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Abstract

We investigate multi-player discounted repeated games with pri-
vate monitoring and communication. After each period, every player
observes a random private signal whose distribution depends on the
common action taken. We do not assume that all signal-profiles are
always observed with a positive probability. However, we do assume
that deviating from certain actions might reduce the contents of in-
formation received by the deviator. Under this assumption we obtain,
via sequential equilibria, a folk theorem with Nash threats. In equilib-
rium players are provided with incentives to report a deviation when
they detect one. Moreover, in equilibrium, the deviating player has
an incentive to confess his deviation. This is done by making a pun-
ishment that follows a confession lighter than a punishment that does
not follow a confession. Thus, a confession induces a pardon.

For getting other results, the proof method is combined with the
results of Compte(1998) and Kandori and Matsushima(1998) who as-
sumed that there are at least three players and full support of the sig-
nal profiles (i.e., that every signal profile has a positive probability).
The combined method provides a larger set of sequential equilibrium
outcomes than each method separately.



1 Introduction

The literature on discounted repeated games can be divided into two branches:

games with perfect monitoring and games with imperfect monitoring. In the

model of perfect monitoring each player observes after each period the ac-

tions played by all the others. Aumann and Shapley (1994) and Rubinstein

(1994) characterize the equilibrium payoffs in such games with no discount.

They state that every feasible and individually rational payoff vector is an

equilibrium payoff. This result is known as Folk Theorem. Fudenberg and

Maskin (1986, 1991) analyzed discounted games and obtained a Folk theorem

for perfect equilibrium.

Games with imperfect monitoring are further divided into games with

public monitoring and games with private monitoring. Games with public

monitoring are games where the players observe after each period a commonly

known random signal − a public signal. Players are assumed to have a

perfect recall and they are allowed to condition their actions on previous

data, including their own payoffs and signals. A player’s strategy specifies
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how she should choose an action at any time and after every eventuality. A

public strategy is such that actions are conditioned only on the history of

public signals and not on the player’s own previous actions.

In a perfect public equilibrium players are restricted to employ only public

strategies. The set of perfect public equilibria payoffs of those games has

been thoroughly investigated (Green and Porter(1984), Abreu et al (1990),

Fudenberg et al(1994)). When the strategies of the players are not restricted

to public strategies, and the players are allowed to condition their choices

on the private histories of their own actions, the set of equilibria payoffs can

be strictly larger than with public strategies. This phenomenon might occur

when private histories can serve as a correlation means between the players’

actions (see for instance, Mailath et al(2002)).

Games with imperfect private monitoring are games where each player

observes a random private signal after each period. Such games present new

difficulties. One of the prominent ones is to precisely characterize the ability

to correlate between players who try to punish a deviator by using their

private signals.

One way to overcome these difficulties is to allow the players to publicly

communicate, as done by Matsushima (1990). After every stage the players
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are allowed to convey public messages that may depend on the history of their

private signals. Ben-Porath and Kahneman (1996) proved a Folk theorem for

a model where each player can be perfectly observed by at least two others.

In this model the players use a communication channel to report a deviation

when they detect one. Compte (1998) and Kandori and Matsushima (1998)

obtained Folk theorems for games with three players or more, when the

players are allowed to communicate. The latter two papers assume a full

support on the set of signals. That is, each signal profile is observed with a

positive probability after every history of actions. In addition, they assumed

that any deviation induced a distribution over signal-profiles that allowed

the non-deviating players to statistically detect the deviation and, moreover,

the identity of the deviator.

In this paper we investigate multi-player repeated games with imperfect

private monitoring where the players are allowed to communicate. The main

results of the paper are based on an assumption that refers only to payoffs,

called extreme payoffs, which are extreme points of the set of all possible

payoffs (the feasible set). We assume that every deviation from a common

action, whose payoff is extreme, is detectable in one of two ways. The first

way is to directly ”observe” it: the deviation induces a positive probability
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for at least one profile of private signals (of the conforming players) which

is assigned a zero probability under the distribution corresponding to the

agreed upon joint action.

The second way to detect a deviation is the indirect one: the deviation

may cause a loss of information that the deviator would otherwise receive.

In equilibrium paths that we later construct, the players are supposed to

publicly report their private signal after each period. Any report of a sig-

nal profile that is not consistent with the equilibrium path, signifies that a

deviation had occurred to the players .

