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Abstract

Gale (1993) posed the question of whether there is necessarily an undominated,

envy-free allocation of a pie when it is cut into wedge-shaped pieces or sectors.  For two

players, we give constructive procedures for obtaining such an allocation, whether the pie

is cut into equal-size sectors by a single diameter cut or into two sectors of unequal size.

Such an allocation, however, may not be equitable—that is, give the two players exactly

the same value from their pieces.

For three players, we give a procedure for obtaining an envy-free allocation, but it

may be dominated either by another envy-free allocation or an envy-causing allocation.

A counterexample shows that there is not always an undominated envy-free allocation for

four or more players if the players’ preferences are not absolutely continuous with respect

to each other.  If we do make this assumption, then the existence question remains open

for four or more players.  For three players, the question of whether there exists an

undominated envy-free allocation is open whether or not the players’ preferences are

absolutely continuous with respect to each other.
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Cutting a Pie Is Not a Piece of Cake

Introduction

The general problem of fair division, and the specific problem of cutting a cake

fairly, have received much attention in recent years (for overviews, see Brams, Taylor,

and Zwicker, 1995; Brams and Taylor, 1996; Robertson and Webb, 1998; and Barbanel

and Brams, 2004).  Cutting a pie into wedge-shaped sectors, by contrast, has received far

less attention, though it would seem that the connection between cake-cutting and pie-

cutting is close.  Mathematically, if a cake is a line segment, it becomes a pie when its

endpoints are connected to form a circle.

In this paper, we assume that a pie is a disk, or filled-in circle, and all cuts are

made between the center and a point on the circumference (as one would cut a real pie).

These cuts divide a pie into sectors, exactly one of which is given to each player.

Gale (1993) asked whether there is necessarily an allocation of the sectors that is

envy-free and undominated.  An envy-free allocation is one in which each player receives

a sector that it believes is at least as desirable as that which any other player receives.  An

undominated allocation is one for which there is no other allocation in which at least one

player receives a sector it strictly prefers and the other players receive sectors they value

at least as much.

We answer Gale’s question affirmatively for two players by specifying

constructive procedures that yield envy-free and undominated allocations.  We do this for

both wedge cuts and diameter cuts, when the wedges are 180-degree sectors that divide

the pie exactly in half in surface area (or volume).  Unless otherwise stated, when we are

discussing wedge cuts and say that an allocation is undominated, we mean that it is
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undominated with respect to wedge-cut allocations.  A similar statement holds for

diameter cuts.

We begin by specifying a procedure for diameter cuts that produces an equitable

allocation.  An equitable allocation is one in which each player gets exactly the same

value from its piece as the other players get from their pieces.  We show that envy-free

allocations that are equitable need not be undominated, even for two players.

Next, we describe a variation of this procedure that yields an allocation that is

envy-free and undominated but not necessarily equitable.  Then, for two players, we give

a wedge procedure that produces an allocation that is envy-free and undominated.

For three players, we give a procedure for cutting a pie into three sectors such that

the resulting allocation is envy-free but not necessarily equitable or undominated.  In fact,

we give an example of an envy-free allocation produced by this procedure that is

dominated by another envy-free allocation as well as an allocation that causes envy, both

of which are undominated.  For pies in general, however, we do not know whether there

always exists a three-player undominated, envy-free allocation.

For four players, surprisingly, we do have an answer:  There may not exist such an

allocation.  While the players’ preferences are continuous in our counterexample, they are

not absolutely continuous with respect to each other.  We will say more about this later.

To summarize, for two players we have a procedure that yields an undominated

and envy-free allocation of a pie, and for four players we know that such an allocation

may not exist when preferences are not absolutely continuous with respect to each other.

For three players, Gale’s question remains open.
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Pie-Cutting Procedures

To begin the analysis, we make the following assumptions:

1. Goals.  The goal of the players is to maximize the minimum-value pieces

(maximin pieces) they can guarantee for themselves, regardless of what the

other players do.

Remark.  This implies that the players are risk-averse:  They never choose

strategies that might yield them more-valued pieces if these strategies entail the

risk of their getting less-valued pieces.

