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Abstract

R. J. Aumann and J. H. Drèze (2005) define a rational expectation
of a game G as an expected payoff of some type of Player 1 in some
belief system for G in which common knowledge of rationality and
common priors obtain. Our goal is to characterize the set of rational
expectations in terms of the game’s payoff matrix. We provide such a
characterization for a specific class of strategic games, which we call
semi-elementary.

1 Definitions and Notations

Let G be a strategic n-person game, Si the strategy set of player i, and Ui the
payoff functions from S1 × . . .× Sn to R. A belief system B for G consists
of:
(1) For each player i, a finite set Ti, whose members ti are called types of i.
(2) For each type ti of each player i,

(a) a strategy of i in G, denoted si(ti), and
(b) a probability distribution on (n−1)-tuples of types of the other play-

ers, called ti’s theory.
A common prior (CP) is a probability distribution π on T1× . . .×Tn that

assigns positive probability to each type of each player, and such that the
theory of each type of each player is the conditional of π given that the player
is of that type. A type of a player is rational if the strategy it prescribes
maximizes his expected payoff given his theory. Rationality is commonly
known (CKR) if this is so for all types of all players.
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We analyze G from the viewpoint of Player 1. A rational expectation in
G is the expected payoff of some type of the Player 1 in some belief system
for G in which CKR and CP obtain. We wish to characterize the set of
rational expectations.

The doubled game 2G is the n-person game in which Player 1’s strategy
set is S1×{1, 2}. That is, there are two copies of each of Player 1 strategies,
the payoff functions are identical to the original game functions and do not
depend on which copy is used.

Notations
Let G be a strategic game and µ a correlated equilibrium of G.

(1) For every s1 ∈ S1 s.t. µ(s1) :=
∑

s−1∈S−1
µ(s1, s−1) > 0 let (µ | s1) be

the conditional probability distribution vector over S−1 given µ.
That is, (µ | s1) :=

∑
s−1∈S−1

[µ(s1, s−1)/µ(s1)]es−1 (where es−1 is the

appropriate unit vector in R|S−1|).

(2) Let v be a probability distribution vector over S−1. For every s1 ∈ S1

we define Hs1(v) to be the payoff on s1 given v.
That is, Hs1(v) :=

∑
s−1∈S−1

vs−1U1(s1, s−1).

(3) For every strategy s1 ∈ S1 we define a set C(s1) ⊆ R as follows:
α ∈ C(s1) if α is a conditional correlated equilibrium payoff for the strat-

egy s1, i.e., α ∈ C(s1) iff there exists a correlated equilibrium µ of G s.t.
Hs1(µ | s1) = α.

(4) We denote the set of conditional payoffs of Player 1 by C(G). We
note that C(G) =

⋃
s1∈S1

C(s1).

Definitions
Given a strategic game G, we say that it is:

(1) Elementary, if it has a correlated equilibrium that assigns positive
probability to each strategy of each player, and all the inequalities associated
with this equilibrium are strict.

(2) Full, if it has a correlated equilibrium that assigns positive probability
to each profile of strategies.

(3) Semi-elementary, if it is a full game and it has a correlated equi-
librium s.t. all the inequalities related only to Player 1 are strict. That is,
there exists a correlated equilibrium π s.t. π(s) > 0 for every s ∈ ∏

i∈N Si,
and

Hs1(π | s1) > Hs
′
1
(π | s1)foreverys1, s

′
1 ∈ S1, s1 6= s

′
1.
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Before we quote our main results, we note that every elementary game
is also a semi-elementary game.

Proof: Let G be an elementary game. By definition, G has a correlated
equilibrium µ that assigns positive probability to each strategy of each player,
and in which the associated inequalities are strict. Let S be the set of strategy
profiles in G and θ a correlated strategy that assigns equal probabilities to all
strategy profile. Then for sufficiently small ε > 0, λ := (1− ε)µ + εθ assigns
positive probabilities to each strategy profile, and the associated inequalities
are still strict. So G is a semi-elementary game.

Therefore the semi-elementary games is a larger family of games and all
of our results, related to semi-elementary games, valid also for an elementary
games.

The Main Results
Theorem 1: For every game G the set of rational expectations is closed.

Theorem 2: For a semi-elementary game G the set of rational expectations
is the closed interval

[ max
v∈∆(S1)

min
s−1∈S−1

U1(s1, v), max
s∈S1×...×Sn

U1(s)].

We will also show that Theorem 2 fails for full games.

2 Proofs

Fundamental Proposition
Let G be a strategic game. We denote by π(G) the convex polytope of

the correlated equilibria set. Now let λ ∈ π(G) be a correlated equilibrium
and s1 ∈ S1 s.t. λ chooses s1 with positive probability that is λ(s1) > 0.
Then there exist vertices of π(G)-µ

′
, µ

′′
s.t. µ

′
and µ

′′
choose s1 with positive

probability and

Hs1(µ
′ | s1) ≤ Hs1(λ | s1) ≤ Hs1(µ

′′ | s1).