A signal of a deviator is called sufficiently informative if it has two prop-

erties. First, it lets her know that her opponents’ signals are consistent with

the equilibrium path; and second, it allows her to complete these signals with

a signal of her own, so that all together they are consistent with the equi-

librium path. A sufficiently informative signal enables a player to get away

with a deviation. We assume that, having deviated from an action profile

whose payoff is extreme, a deviator observes a sufficiently informative signal

with a probability strictly less than 1.

A model in which every profitable deviation is detected with a positive

probability, is a version of the model of standard-trivial observation, intro-
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duced by Lehrer (1990). In this information structure for any two players,

i and j, either player i fully observes the action of player j, or obtains no

information of it. Lehrer characterized the set of equilibria payoffs for the

two-players undiscounted infinitely repeated game, when the information is

deterministic and symmetric - either both players are fully informed of the ac-

tion played or both receive the null signal. This model is a public monitoring

model. In contrast with Lehrer’s model, here the signals can be correlated,

as long as there is a positive probability for the deviations to be detected.

Another paper which has an information structure that resembles ours, is

that of Renault and Tomala (1998). They analyzed undiscounted repeated

games where each player observed the actions of a subset of players.

Our construction of the equilibrium path is similar to that of Fudenberg

and Maskin(1991) for the perfect observation case. In this equilibrium path

the players are instructed to play a sequence of pure actions whose discounted

average payoff approaches the desired one, and for which the continuation

payoff is always within a predetermined ε-distance from that desired payoff.

This way, since our desired payoff is strictly Pareto-dominating some one-

period Nash equilibrium payoff, for a sufficiently small ε , the continuation

payoff will also Pareto-dominate the same one-period Nash equilibrium pay-
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off. Hence punishments using the one-period Nash equilibrium are always

effective punishments.

In both ways of detecting a deviation it could happen that the signal

profile reported is inconsistent with the equilibrium path, but does not specify

the identity of the deviator. Since the punishments will be independent of the

identity of the deviator, they will be enforced in any case. In addition, when

deviation is directly detected, it may happen that the player who observes a

signal that indicates a deviation knows that he is the only one who knows that

a deviation was detected. In such a case he could ”overlook” the deviation,

in an attempt to avoid the punishment (that might hurt him as well). By

introducing confessions we make this kind of behavior unprofitable.

We assume that each player has a sufficient number of possible public

messages. In order to provide the players with an incentive to convey the

proper messages, we create three types of punishment phases having three

different durations. During any punishment phase, a one-period Nash equi-

librium is played. A short punishment phase will take place when first, all

the players but the deviator announce a combination of signals which means

that a deviation took place and second, the deviator confesses a deviation;

a punishment phase of medium-length takes place when only the deviator
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confesses (and the combination of signals of the other players is consistent

with the agreed upon action); and a long punishment phase occurs when the

deviator does not confess while the joint signal reported is inconsistent with

the equilibrium path instructions.

If the deviator ”confesses” the deviation, the harshest punishment he can

get is the medium punishment, but if he does not confess, he might get

the long one. The difference in duration between the medium and the long

punishment phases induces the deviator to ”confess” his deviation even if

the deviation was detected with a small probability. The opponents, know-

ing that whenever they observe the signal-profile indicating a deviation the

deviator will confess, are induced to ”report” their true signals. After the

punishment, the players restart the equilibrium path (in case it is not the

long punishment, which is eternal).

A punishment phase is triggered by both the deviator’s confession and his

opponents’ reports. Thus, for a player observing the signal which indicates a

deviation, overlooking the deviation is unprofitable since it is accompanied by

a confession of the deviator. For a deviator who receives a signal that is not

sufficiently informative, trying to avoid punishment by not confessing is un-

profitable because of the positive probability the deviation will be detected.
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In Ben Porath and Kahneman (1996) and Renault and Tomala (1998) the

continuation payoff of each player depends on the reports of at least two of his

opponents. Therefore, ”overlooking” a deviation might lead to contradicting

reports, and the players reporting would then be punished. In our paper we

also rely on comparisons of two sources of information about a deviation. We

reward reports of deviations by reducing the length of the punishment when

they are announced simultaneously with the deviator’s confession.