2. Measures.  Each player has a finitely additive, nonatomic probability measure

over the pie.

Remark.  Roughly speaking, the value of disjoint pieces of pie can be summed, any

piece of pie that has positive value to a player has a subpiece that has smaller

positive value to that player, and each player assigns a value of 1 to the whole pie.

Notice that the non-atomic nature of the measures guarantees that every player’s

measure assigns value zero to each radius of the pie.  This implies that the

preferences of the players, which are based on their measures, are continuous,

enabling us to invoke the Intermediate-Value Theorem.  Thus, for example,

imagine two adjacent wedge-shaped pieces, and some player values one piece

more than the other.  As the boundary separating these pieces rotates along the

circumference from the less-valued piece to the more-valued piece, there will be

some intermediate point where the player values the two pieces equally.
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3. Incomplete information.  The players do not know the preferences of other

players.

We next specify procedures that lead to an envy-free allocation of a pie using a

single diameter cut.  One procedure yields an equitable allocation, the other an

undominated allocation.  As we will see later, the undominated allocation may be

dominated by an allocation that uses wedge cuts.

At various points in the arguments that follow, we will claim that a certain graph

has a maximum value.  In all cases we consider, this is always justified by the Extreme-

Value Theorem: A continuous function on a finite closed interval achieves a maximum.

Two-Player Diameter Procedures

We give below two rules (D1 and D2) that give an envy-free and equitable

allocation, but this allocation need not be undominated.  When we substitute revised rules

D1' and D2' for D1 and D2, respectively, we obtain an envy-free and undominated

allocation, but this allocation need not be equitable.

D1.  Randomly choose a diameter of the pie, and randomly assign one of the two

pieces determined by this diameter to Player A and the other to Player B.  Rotate the

diameter 360 degrees.  As it rotates, draw two graphs.  At each point in the rotation, a

red graph indicates the value that Player A assigns to its piece, and a blue graph

indicates the value that Player B assigns to its piece.

Theorem 1.  The red graph and the blue graph have at least one point of

intersection.
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Proof.  Suppose, by way of contradiction, that this is not so.  Assumption 2

implies that the red and blue graphs are graphs of continuous functions.  If two such

graphs do not intersect, then one of the graphs must always be above the other.  Assume,

without loss of generality, that the red graph is always above the blue graph.  Since this is

true at the beginning and at the 180-degree point, additivity tells us that Player A assigns

greater value to the whole pie than Player B does.  But this contradicts our assumption that

all measures assign value 1 to the whole pie. Q.E.D.

Theorem 2.  For at least one point of intersection, both players will get a common

value of at least 50%.

Proof.  Any point of intersection corresponds to an allocation in which both

players get a common value.  It is easy to see that intersection points come in pairs,

separated by 180 degrees.  If both players get less than 50% at some intersection point,

then both players must get more than 50% at this intersection’s 180-degree pair.  Q.E.D.

D2.  Choose an intersection point that maximizes the common value of the players.

Make the diameter cut at this point, allocating to each player its preferred half, or either

half if the maximum is 50% for both players.

Theorem 3.  The resulting allocation is envy-free and equitable.

Proof.  Immediate from the construction.

We next extend D1 and revise D2 to give a rule that ensures that an envy-free

allocation is undominated.
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D1'. Randomly choose a diameter of the pie, and randomly assign one of the two

pieces determined by this diameter to Player A and the other to Player B.  Rotate the

diameter 360 degrees.  As it rotates, draw two graphs.  At each point in the rotation, a

red graph indicates the value that the Player A assigns to its piece, and a blue graph

indicates the value that Player B assigns to its piece.  Use these red and blue graphs to

draw two new graphs, one yellow and one green.  The yellow graph is the graph that

gives the minimum of the red and blue values at each point, and the green graph is the

graph that gives the maximum of the red and blue values at each point.

D2'.  Make the diameter cut that corresponds to the maximum value of the yellow

graph.  If the maximum of the yellow graph occurs at more than one point, choose the

point that has the largest (or a tied-for-largest) green value, and make the diameter cut at

this point.   Allocate to each player its preferred half.

