perfect, there exists a MAS where almost the entire population plays D when

cooperation is socially optimal. For given sufficiently accurate observational

skills, the degree of cooperation in the population will vary in an unpredictable

manner. However, in this case the payoff is strictly increasing in observational

skills. The degree of cooperation is increasing in observational skills and de-

creasing in population size. Total defection is only possible when observational

skills are sufficiently poor.

The cooperative strategy presented bears some resemblance to the tit for

tat strategy, in that defections trigger retaliatory actions. In our model, the

retaliatory action is choosing to play with someone else, and it is triggered by

reputation, rather than the latest action of the opponent.

In the coordination game, we show that evolution works to increase obser-

vational skills. When observational skills becomes good enough, the efficient

outcome is a unique equilibrium, just as predicted by SSS, see Young (1993)

and Kandori et al. (1993), and the risk dominance criteria, see Harsanyi &

Selten (1988).

Reputation based choice provides a possible explanation for the big impact

of the degree of anonymity on behavior. When reputation does not perfectly
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reflect behavior, there are situations cooperation games where the payoff associ-

ated with playing hawkish will outweigh the reputational costs. For experimen-

tal evidence, see for example Cherry et al. (2002) or Hoffman et al. (1996). In

Bergh & Engseld (2005) we demonstrate that existing empirical and experimen-

tal evidence support the idea that individuals care about their reputation and

that reputational concerns affect behavior. As for the effect of reputation based

choice of opponent, there is less experimental evidence available. McCabe et al.

(2003) pair participants in a trust game are based on their degree of trust and

trustworthiness, which allows cooperation to emerge and protects cooperation

from being invaded by defecting players.

This supports our idea that an important key to understanding cooperation

in repeated games is the matching procedure. Random/tournament matching

here represents one extreme, whereas reputation based choice as analyzed in

this paper represents another. In practice, people encounter some situations

where they are able to choose their opponent in strategic interactions and some

situations where they are forced to play games of cooperation against random

agents in the population. The implications of such mixed matching procedures

deserve to be examined closely. The results are likely to be positive for cooper-

ation: As long as there is at least some degree of free opponent choice, agents

must take into consideration the reputational consequences of their actions also

when they play against randomly assigned opponents.

A Appendix

Proof of Lemma 1. Pi = Pj ,∀i, j ∈ I ⇒ zi = zj ,∀i, j ∈ I. Consequently,
∀ %i∈ Ψ, all opponents will yield the same payoff.

Proof of Proposition 1. From Property 2 we know that ∂πi(Γ1)
∂P−i

> 0.

When observational skills are perfect, all agents can avoid opponents with lower
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propensity. Each agent i maximizes her payoff when zi = 1 if 2α ≥ 1 + β, and

zi =
1
2 +

1
2

α
1+β−α if 2α < 1 + β. This results in a constant Pi = K,∀i ∈ I.

Denote the incumbent strategies σ. From Lemma 1 we know that the incumbent

population can be neutrally invaded by σ0 with P 0 = K but with % 6= D. This
in turn makes the population vulnerable to invasion by σ∗ with P ∗ < K and

with D. This will result in π (σ0) < π (σ), implying that σ0 will grow slower than

σ. Initially, π (σ∗) ≥ π (σ) because σ∗ will only become matched up with σ0

and σ∗. Since π (σ∗) ≥ π (σ) > π (σ0), σ∗ will, due to the relatively smaller qσ0 ,

gradually to a higher degree become matched up with σ∗ and consequently earn

a lower payoff. Thus, qσ∗ decreases until π (σ∗) = π (σ0), and π (σ) > π (σ∗).

This in turn implies that both qσ0 and qσ∗ will decrease. No more mutations

are possible as long as qσ∗ > 0. In a MAS the population will converge to:

lim
t→∞Pr (ai = D) = 1,∀i ∈ I if 2α ≥ 1 + β, and

lim
t→∞Pr (ai = D) =

1

2
+
1

2

α

1 + β − α
,∀i ∈ I if 2α < 1 + β.

Proof of Lemma 2. From Property 2 and 3 we know that ∂πi(Γ1)
∂P−i

> 0

and ∂πi(Γ1)
∂r−i

> 0. If ∃Pi 6= Pj , for some i, j ∈ I, then D will result in a

higher probability of avoiding opponents with a lower propensity and requesting

opponents with a higher propensity than any % 6= D.