In our construction, since the players punish only in case a deviation in-

deed took place, punishments that do not preserve efficiency can be used

without decreasing the equilibrium path payoff. To keep efficiency in the

full-support of signal-profiles case, Compte(1998) and Kandori and Mat-

sushima(1998) assume three players or more - they demonstrated that one

can create incentives for players to report their signals by making each

player’s continuation payoff independent of his own message. In case there is

a need to reduce another player’s payoff as a result of the message, efficiency

can be kept by giving the ”surplus” to a third player. Observe that the kind

of construction found in Kandori and Matsushima and Compte is applica-

ble only in cases of three players or more. The difference in the monitoring

assumptions allows our results to be applicable also to two-player games.
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In the following section we detail the model, in Section 3 we prove the

main result that establishes a Nash-threat folk theorem. In section 4 we inte-

grate our results with those of Kandori and Matsushima(1998) and Compte(1998),

to obtain a richer set of sequential equilibria payoffs.

2 Preliminaries

The model outlined below features n-player repeated games with stochastic

private signals. After each period, the players observe private signals, and

after observing their private signals, the players simultaneously send public

messages.

2.1 The Stage Game

In the stage game, players move simultaneously and each player i ∈ N chooses

an action ai from a finite set of actions Ai. After actions are played, each

player i observes a signal, yi which is not observed by the opponents. Let n be

the number of players, |N |. Let Yi be the finite set of possible private signals

for player i. A signal profile is an n-tuple y = (y1, ..., yn) ∈ Y = Πi∈NYi.

Each action profile a = (a1, ..., an) ∈ A ≡ ×i∈NAi induces a probability
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distribution over signal profiles. Let p(·|a) be the common distribution of

the private signals, conditioned on the common action a. Let (a−i, a
′
i) ∈

×j 6=iAj×Ai be the action profile where all the players but i follow the action

profile a, and player i is playing a′i. Let y−i ∈ Y−i = ×j 6=iYj be the signal

profile of the opponents of player i. Let p−i(·|a) be the common distribution

of the signals of the opponents of player i when the common action taken is

a. Let qi(y−i|a, yi) be the probability that the opponents of player i received

the signal profile y−i when the action profile was a and the signal player i

received was yi.

Each player i’s mean payoff gi(a) depends on the action profile played.

The realized payoff can be dependent on the signals, and in general is not

known to the player.

We allow players to communicate with each other. After choosing actions

and observing their private signals, the players simultaneously and publicly

announce messages. Player i announces a message taken from the finite set

Mi. Thus, a profile of messages is (m1, ..., mn), where mi ∈ Mi for i = 1, ..., n.
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2.2 The Repeated Game

At each date t = 1, 2, ... the stage game is played and private signals are

observed. At the end of period t, the private history of player i consists of

player i’s past actions, past private signals, and the public messages: ht
i =

(ai(1), yi(1), w(1), ..., ai(t), y
i(t), w(t)). We denote by hi(0) the null private

history of player i. We denote by h the sequence of actions, signals and

messages taken so far (the history of the game), and by H the set of all

possible histories. A pure strategy (σi, τi) for player i is a pair of sequences

of maps , {σt
i}∞t=1, {τ t

i }∞t=1, where σt
i maps each history that ends with the

public messages, to an action in Ai to be taken in the next period, and τ t
i

maps each history that ends with a private signal, to the public message the

player should announce.

Formally, a strategy is (σt
i , τ

t
i ),

σt
i : ×t′=1,..,tAi ×t′=1,..,t Yi ×t′=1,..,t (W (1), .., W (n)) → Ai

τ t
i : ×t′=1,..,tAi ×t′=1,..,t−1 Yi ×t′=1,..,t−1 (W (1), .., W (n)) → Yi

Each strategy profile (σ, τ) = ×i∈N(σi, τi) generates a probability distri-

bution over future streams of actions, payoffs and messages, which in turn

induces a distribution over future payoffs. Players are assumed to discount

future payoffs with a common discount factor δ.
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Player i’s average discounted expected payoff from σ is

vi(σ, τ) = (1− δ)E[
∑

t≥1 δt−1gi(a(t))].

2.3 Sequential Equilibria

A strategy profile (σ, τ) is a Nash equilibrium if and only if for any player i

and for any strategy (σ′i, τ
′
i), vi(σi, τi) ≥ vi((σ

′
i, τ

′
i)(σ−i, τ−i)).