We note, by assumption 2, that the red and blue graphs, and therefore the yellow

and green graphs, are graphs of continuous functions.  Hence, the Extreme-Value

Theorem applies.

Theorem 4.  The resulting allocation is envy-free and undominated.

Proof.  Assume, without loss of generality, that the resulting allocation occurs at a

point where the yellow graph (which is the minimum of the red and blue graphs) agrees

with the red graph, and that the value of the piece of pie corresponding to this point is

x%.  Thus, Player A obtains x%, which must be at least 50% by Theorem 2.  Then Player

B must obtain y% ≥ x%.  Hence, the resulting allocation is envy-free.  By D2', whichever

player receives the less-valued piece cannot obtain more than x%; and if one player
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receives x%, the other player cannot obtain more than y%.  Hence, the resulting

allocation is undominated.    Q.E.D.

The construction given by D1 and D2, which maximizes the common value of the

players, does not preclude there being a better allocation for both players if they value

their pieces differently.  Hence, the resulting allocation need not be undominated.  Nor

does the construction given by D1' and D2' require that the players receive pieces they

value equally, so the resulting allocation need not be equitable.

We next present two examples.  The first yields (i) an allocation that is envy-free

and equitable but not undominated and (ii) an allocation that is envy-free and

undominated but not equitable, which proves the following:

Theorem 5.  An envy-free allocation that is equitable need not be undominated,

and one that is undominated need not be equitable.

Proof.  Example 1.  We associate points on the circumference of the pie with the

numbers on a clock, indicating the degrees of each sector in parentheses.  Players A and

B associate the following values with two different sectors each that comprise 12 hours:

Player A: 11-1 o’clock (60o)—90%;     1-11 o’clock (300o)—10%.

Player B:  3-9 o’clock (180o)—60%;     9-3 o’clock (180o)—40%.

We assume that each player’s valuation is uniformly distributed within each sector.  The

initial assignments, as given by D1 or D1', are the diameter from 12 to 6 o’clock, with

Player A taking the 12-6 o’clock piece and Player B taking the 6-12 o’clock piece.  In

addition, we assume the rotation is clockwise.  The corresponding graphs are as in Figure

1 where, as labeled, the solid graph corresponds to Player A’s valuation and the dashed
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graph corresponds to Player B’s valuation.  (Thus, the solid graph is what we previously

called the red graph, and the dashed graph is what we previously called the blue graph.)

The two graphs intersect at three points: (0, 50), (180, 50), and (360, 50).  Of

course, the first and third of these points correspond to the same allocation.  Thus, there

are two different possible allocations that result when rules D1 and D2 are applied, both

of which result in each player’s receiving what it sees as 50% of the pie.  Thus, each of

these allocations is envy-free and equitable.  But it is clear from Figure 1 that each of

these allocations is dominated: Any rotation greater that 180 degrees and less than 360

degrees results in an allocation that is better for both players.
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In particular, note that the point (270, 60) is the maximum point on the minimum

graph (i.e., the graph that we previously called yellow).  This is the only point at which

the maximum is attained.  Thus, the application of rules D1' and D2' results in a rotation

of 270 degrees, giving an allocation in which Player A receives 60% of the pie and Player

B receives 94% of the pie, each according to its own valuation.  While this allocation is

envy-free and undominated, it is clearly not equitable.   Q.E.D.

We next show that an envy-free allocation may satisfy the two properties that it

did not simultaneously satisfy in Example 1.

Theorem 6.  An envy-free allocation may be equitable and undominated.

Proof.  Example 2.  Players A and B associate the following values with two

different sectors that comprise 12 hours:

Player A: 12-6 o’clock (180o)—40%;     6-12 o’clock (180o)—60%.

Player B:  4-8 o’clock (30o)—60%;     8-4 o’clock (330o)—40%.

