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Abstract

This short note reviews some of results contained in Brooms [4] (to which the reader
is directed for a fuller exposition of the results mentioned here). We consider customer
joining behaviour for a first come first served single server queueing system where the
service rate responds to changes in the queue size. Customers are prepared to join the
system only if their expected time there is projected to be not too high. In order to make
an assessment as to whether or not quality of service requirements will be met upon
joining such a system, assumptions regarding the form of the joining decisions taken
by other customers need to be taken into account. The joining decision that is to be
implemented by each customer is taken on the basis of quantities which may depend on
the number of customers observed on arrival to the system.

We treat this problem as an infinite-player non-cooperative (stationary) game, where
the expected sojourn times at particular entry states are considered. The aim is to
characterize the conditions under which Nash equilibrium joining policies exist, and to
explore the structure of such policies.

The seminal and most relevant work on the game-theoretic analysis of this class of
queueing system was carried out by Altman and Shimkin [2], in which a processor sharing
system was investigated. They established the existence and uniqueness of a symmetric
Nash equilibrium joining policy for the stationary game; it was demonstrated via simula-
tion methods (and, in [1], using the theory of the Stochastic Approximations algorithm)
that it can be used to characterize the convergent behaviour of the system when cus-
tomers base their joining decisions on a certain class of dynamic learning rule. Some
of the game-theoretic results for the processor sharing system were later extended, in
Ben-Shahar et. al. [3], for the class-heterogeneous case.

We take Z+ = {1, 2, . . .}, and N = Z+ ∪ {0} in our discussion.
An arriving customer has to choose between either joining a shared service system,

which is a FCFS queue (denoted by QS), or balking.
It is assumed that QS has a buffer size B, which may be finite or infinite. Any

customer which arrives when the buffer is full is not permitted to enter the system.
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The departure process in QS at queue length x forms a Poisson process of rate µ(x),
where µ(x) is a strictly increasing and bounded function on x ∈ {1, 2 . . . , B}, with µ(0) =
0. Set µ = sup{µ(x) : x=1, 2, . . .}.

Let θ be the quality of service requirement. If an arriving customer perceives that the
expected sojourn time in QS is greater than this value, then it will be reluctant to enter
the system.

It is assumed that µ(1)−1 < θ. This condition ensures that it is always worthwhile
for a customer to enter QS if the system is empty upon arrival.

Let Ak be the arrival time of the k-th customer at (although not necessarily into) the
system, where 0=A0 <A1 <A2 < . . .; denote this k-th customer by the label Ck, k∈N,
where it is assumed that C0 arrives at time A0 (i.e. at time 0).

A decision rule, u(·) :{0, 1, . . . , B−1} 7−→ [0, 1], is defined to be a function that specifies
the probability that a customer adhering to it enters QS , which is equal to u(x) if the
number of customers in QS is equal to x just prior to its arrival. The decision rule for
Ck is represented by uk(·), and the collection of decision rules used by each customer, a
policy, is given by π = (u0(·), u1(·), u2(·), . . . , . . .).

Let vk(x, π), x ∈ {0, 1, . . . , B−1}, be the sojourn time of Ck in QS , given that x
customers were present in QS just prior to its arrival, and that any customer arriving in
the future adheres to its decision rule inferred by π. Further define Vk(x, π) to be the
expected value of vk(x, π).

A decision rule uk(·) for the k-th customer is said to be optimal against the policy
π if uk(x) = 1{Vk(x, π) < θ} + qx1{Vk(x, π) = θ} for x∈{0, 1, . . . , B−1} and arbitrary
qx ∈ [0, 1], where 1{·} is the indicator function.

A policy π = (u0(·), u1(·), u2(·), . . .) is said to be a Nash equilibrium policy if, for
every k∈N, the decision rule of the k-th customer, uk(·), is optimal against π.

Let T∞ be the class of policies in which the decision rule for each customer is a
non-increasing function of x ∈ {0, 1, . . . , B−1}.

The following result describes the behaviour of the sojourn time, for each customer,
as the entry queue length, x, varies.

Lemma 1 For all π ∈ T∞ and k ∈ N, Vk(x, π) is strictly increasing in x, in the sense
that for x∈{0, 1, . . . , B−2},

Vk(x + 1, π)− Vk(x, π)≥δx >0

uniformly in π.

For L∈N and q∈ [0, 1), an [L, q]-threshold decision rule, u(·), takes the form u(x) =
1{x < L}+q1{x = L} for x ∈ {0, 1, . . . , B−1}, where 1{·} is the indicator function. This
may be represented more compactly by [L, q], or indeed [g], where g = L + q. Of course,
for B<∞, [B] is equivalent to [g] whenever g > B.

A policy π in which the decision rule for each customer is given by [g], is denoted by
[g]∞: we call this a symmetric threshold policy.

The next two lemmas describe the behaviour of the sojourn time, for each customer,
and for each entry queue length, as a function of g.

Lemma 2 For each k∈N, and x ∈ {0, 1, . . . , B−1}
(i) Vk(x, [g]∞) is constant in g on [0, 1];
(ii) Vk(x, [g]∞) is strictly decreasing in g on [1, B].
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Lemma 3 Suppose that the inter-arrival times are exponential.
Then for every k∈N, x∈{0, 1, . . . , B−1}, Vk(x, [g]∞) is continuous in g on [0, B].

A symmetric Nash equilibrium policy (SNEP) is a policy which i) consists of identical
decision rules for each and every customer, ii) is a Nash equilibrium.

The proof of the following theorem is constructed by invoking the previously stated
lemmas.

Theorem Suppose that the inter-arrival times are exponential. Then in the class of
policies T∞,
(i) there exist a finite number of SNEPs;
(ii) at least one of the SNEPs is characterized by a non-randomized threshold.

It has been argued that Nash equilibria can give an indication of the likely ’operating
points’ of these kinds of systems. This claim is explored for our system using a simulation
procedure similar to that proposed in [2]. Consider a dynamic learning scheme in which
each customer bases their joining decision on data collected by a central entity prior to
its arrival to the system. Here it is assumed that the buffer size, B, is finite, and that a
proportion, p> 0, of the arrivals always enter the system whenever there is room in the
buffer. All other arriving customers follow the decision rule

joinQS with probability Sε(θ − V̂t(Xt)), (1)

where ε is a small positive parameter, Sε is an increasing function, with Sε(x) = 0 for
x ≤ −ε and Sε(x) = 1 for x ≥ ε, V̂t(x) is the empirical average (sample mean) sojourn
time of all customers who have exited QS by time t, but who entered it when the queue
length was x, and Xt represents the number in QS just before time t.

Simulation experiments suggest that when a unique (non-randomized) SNEP of the
stationary game exists, in the class T∞, then quantities such as the empirical averages and
simulated entrance probabilities, under the learning rule, show a close correspondence to
expected sojourn times and entrance probabilities under the SNEP in the associated sta-
tionary game. Convergence and stability properties in the case of multiple Nash equilibria
are currently under investigation; however, simulation experiments appear to suggest that
the SNEPs are viable poles of attraction and still provide a rough guide to the operating
points of the system.
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