An assessment is a pair (σ, µ), where σ is a profile of behavioral strategies

and µ is a function that assigns to every information set a probability measure

on the set of histories in the information set. We shall refer to µ(hi, h) as the

beliefs of the players, the probabilities a player assigns to the history h ∈ H

conditional on the private history hi being observed.

The assessment (σ, τ, µ) is sequentially rational if for every player i ∈ N

and for every information set of player i, the strategy of player i is a best

response to the strategies of the other players, given the information set.

An assessment is consistent if there is a sequence ((σn, τnµn))∞n=1 of as-

sessments that converges to (σ, τ, µ) in Euclidian space and has the properties

that each strategy profile (σn, τn) is completely mixed (meaning that it as-

signs positive probability to every action at every information set) and that

each belief system µn is derived from (σn, τn) using Bayes’ rule.
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An assessment is a sequential equilibrium if it is sequentially rational and

consistent.

2.4 Observation Assumption

We shall call a private signal observed by a deviating player sufficiently infor-

mative if it enables the deviator to choose a private signal that will complete

the signals of her opponents to a signal profile that is consistent with the

agreed upon action. The signal will need to indicate that the opponents’

common signal does not indicate a deviation and to allow choosing a private

signal that will complete any signal-profiles that the opponents might have

(assuming the opponents did not deviate and given the private signal) to a

common signal that is consistent with the equilibrium path.

We assume that every profitable deviation from a pure action profile

whose payoff is an extreme point of the set of feasible payoffs induces a

probability strictly less than one for the deviator to observe a sufficiently

informative signal.

Formally, let EX ∈ A be the set of action profiles whose payoff is an

extreme point of the set of feasible payoffs.
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Definition 1 A signal yi of player i, following a deviation a′i from the com-

mon action profile a is sufficiently informative if the following holds: There

exists y′i ∈ Yi such that for every y′−i ∈ Y−i such that p(y′−iyi|a−i, a
′
i) > 0

implies p(y′−i, y
′
i|a) > 0.

We make the following assumption:

Assumption 1: Every profitable deviation from a pure action profile

a ∈ EX induces a probability strictly less than one for the deviator to observe

a sufficiently informative signal.

Assumption 1 is equivalent to assuming that every profitable deviation

from a pure action profile a ∈ EX is detectable.

2.5 The Observation Assumption - Examples

We give examples of games where this assumption is satisfied.

The first example is a simple partnership game. We shall give two ex-

amples of monitoring structure for this game that satisfy our assumption.

In this game there are two partners, each one of them can ”work” (w) or

”shirk” (s)1. The expected payoffs from the actions are given in table 1:

1This example appears in Fudenberg et al(1994)
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w s

w (1, 1) (−1, 2)

s (2,−1) (0, 0)

Since the profitable deviations are only from ”work” to ”shirk”, we shall

concentrate on deterring only such deviations.

The first example of an observation mechanism that satisfies our as-

sumptions for this game is a variation of the standard-trivial model. In

the standard-trivial model the signals of the players are either the action

taken by the opponent or a null signal. If there is always a positive prob-

ability that the opponent observes a signal indicating the action, then the

condition is fulfilled (in fact, it is enough that the signal indicating the action

is observed with a positive probability only in profiles that are a profitable

deviation from action profiles whose payoffs are in EX). We don’t need to

make any assumption about the correlation of the signals, so they can be

perfectly correlated (which gives a public-monitoring game), independent, or

any other form.

In the independent signals case, for example, when a player observes a

signal detecting a deviation, he knows that the deviator does not know the
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deviation has been detected. We shall use the one-period equilibrium payoff

(0, 0) as a punishment, so the punishment will be costly for the punisher as

well. In this case, we will need to motivate a player observing a deviation to

report it, even though the punishment is costly, and even though he knows

that the deviator does not know that the deviation has been detected.

The second example of an observation mechanism that satisfies our as-

sumptions for this game is the following:

Following the action profile (w, w), the players observe with probability

1/3 each one of the following profiles: (a, b), (c, d) and (e, f); following the

action profiles (w, s) and (s, w), each one of the following profiles with prob-

ability 1/3: (a, b), (c, b), (a, f); and following the action profile (s, s), with

probability 1/3 each one of the profiles (a, f), (c, f), (c, b).

Assume that the action the players are supposed to play is (w,w) and

player 1 deviates to (s, w). After the actions are played and the signals are

observed, the players are instructed to publicly report their private signal.