Proof of Lemma 3. Consider strategies σ and σ0 with associated propen-

sities P and P 0, such that P 0 < P ≤ P ∗. Imagine a population of incumbents
with propensity P . Let the probability that incumbents are matched up with

each other be denoted ρ. Envision a single mutant agent with propensity P 0,

and let ρ0 be the probability that this agent is matched up with herself.

Consider the additional times when the mutant plays H and the incumbent

plays D. In these cases incumbents earn π = αρ + (1− ρ)β whereas mutants
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earn π0 = 1− ρ0. We know that both ρ and ρ0 are increasing in xP,P 0 , and that

ρ0 is decreasing in N . Thus, for any xP,P 0 < 1, a sufficiently large population

will ensure that π0 > π. Thus lim
P 0→P

xminP,P 0 = 1,∀P ∈ (0, 1].

Proof of Lemma 4. Let π (σ : σ0) denote the payoff for σ when matched

up against σ0.

Consider a mutant strategy H with a corresponding P = 0 and incumbents

with a strategy σ with a corresponding propensity P > bP , where bP is the

corresponding propensity of strategy bσ such that π (bσ : bσ) = 0. This implies:
π (H : σ)| {z }
=X≤1

> π (σ : σ)| {z }
=Y Qα

> π (H : H)| {z }
=0

> π (σ : H)| {z }
=Z≥β

,

As before, let ρ denote the probability that an agent with strategy σ is

matched against an agent with the same strategy. Analogously, ρH denotes the

probability that an agent with strategy H is matched up against an agent with

the same strategy. If π (σ) > π (H), we have:

ρπ (σ : σ) + (1− ρ)π (σ : H) > ρHπ (H : H) + (1− ρH)π (H : σ)

ρY + (1− ρ)Z > (1− ρH)X

ρ >
(1− ρH)X − Z

Y − Z .

Note that lim
ρH→1

(1−ρH)X−Z
Y−Z = −Z

Y−Z < 1 ⇒ ∃ρH < 1 where (1−ρH)X−Z
Y−Z < 1.

Thus ∃ρH < 1 such that 1 > ρ > (1−ρH)X−Z
Y−Z . We know that xP,0 < 1 ⇔

ρ, ρH < 1. Then it follows directly that x
min
P,0 < 1,∀P ∈

³ bP, 1i.
Proof of Proposition 2.

¯̄̄ eP+P=0 ¯̄̄ > 0⇒ ∃Pi 6= Pj , for some i, j ∈ I. From
Lemma 2 we know that ∃Pi 6= Pj , for some i, j ∈ I ⇒ π (D) > π (%i 6= D), which
implies that Q ∈ ∆MAS (Γ1)⇒%i= D,∀i ∈ I.
If the observational skills Oi of a single agent i improve and %i= D, then

from Assumption 1 and the matching procedure, we know that she is more
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likely to become matched up with opponents with higher propensity P−i, i.e.

∂P−i
∂Oi

> 0. Hence, ∂πi(Γ1)∂P−i
> 0, and ∂P−i

∂Oi
> 0⇒ ∂πi(Γ1)

∂Oi
> 0.

Proof of Proposition 3. The upper interval for an arbitrary P where

invasions are successful is given by
¯̄̄ eP+P ¯̄̄ = P ∗ − P − eP−P 0 ⇔ P 0 = P +

¯̄̄ eP−P 0

¯̄̄
for

some P 0 ∈ (P,P ∗].

P 'P

−
PP~

*P0 
−
'

~
PP +

PP~

However, since
¯̄̄ eP−P 00

¯̄̄
= P 00,∀P 00 ∈ [0, 1], it follows that @

¯̄̄ eP+P ¯̄̄ > 0 , for any
P ∈ [0, 1].

Proof of Lemma 5. From Assumption 1, we know that
∂ corr[Ri,I ,PI ]

∂Oi
>

0,∀i ∈ I. From Corollary 2 we know that %i= D,∀i ∈ I, which implies that
∂ Pr(Ck

i =P
k
I )

∂Oi
> 0,∀i, k ∈ I. Assuming that all agents have identical observa-

tional skills O, from the matching procedure it follows that ∂ Pr((i,j)∈I|Pi=Pj)
∂O >

0,∀i, j ∈ I.