As in Example 1, the initial assignments, as given by D1 and D1', are the diameter from

12 to 6 o’clock, with Player A taking the 12-6 o’clock piece and Player B taking the 6-12

o’clock piece.  The rotation is clockwise.  The corresponding graphs are as in Figure 2

where, as in Example 1, the solid graph corresponds to Player A’s valuation and the

dashed graph corresponds to Player B’s valuation.
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The two graphs intersect at the points (22.5, 42.5) and (202.5, 57.5).  (The

allocations corresponding to these points can be viewed as being obtained from each

other by having the players switch pieces: They are 180 degrees apart, and the sum of

each player’s valuation of its piece in these two allocations is 100%.)  Clearly, (202.5,

57.5) corresponds to an envy-free allocation and (22.5, 42.5) does not.  The former is the

envy-free and equitable allocation obtained from rules D1 and D2.  In this allocation, the

two players receive pieces of pie that they value equally.  This common value is 57.5%

and occurs at a rotation of 202.5 degrees.

In considering the result of applying rules D1' and D2', we see that something

very curious—and different from Example 1—occurs.  The point (202.5, 57.5) is the

maximum point on the minimum graph; hence, the application of these rules results in a



13

rotation of 202.5 degrees and an allocation in which each player receives 57.5% of the

pie, according to each’s own valuation.  Consequently, rules D1 and D2 result in the

same allocation as do rules D1' and D2'.  This allocation is envy-free, equitable, and

undominated.  Q.E.D.

Examples 1 and 2 together show that an envy-free allocation may be (i) equitable

but not undominated, (ii) undominated but not equitable, or (iii) both undominated and

equitable. An interesting question is whether allocations of wedge-shaped pieces can

dominate allocations of diameter pieces that are obtained using rules D1' and D2'.  The

answer is “yes,” as we will show in the next section.

Two-Player Wedge Procedure

In this section, we give four rules, W1, W2, W3, and W4, for obtaining a wedge

allocation that is undominated and envy-free.  After doing so, we use Example 2 to show

that such an allocation can dominate an allocation of the sort obtained in the previous

section.

W1.  Player A places two knives at radii such that the pieces of pie so determined

are each 50% of the pie, according to Player A.  Player A rotates the knives 360 degrees

around the pie, maintaining the 50% sizes, in its view.

W2.  Player B chooses the position of the knives such that one of the pieces so

determined is of maximal size in its view.

It is straightforward to show that the aforementioned piece will have a value of at

least 50% to Player B.  Thus, if we cut the pie at these knife locations and give Player B
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its preferred piece and Player A the other piece, then the allocation is envy-free.

However, it may be necessary to perform an additional operation to ensure that the

allocation is undominated.

W3.    Player B places the knives at the boundary of its maximal piece obtained in

W2.  Suppose that, in Player B’s view, this piece is y% of the pie.  Player B rotates the

knives 360 degree around the pie, maintaining this y% size in its view.

W4.  Player A chooses the position of the knives such that the other piece of the

pie (i.e., not the one whose size, according to Player B, is being maintained at y%) is of

maximal size in its view.  At this maximum value for Player A in the rotation, give Player

B the sector whose size it was maintaining at y%, and give Player A the other sector.

Theorem 7.  The resulting allocation is envy-free and undominated.

Proof. Suppose that Player A views its piece as x% of the pie.  By construction, x

≥ 50 and, as noted above, y ≥ 50.  Thus, the allocation is envy-free.  Also, by construction,

if Player B obtains y%, then Player A cannot obtain more than x%; and if Player A obtains

50%, then Player B cannot obtain more than y%.  It follows that if Player A obtains x%,

then Player B cannot obtain more than y% (because x ≥ 50).  Hence, the allocation is

undominated.  Q.E.D.

It may be that a wedge allocation dominates an allocation obtained using rules D1'

and D2' (which need only be undominated with respect to diameter cuts).  To illustrate, we

return to Example 2.  As we saw, rules D1' and D2' yield a diameter cut after a rotation of

202.5 degrees, and this allocation gives Players A and B a common value of 57.5%,

according to each’s own valuation.  This is dominated by the wedge allocation that gives
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the 8-4 o’clock sector to Player A and the 4-8 o’clock sector to Player B.  This allocation

gives Player A a value of (2/3)(60%) + (2/3)(40%) = 66 2/3% and Player B a value of

60% of the pie.

Three-Player Wedge Procedure

We next give a procedure, whose rules are stated in the next paragraph, for

dividing a pie into three sectors that results in an envy-free allocation.  Unlike the two-

player procedures, this procedure does not ensure either an equitable or an undominated

allocation.