If player 1, after deviating, observes the signal c, then he can report observ-

ing a, knowing that player 2 will report b, so that the public messages will

be consistent with the equilibrium path instructions. However, if player 1

observes the private signal a, then there is no message he can convey with-
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out risking exposing the deviation: if he conveys a message saying that he

observes a, there is a probability 1/2 that player 2 observed f (hence will

report observing f) and together the messages will mean that a deviation

occurred, and if he conveys the message e and player 2 observed b the same

conclusion will be reached - the deviation will be detected. It is easy to check

that in this model all profitable deviations induce a positive probability for

the deviator to observe a signal that is not sufficiently informative.

In another example of a three-players game, player 1 chooses Up or Down,

player 2 chooses Left or Right, and player 3 chooses matrix A or B:

A L R

U (2, 2, 2) (0, 3, 0)

D (3, 0, 0) (0, 0, 0)

B L R

U (0, 0, 3) (0, 0, 0)

D (0, 0, 0) (0, 0, 0)

The only profitable deviations in this game are the deviations of all three

players from the common action U,L,A.
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The following distribution of signals will fulfil assumption 1:

When the players play U,L, A they can observe each of the following

signal profiles with probability 1/3: (a, b, c), (e, f, g), (h, i, j) (a signal profile

(a, b, c) means that player 1 observes a, player 2 observes b and player 3 ob-

serves c). Under any other action profile, the signal profile will be (a, f, j)

with some positive probability, and the other three profiles with some posi-

tive probability for each of them as well. Each player alone cannot know if a

deviation took place, but sharing the signals of the opponents of a deviator

will detect it. For example, when player 2 observes f after the action profile

(U,L, A) was to be played, he cannot know if the signal profile is (e, f, g) and

no deviation took place, or (a, f, j) meaning that there was a deviation. In

fact, if he didn’t deviate himself he will believe that no deviation occurred,

and that the signal profile is (e, f, g). If the deviator observes his correspond-

ing private signal from the profile (a, f, j) then his signal is not sufficiently

informative, since he doesn’t know if the common signal is consistent with

the instructed action, U,L, A, or a part of the signal profile which detects

deviations, (a, f, j). In addition, in this case, the identity of the deviator is

not specified by the signal profile itself. The punishments we construct will

be independent of the identity of the deviator, hence there is no need to know

18



the identity of the deviator, knowing that somebody deviated is enough.

3 Communication, Deviations and Confessions

In this section we shall prove the Nash-Threat Folk Theorem. We shall in-

troduce the proof, and then discuss the connections between our equilibrium

construction and that of Fundenberg and Maskin(1991).

3.1 Nash-Threat Folk Theorem

The main idea of our equilibrium construction is to provide a player with an

incentive to ”confess” a deviation if she indeed deviated and to ”report” a

deviation if she observed it.

Denote by V the set of feasible payoffs, by V ∗ the set sequential equilibria

payoffs and by V ∗∗ the set of feasible payoffs Pareto dominating one-period

equilibrium of the repeated game.

Theorem 1 When the players are allowed to communicate, V ∗∗ ⊆ V ∗.

Proof.

Let v = (v1, v2) ∈ V ∗∗. We shall follow the pure-action equilibrium path,

as constructed by Fudenberg and Maskin. In their equilibrium path the
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continuation payoff is always within an ε distance of v. The exact ε that we

shall use is dependent on the payoffs and the information structure, as will

be shown in the following.

The equilibria strategy we construct is to follow the equilibrium path as in

Fudenberg and Maskin, and after each period convey a public message that

informs the opponents of the private signal that was observed, until a devia-

tion from this path has occurred. If a player deviated and observes a message

that is not sufficiently informative, he conveys a special message,”confessing”

his deviation, a message that informs the opponents that he deviated in the

last period.

To create the proper incentives to convey these messages (that could

trigger a punishment phase), three different punishments are constructed: a

”short” punishment in case both the deviator confessed his deviation and

his opponents conveyed a private messages profile that indicates that a de-

viation took place; a ”medium-length” punishment in case only the deviator

conveyed his confessing message; and an ”eternal” punishment in case the

signal profile reported is inconsistent with the equilibrium path, but no player

confessed to a deviation.