Proof of Proposition 4. From Lemma 5 we know that when observational

skills improve, the agents will be more likely to be matched up with opponents

of identical propensity. Since ∂πi(Γ1)
∂P−i

> 0, the agents with higher propensity will

receive a higher payoff when observational skills improve and through growth

become more frequent in the population.

Proof of Proposition 5. Let σd denote strategies that always play D.

Note that σd ⊂ σD . Since the agents maximize their payoff if they play D

and meet an agent that plays D, there are no other strategies in ∆σ yielding

a higher payoff than σd with D, denoted σd:D. As soon as Q = QD we have

π
¡
σD
¢
= π

¡
σD:D

¢
> π (σ) ,∀σ ∈ ∆Q \ σD , where σD:D denotes strategies σD
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with D. Finally, ∀σ ∈ ∆Q \σD and qσ, qσD > 0 we have that π
¡
σd:D

¢ ≥ π
¡
σD
¢
,

and π
¡
σd:D

¢
> π (σ).

Proof of Lemma 6. The payoff for each agent i ∈ I is πi (σ) = ziz−iδ +
(1− zi) (1− z−i) γ where zi = Pr (ai = D |%i, Q), and where z−i denotes the
opponents Pr (a−i = D | Pi). Note that Pi is independent of %i.
Consider the case when ziz−iδ > (1− zi) (1− z−i) γ, the proof is analogue

for the case ziz−iδ < (1− zi) (1− z−i) γ. The expected propensity of agent i’s
opponent, P−i, is higher when %i= D than if %i 6= D. Hence, z−i :%i= D >

z−i :%i 6= D, which implies that πi (D) > πi (%i 6= D).

Proof of Proposition 6. From Lemma 6 we know that πi (D) >
πi (%i 6= D) or πi (H) > πi (%i 6= H), when σs = 0,∀s ∈ Sc, and ∀Q ∈ ∆Q.
If πi (D) > πi (%i 6= D) then ∂πi

∂Pi
> 0. Analogously, πi (H) > πi (%i 6= H) im-

plies that ∂πi
∂Pi

< 0. Thus, in a MAS all agents with D or H will have strategies

σD:D or σH:H .

Now consider any strategy mix Q where π
¡
σd:D

¢
> π

¡
σh:H

¢
. The proof is

analogous when π
¡
σd:D

¢
< π

¡
σh:H

¢
. Since all matchings yield the same payoff

for both the agent and the opponent, it follows that any strategy σ0 ∈ ∆Q \ σD

yields π (σ0) ∈ ¡π ¡σd:D¢ , 0¤, since σ0 will have a corresponding P 0 < 1. If σ0 ∈
σD \ σd:D then π

¡
σd:D

¢ ≥ π (σ0).

Hence, in a MAS we have a QD where σDi ,∀i ∈ I, or a QH where σHi ,∀i ∈ I.

Proof of Proposition 7. From Proposition 6 it follows that if Q ∈ ∆MAS

then σDi ,∀i ∈ I or σHi ,∀i ∈ I. In any MAS, better observational skills imply
that agents with σd:D and σh:H will more often successfully identify mutants

and thereby avoid coordination failures, earning them a higher payoff.

Proof of Proposition 8. From Proposition 6 we know that Q ∈ ∆MAS ⇒
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σDi ,∀i ∈ I or σHi ,∀i ∈ I. Consider the case where σh:Hj ,∀j ∈ I \ i. Imagine an
invading strategy σd:Di with a corresponding P = 1. Let zH = Pr

¡
σh:H : σH

¢
de-

note the probability that an agent with σh:H is matched up against an agent with

identical propensity. Analogously, let zD = Pr
¡
σd:D : σD

¢
. Note that ∂zH

∂Oj
>

0,∀j ∈ I \ i, and ∂zD
∂Oi

> 0. The payoffs are π
¡
σh:H

¢
= zHγ and π

¡
σd:D

¢
= zDδ.

Since δ > γ, ∃zD < 1 such that π
¡
σd:D

¢
> π

¡
σh:H

¢
. Consequently, ∃O∗ < ∞

such that Oi ≥ O∗ for some i ∈ I ⇒ πi
¡
σd:Di

¢
> πj

¡
σh:Hj

¢
,∀j ∈ I \ i.
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