Rules of three-player wedge procedure.  Player A rotates three knives around a pie,

each along a radius, maintaining a 1/3-1/3-1/3 allocation for itself.  Player B calls “stop”

when it thinks two of the pieces are tied for largest, which must occur for at least one set

of positions in the rotation (see below).  The players then choose pieces in the order C

first, B second, and A third.

Theorem 8.  The three-player wedge procedure yields an envy-free, but not

necessarily equitable or undominated, allocation.

Proof.  To show that there must be at least one set of knife positions in the rotation

such that Player B thinks there are two pieces that tie for most-valued, let us call the three

pieces determined by the beginning positions of the knives piece i, piece ii, and piece iii.

(These pieces will change as Player A rotates the knives.)  Let Player B specify its most-

valued piece at the start of the rotation.  If there is a tie, then we are done.  If not, then

Player A begins rotating the three radial knives.  We assume, without loss of generality,

that Player B’s most-valued piece at the start of the rotation is piece i, and that Player A
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rotates the three knives in such a way that piece i moves toward the original position of

piece ii.  Because, in Player A’s view, each of the three pieces is 1/3 of the pie, piece i will

eventually occupy the position of the original piece ii.  At this point, piece iii occupies the

original position of piece i, and hence Player B must think that this new piece iii is the

largest piece.  Because, in Player B’s view, piece i starts out largest and another piece

becomes largest as the rotation proceeds, it follows from continuity (assumption 2) that

there must be a position in the rotation when Player B views two pieces as tied for largest.

To see that the procedure gives an envy-free allocation, note that the first player to

choose, Player C, can take a most-valued piece, so it will not be envious.  If Player C takes

one of Player B’s tied-for-most-valued pieces, Player B can take the other one; otherwise,

Player B can choose either of its two tied-for-most-valued pieces.  Because Player A

values all three pieces equally, it does not matter which piece it gets.

But the existence of such an allocation does not imply that there is not another

allocation that dominates it.  For example, a rotation of the three knives by Player A could

break Player B’s tie of two largest pieces in a way that gives some players more-valued

pieces and no player a less-valued piece.  Finally, there is nothing in the construction that

ensures that all three players will value their pieces equally, so the procedure does not, in

general, give equitability.  Q.E.D.

We next give an example to illustrate the three-player wedge procedure.   Not only

does it show that that an envy-free allocation may be dominated by another envy-free

allocation, but it also shows that it may be dominated by an envy-causing allocation, in

which at least one player thinks that another player receives a larger portion than it does.
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Theorem 9.  If there are three players, an envy-free allocation may be dominated

by another envy-free allocation and an envy-causing allocation.

Proof. Example 3. Players A, B, and C associate the following values with two

different sectors each:

Player A: 12-4 o’clock (120o)—2/3;     4-12 o’clock (240o)—1/3.

Player B: 12-4 o’clock (120o)—1/2;     4-12 o’clock (240o)—1/2.

Player C: 12-2 o’clock (60o)—1/2;       2-12 o’clock (300o)—1/2.

We start by applying the 3-person wedge procedure.  One set of positions of Player A’s

three knives that cuts the pie into three equal-valued sectors for A is (1, 3, 8) o’clock,

because A obtains the following values from each sector:

1-3 o’clock: (1/2)(2/3) = 1/3;

3-8 and 8-1 o’clock: (1/4)(2/3) + (1/2)(1/3) = 1/3 each.

If (1, 3, 8) o’clock are, in fact, the initial positions of Player A’s three knives, then Player

B will call “stop” immediately, because two of the sectors (3-8 and 8-1 o’clock) tie for

largest for B [value: (1/4)(1/2) + (1/2)(1/2) = 3/8 each].  By contrast, the 1-3 o’clock

sector is worth (1/2)(1/2) = 1/4 to B.