The three possible punishments will be three durations of punishment
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phases when all players play the one-period equilibrium, followed by re-

starting the equilibrium path. The length (number of periods) of the short

punishment will be L1, of the medium L2 and the long punishment will last

forever. Without loss of generality, we shall assume that the dominated one-

period equilibrium payoffs are 0 for all players. The lengths of punishments

will be the same for the different deviations of the different players, and

therefore there is no need to specify who was the deviator in case that there

was no confession. The punishments are the same.

Let G be the maximal one-period payoff over all players. Let 1 − p be

the maximal probability, over all players and all profitable deviations from

all common actions whose payoffs are in EX, that the deviator will observe

a signal that is sufficiently informative (that he will ”get away” with the

deviation). We shall induce punishment whenever the signal observed by the

deviator is not sufficiently informative.

Now, with probability at least p the deviator will have a signal that is not

sufficiently informative. When the signal is not sufficiently informative, then

every choice of the deviator of a message to convey leads with a positive prob-

ability to detecting the deviation (because the signal profile reported will be

inconsistent with the equilibrium path). Let that (positive) probability be r.
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Let r′ be the minimum of the r’s, over all players, and all their combinations

of deviation and private and not sufficiently informative signals.

We shall describe the three punishment phases - short in case both the

deviator’s opponents report a signal combination that is inconsistent with the

agreed upon common action and a signal of confession is observed, medium in

case there was only a confession and long, in case the signal profile announced

is inconsistent with the equilibrium path instructions, but no confession was

announced.

From the deviator’s point of view, when his signal is not sufficiently in-

formative, confessing will be followed, at worst, with a medium punishment,

(a ”pardon”). Sufficiently large difference between the long and the medium

punishments will induce the deviator to confess. From the deviator’s oppo-

nents point of view, if before sharing the private signal, the opponent does

not know that his private signal will help detecting a deviation - then there

is no harm in announcing it. If he does know, then the following argument

holds: if his signal is a part of a signal profile which indicates a deviation,

then the deviator cannot have a signal that is sufficiently informative, hence

he will confess. So the choice is between reporting and continuing to the

short punishment and not reporting, which will result in the medium-length
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punishment. Any difference between the short and the medium punishment

will suffice to induce reporting a deviation.

For the description above to be an equilibrium, it should be that for all

players:

When the deviator observes a signal that is not sufficiently informative,

confessing is more profitable than not confessing:

(1) vM
i > (1− r′)(vi + ε)

Staying in the equilibrium path is more profitable than deviating (when

deviating, with probability at most 1 − p there is no punishment, and with

probability p there is at least the small punishment):

(2) vi − ε > G(1− δ) + δ(1− p)(vi + ε) + δpvS
i

Reporting is more profitable than not reporting:

(3) vS
i > vM

i

where,

(4) vS
i = δL1vi

(5) vM
i = δL2vi

We need to show that for δ close enough to 1, there are values for vS
i and

vM
i which solve (1), (2) and (3) for all the players.
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First, we note that since r′ > 0, we can find vS
i and vM

i such that

(1− r′)vi + 1
2
r′vi < vS

i < (1− r′)vi + 3
4
r′vi

(1− r′)vi + 1
4
r′vi < vM

i < (1− r′)vi + 1
2
r′vi

We get the following inequality:

(*) vM
i > (1− r′)vi

In addition, we have:

(**) vS
i < (1− r′)vi + 3

4
r′vi < vi

Inequality (*) is inequality (1) for ε = 0; inequality (**) is inequality (2)

for ε = 0 and δ = 1; and inequality (3) is also satisfied. Since the inequalities

are satisfied strictly and since they are continuous in δ and ε, then for δ close

enough to 1 and ε close enough to 0 they will be satisfied as well. We might

need to further increase δ′ in order to have enough flexibility for choosing

proper L1 and L2 such that:

(1− r′)vi + 1
2
r′vi < δL1vi < (1− r′)vi + 3

4
r′vi

(1− r′)vi + 1
4
r′vi < δL2vi < (1− r′)vi + 1

2
r′vi
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3.2 The Connection to Fudenberg and Maskin(1991)

We use the equilibrium-path description of Fudenberg and Maskin, however,

we obtain a weaker result - they obtain all the feasible individually rational

payoffs as perfect equilibrium payoffs while we obtain only those Pareto dom-

inating one-period equilibrium payoffs. The reason is that we use a different

punishment system because of the imperfect monitoring. Their punishments

are to minimax the deviator for a number of periods. Since in our construc-

tion we rely on the players reporting the deviations of their opponents, we

cannot trivially use their method since in general the player reporting a de-

viation can profit from minimaxing the alleged deviator, which would trigger

false reports.

4 Combined Theorem - Constant and Mov-

ing Support

In the papers of Kandori and Matsushima(1998) and Compte(1998), the

authors prove several Folk Theorem for games with full support of the signals

(all signal-profiles are observed with a positive probability after every action
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profile) and communication, when the number of players is at least 3. These

results can be combined with ours in several ways, to enlarge the set of payoffs

that can be supported as sequential equilibria payoffs. We first present those

papers’ results and main ideas, then two examples to demonstrate the synergy

between their methods and ours, and then the combined theorem.

4.1 The Results of Kandori and Matsushima (1998),

and Compte (1998)

Both the paper of Kandori and Matsushima(1998) and the paper of Compte(1998)

prove folk theorem for games with private monitoring, when communication

is allowed and with full support of the private signals profiles. Both papers

use dynamic programming techniques and the assumption of at least three

players. The papers use delay of the communication (meaningful communi-

cation is carried on only every k periods) to achieve efficiency.

Here are sufficient conditions under which there exists a folk theorem:

First assumption: Every deviation of a player i from the common action

minimaxing player j, j 6= i, is either not profitable or statistically detectable

by player j’s opponents.
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Officially: Let µi be the minimax profile for player i, when µi
j is the

(possibly mixed) strategy of player j when player i is to be minimaxed.

(A1) - For all i and j 6= i, if there is a mixed strategy αj ∈ ∆Aj such that

p−j(·|µi) = p−j(·|µi
−j, αj) then gj(µ

i) ≥ gj(µ
i
−j, αj).

Second assumption: All mixed strategy deviations of every player i, are

statistically detected by the i, j opponents, for every j 6= i. Define, for each

pair i 6= j and each action profile a ∈ A, Qij(a) = {p−ij(a−i, a
′
i)|a′i ∈ Ai{ai}}.

This is a collection of distributions of ij-opponents’ signals, generated by

player i’s deviations from the profile a.

(A2) - For each player i 6= j and each a ∈ EX,

p−ij /∈ conv(Qij(a) ∪Qji(a))}.

Third assumption: For every two players i and j 6= i, the opponents

of i and j can statistically discriminate player i’s (possibly mixed) devia-

tions from player j’s. The deviations of the different players create different

distributions of the signals of their opponents.

(A3) - For each pair i 6= j and each a ∈ Ex(A),

conv(Qij(a) ∪ {p−ij(a)}) ∩ conv(Qji(a) ∪ {p−ij(a)}) = {p−ij(a)}

Let v∗i be the minimax value of player i and define the feasible and indi-
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vidually rational payoff set by

W = {v ∈ co(g(A))|v ≥ v∗}. Assume perfect support of the private

signals profiles.

The main theorem is:

Theorem (Kandori and Matsushima): Suppose that there are more

than two players (n > 2) and the information structure satisfies condition

(A1), (A2) and (A3). Also suppose that the dimension of W is equal to

the number of players. Then, any interior point in W can be achieved as

a sequential equilibrium average payoff profile of the repeated game with

communication, if the discount factor δ is close enough to 1.

4.2 Using Confessions and Reports Method to Sup-

port Dynamic Programming Methods

Consider the following game:

L l r R l r

t (1, 0, 0) (0, 1, 0) t (0, 0, 1) (0, 0, 0)

b (0, 0, 0) (0, 0, 1) b (0, 1, 0) (1, 0, 0)

Assume that the signals to the three players are according to assumptions

28



(A1) (A2) and (A3).

The one-period equilibrium is when each player randomizes with proba-

bility half for each action, and the payoff is (1/4, 1/4, 1/4).

Now consider the following addition to the above game:

L l r R l r

t (1, 0, 0) (0, 1, 0) t (0, 0, 1) (0, 0, 0)

b (0, 0, 0) (0, 0, 1) b (0, 1, 0) (1, 0, 0)

bb (5,−7,−7) (5,−7,−7) bb (0, 0, 0) (0, 0, 0)

Note that now there is an additional equilibrium (bb, l, R) with the payoff

(0, 0, 0).