Now Player C will choose the 8-1 o’clock sector, whose value to it is (2/5)(1/2) +

(1/2)(1/2) = 9/20, which is more than the 1-3 o’clock sector [value: (1/2)(1/2) +

(1/10)(1/2) = 3/10] or the 3-8 o’clock sector [value: (1/2)(1/2) = 1/4].  Next, Player B will

choose the 3-8 o’clock section (3/8), which is more than the 1-3 o’clock sector (1/4); and

Player A will be left with the 1-3 sector (1/3).  In sum, the 3-person wedge procedure

yields values of
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(1/3, 3/8, 9/20) = (.333…, .375, .450) to (A, B, C) in sectors (1-3, 3-8, 8-1).                    (i)

This is an envy-free allocation, as we have shown.  However, it is dominated by cutting

the pie at (2, 6, 12), which yields values of

(5/12, 3/8, 1/2) = (.416…, .375, .500) to (A, B, C) in sectors (2-6, 6-12, 12-2).               (ii)

This is not only an envy-free allocation but also an undominated one.  (We leave the

proof of the latter to the reader, because our main purpose is to illustrate that one envy-

free allocation may dominate another one.)

We next show that (i) may be dominated by an envy-causing allocation.  Consider

the undominated, envy-free allocation (ii), and switch the 2 o’clock cutpoint to 2:30

o’clock.  The resulting allocation yields values of

(1/3, 3/8, 21/40) = (.333…, .375, .525) to (A, B, C) in sectors (2:30-6, 6-12, 12-2:30).  (iii)

This allocation is not envy-free: A envies C for getting what it thinks is 5/12 in the 12-

2:30 o’clock sector, which is more than its 1/3 allocation in the 2:30-6 o’clock sector.  But

(iii) dominates wedge-procedure allocation (i), which is envy-free.  Q.E.D.

Although envy-causing allocation (iii) dominates envy-free allocation (i), it does

not dominate envy-free allocation (ii).  Indeed, (iii), like (ii), is undominated, which we

leave for the reader to show.

We leave open the question of whether there is always a three-player undominated,

envy-free allocation of a pie.  For cake, the answer is “yes,” and there are two procedures,

using two cuts, for finding such an allocation (Stromquist, 1980; Barbanel and Brams,

2004).  In fact, every envy-free allocation of a cake using the minimal number of cuts (n-
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1 if there are n players) is undominated (Gale, 1993; see also Brams and Taylor, 1996,

pp. 150-151), but there is no known procedure for finding such an allocation if n > 3.

Four Players: There May Be No Undominated, Envy-Free Allocation

In previous sections, we made no assumption about whether the players’ measures

are absolutely continuous with respect to each other.  Measures on a pie are absolutely

continuous with respect to each other if, whenever a piece of pie has positive measure to

one player, it has positive measure to all players.  We will say that preferences are

absolutely continuous with respect to each other if the underlying measures are

absolutely continuous with respect to each other.  When this property is not satisfied,

there may be no allocation that is both envy-free and undominated.

Theorem 10.  If there are four players, there exists a pie for which there is no

allocation that is both envy-free and undominated.

Proof. Example 4.  The players associate the following values with two different

sectors each, but these sectors do not comprise 12 hours:

• Players A & B: 12-3 o’clock (90o)—50%;     6-9 o’clock (90o)—50%;

• Players C & D: 3-6 o’clock (90o)—51%;       9-12 o’clock (90o)—49%.

Suppose, by way of contradiction, that P is an allocation of this pie to Players A, B, C,

and D that is envy-free and undominated.

Claim 1.  Allocation P cannot give Player A or Player B a piece of both the 12-3

o’clock sector and the 6-9 o’clock sector.
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Proof.  Assume this is not so.  Then allocation P must give Player A or Player B

either all the 3-6 o’clock sector or all the 9-12 o’clock sector.  Assume, without loss of

generality, that Player A receives all the 9-12 o’clock sector.  Then envy-freeness

demands that Players C and D receive equal portions of the 3-6 o’clock sector.  But then

Players C and D each view their pieces as at most 25 1/2% of the pie and are, therefore,

envious of Player A, which receives 49% of the pie in their view.  This contradicts our

assumption that P is envy-free and thus establishes the claim.

Claim 2.  Allocation P cannot give both Player A and Player B a piece of either

the12-3 o’clock sector or the 6-9 o’clock sector.