Assume that we add now another private signal for player 2 . Assume that

when player 3 plays L and player 1 plays bb, this additional private signal

is observed by player 2 and that the signal is observed with probability 0

when player 1 does not play the additional action, bb. Since the convex-hull

of the original game is Pareto dominating the one-period equilibrium, we can

still have the entire set of feasible individually rational payoffs as sequential

equilibria payoffs. The set of feasible individually rational payoffs are all in

the convex-hull of the original game (without the additional action). We can
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get all the payoffs of the original game through the method of Kandori and

Matsushima, and in case player 1 deviates to bb when player 3 plays L, we

can use our method of confession and reports - player 3 will convey a signal

whose meaning is that a deviation took place, and player 1 will confess (the

one period equilibrium that will be used as a punishment can be (0, 0, 0)).

Under that construction, when player 3 plays R, there is no reason for player

1 to play his additional action, bb.

4.3 Supporting Confession and Reports Method with

Dynamic Programming Methods

Consider the following version of the prisoners’ dilemma. The signals can

take the values 1 or 0:

c d

C (2, 2) (1− L, 2 + H)

D (2 + H, 1− L) (1, 1)

Kandori and Matsushimam (1998) proved folk theorem for this specific

game, under the following monitoring-technology conditions:

- The signals of the players are independent given any pure action profile.
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- The marginal distributions of the private signal of the players are sym-

metric, and p1(1|D, d) > p1(1|D, c) and p1(1|D, c) > p1(1|C, c).

Now consider the game with additional actions to the players:

a b c d

C (3, 1− 0.5L) (0,−1) (2, 2) (1− L, 2 + H)

D (0,−1) (0,−1) (2 + H, 1− L) (1, 1)

E (0,−1) (−1,−1) (−1, 0) (−1, 0)

The minimax payoff is (0, 0)

In order to support the entire efficient frontier as sequential equilibria

payoffs, the common action (C, a) should be supported (see figure 1) . The

payoff (3, 1 − 0.5L) does not dominate the one-period equilibrium payoff

(1, 1), however, if we assume that a deviation of player 2 from a to c or d

when player 1 plays C induces a positive probability player 2 to observe a

signal that is not sufficiently informative, we can still support this common

action.
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(3,1-0.5L)

Figure 1. - Prisoner’s Dilemma with additional actions

To see how, first note that now the entire convex-hull of {(2, 2), (1−L, 2+

H), (2 + H, 1−L), (1, 1)} is individually rational. Let this convex-hull be U ,

Looking carefully at the construction of Kandori and Matsushima, one can

verify that it still holds for the entire U .

Second, note that the payoff (3, 1 − 0.5L) is Pareto dominating a two-

dimensional non-empty subset of U . We can now replace the three lengths

of punishments with three different continuation payoffs. There is a γ > 0.5

such that the payoff (2 + 0.5H, 1− γL) is in the interior of U . We shall pick

our three possible continuation payoffs, which are analog to the three lengths

of punishment on the line connecting (2+0.5H, 1−γL) and (3, 1−0.5L). The

continuation payoff (2+0.5H, 1−γL) will be played in case player 1 announces

observing the signal that is observed when player 1 deviates to playing a and

player 2 is not confessing (long punishment) and two other points, closer to

(3, 1− 0.5L) on this line can be chosen to supply the incentives for player 1
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to confess and for player 2 to report a deviation (short and medium-length

punishments analogs) if the players are patient enough. The logic of the

proof is the same.

In this case, we support the confession-and-report construction not by

the one-period equilibrium punishments, but rather by a set of payoffs that

is itself achieved via dynamic programming construction. Note that this set

has to be of dimension n.

4.4 The General Construction

In general, it is easy to see that one can use the following algorithm to find out

the set of payoffs that can be supported as sequential equilibria payoffs when

communication is allowed (denote it E), by combining dynamic-programming

and confessions-and-reports methods:

1. Let E be the convex-hull of the one-period Nash Equilibrium payoff.

2. Add to E the convex-hull of the payoffs of all sub-matrices which:

a. Follow the conditions of Kandori and Matsushima,

b. Any deviation from the sub-matrix is either unprofitable or detectable.

c. Pareto dominating either one-period equilibrium payoff or three payoffs

in the existing E such that one Pareto dominates the second which in turn

33



Pareto dominates the third.

3. Go back to 2.

The proof follows the same logic as the two examples above.
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