Proof.  Assume this is not so and suppose, without loss of generality, that

allocation P gives both Player A and Player B a piece of the 12-3 o’clock sector, and that

Player B’s piece is clockwise of Player A’s piece.  By Claim 1, neither Player A nor

Player B can receive a piece of the 6-9 o’clock sector.

Assume, without loss of generality, that Player C’s piece is the next piece

clockwise from Player B’s piece.  Since P is undominated, the knife separating Player

B’s and Player C’s pieces must be at 3 o’clock (else a movement of this knife would

produce an allocation that dominates allocation P ).  Likewise, the knife separating Player

D’s and Player A’s pieces must be at 12 o’clock.

Envy-freeness implies that the knife separating Player A’s and Player B’s pieces

must be at 1:30, splitting the 12-3 o’clock sector equally.  Thereby, each of these players

gets a piece that it views as 25% of the pie.

Where is the knife separating Player C’s and Player D’s pieces?  This knife must

be at 7:30, thereby splitting the 6-9 o’clock sector into equal pieces of size 25% of the pie
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from the perspectives of Players A and B.  Any other position of this knife would make

Players A and B envy either Player C or Player D.  But then Player D will be envious of

Player C, because Player D views its piece as 49% of the pie, but it views Player C’s

piece as 51% of the pie.  This contradicts our assumption that P is envy-free and thus

establishes the claim.

Continuing with the proof of the theorem, it follows from the two claims that we

may assume, without loss of generality, that Player A receives a piece from the 12-3

o’clock sector, that Player B receives a piece from the 6-9 o’clock sector, that Player C’s

piece is the next piece clockwise from Player A’s piece, and that Player D’s piece is the

next piece clockwise from Player B’s piece.  An argument similar to that used in the

proof of Claim 2 shows that because allocation P is assumed to be undominated, the

knives separating the players’ pieces must be at 3, 6, 9, and 12 o’clock.  It follows that

allocation P gives the players pieces that they value as follows:

Players A & B: 50% each;     Player C: 51%;     Player D: 49%.

Because Player D views Player C’s piece as being 51% of the pie, Player D envies Player

C.  This contradicts our assumption that P is envy-free and so proves the theorem.

Q.E.D.

It is trivial to extend the proof of Theorem 10 to more than four players.  For

example, for five players, simply add a new sector that Player E views as 100% of the

value of the pie and the other four players see as valueless.

The measures that underlie the players’ preferences in Theorem 10 are not

absolutely continuous with respect to each other.  By contrast, all our earlier theorems
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required no assumption about absolute continuity—they held with or without this

assumption.  This leaves two open questions:

Open Question 1.  For three players, does there always  exist an undominated,

envy-free allocation of a pie (with or without  the assumption that the preferences are

absolutely continuous with respect to each other)?

Open Question 2.  For four or more players, does there always exist an

undominated, envy-free allocation of a pie if the players’ preferences are absolutely

continuous with respect to each other?

We think it intriguing that there is

• a definite answer to Gale’s question (yes) when there are two players with or

without absolute continuity;

• no answer yet when there are three players without absolute continuity;

• a definite answer (no) when there are four or more players without absolute

continuity; and

• no answer yet when there are four or more players with absolute continuity.

Conclusions

We began by describing two envy-free pie-cutting procedures for two players

using diameter cuts, one of which gave an equitable allocation and the other of which gave

an undominated allocation.  The equitable allocation need not be undominated, and the

undominated allocation need not be equitable.  Moreover, even the undominated

allocation need not be undominated with respect to wedge cuts.  However, we showed that
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there exists a procedure that yields an undominated, envy-free  allocation using wedge

cuts, which answers Gale’s question affirmatively for two-player allocations of a pie.

We next described a three-player envy-free wedge procedure, but the allocation it

gives may be dominated.  In fact, we gave an example showing that an envy-free

allocation obtained with this procedure is dominated by both another envy-free allocation

and an envy-causing allocation, both of which are undominated.  Finally, we concluded

with two open questions whose answers would fill major gaps in our understanding of

pie-cutting, which is certainly not a piece of cake.
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