In other words, for every correlated equilibrium λ ∈ π(G) and a strategy
s1, chosen by λ in a positive probability, we can find vertices µ

′
, µ

′′ ∈ π(G) s.t.
the conditional payoff of Player 1, given that the mediator tries to implement
the strategy s1, is grater if he uses µ

′′
and smaller if he uses µ

′
.

We will prove first the following lemma.
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Lemma 2.1 : Let vj ∈ Rn
++ ( Rn

++ = Rn
+ \ {0}), j = 1, ...,m, and let

{aj}j=1,...,m be positive constants and u ∈ Rn. Denote y =
m∑

j=1
ajvj, we define

a function Eu(·) : Rn
++ → R by

Eu(v) =
< v, u >

|| v ||1
where || · ||1 is simply the sum over the absolute value of the coordinates
(note that Eu(·) is well defined on Rn

++).

Then
min

1≤j≤m
Eu(vj) ≤ Eu(y) ≤ max

1≤j≤m
Eu(vj).

Proof: We use induction on m to show that Eu(y) is a convex combination
of Eu(vj). For m = 1 it is trivial. For m = 2 , y = a1v1 + a2v2

Eu(y) =
a1 < v1, u > +a2 < v2, u >

a1 || v1 ||1 +a2 || v2 ||1 .

Multiply both numerator and denominator by 1
||v1||1||v2||1 to get

Eu(y) =

a1<v1,u>+a2<v2,u>
||v1||1||v2||1
a1

||v2||1 + a2

||v1||1
.

Now let A1 = a1

||v2||1 and A2 = a2

||v1||1 , Aj > 0 , j = 1, 2, so we get Eu(y) as a

convex combination of Eu(v1) and Eu(v2). That is,

Eu(y) =
A1Eu(v1) + A2Eu(v2)

A1 + A2

and we’re done.

For m > 2 , y =
m∑

j=1
ajvj. Let y

′
=

m−1∑
j=1

ajvj. By the induction assumption

there exists a ∈ ∆m−2 s.t. Eu(y
′
) =

∑m−1
j=1 ajEu(vj). But y = 1 · y′ + amvm,

so from the m = 2 case we get 0 ≤ α ≤ 1 s.t.

Eu(y) = αEu(y
′
) + (1− α)Eu(vm)

so

Eu(y) = α
m−1∑

j=1

ajEu(vj) + (1− α)Eu(vm)
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and we get y as a convex combination of Eu(vj).

This ends the proof of lemma 2.1.

Proof of the fundamental proposition: From the fact that π(G) is a convex
polytope we can write every λ ∈ π(G) as a convex combination of the vertices

of π(G). Therefore λ =
k∑

j=1
ajµj, where a = (a1, ..., ak) ∈ ∆k−1 and {µj}1≤j≤k

is the vertices set of π(G) .
Let λs1 be the reduced vector attained from λ by eliminating all the

values that do not involve the strategy s1 that is λs1 =
∑

s−1∈S1
λ(s1, s−1)es−1 .

Because λ is a distribution vector and λ(s1) > 0 we deduce that λs1 ∈ R
|S−1|
++ .

W.l.o.g. we can assume that µs1
j 6= 0 and aj > 0 for every 1 ≤ j ≤ m

where m ≤ k. So we get µs1 as a positive combination of {µs1
j }1≤j≤m; that is,

λs1 =
∑k

j=1 ajµ
s1
j . We denote by u ∈ S−1 the appropriate payoff vector to s1,

so
Hs1(λ | s1) = Eu(λ

s1)

Using lemma 2.1 we complete the proof of the proposition.
Corollaries from the fundamental Proposition

Corollary 2.1: The conditional correlated equilibrium payoffs set, C(G),
is closed.

We will prove corollary 2.1 based on the following lemma.

Lemma 2.2: For every s1 ∈ S1, C(s1) is a convex set.

Proof: Let s1 ∈ S1 if C(s1) = ∅ then we are done. Suppose now α, β ∈
C1(s1) , α ≤ β. We have to prove that [α, β] ⊆ C1(s1). Let µα, µβ be a
correlated equilibrium s.t. Hs1(µα,β | s1) = α, β respectively. From the
convexity of the correlated equilibrium set we deduce that for every 0 ≤ t ≤ 1,
µ(t) = (1− t)µα + tµβ is a correlated equilibrium.

Define f : [0, 1] → R as follows: f(t) = Hs1(π(t) | s1). f is a continuous
function as a composition of continuous functions, and for every 0 ≤ t ≤ 1,

f(t) ∈ C(s1).

But f(0) = α and f(1) = β, so from the Intermediate Value Theorem for
continuous functions we get

[α, β] ⊆ Range(f) ⊆ C(s1).
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Proof of Corollary 2.1 : Let V (s1) be the subset of vertices in π(G) that
ascribe positive probabilities to the strategy s1. If V (s1) is a nonempty subset
then we deduce from lemma 2.2 and the fundamental proposition lemma that

C(s1) = [ min
µ
′∈V (s1)

Hs1(µ
′ | s1), max

µ
′∈V (s1)

Hs1(µ
′ | s1)].

But C(G) =
⋃

s1∈S1
C(s1) so it is closed as a finite union of closed sets.

Proof of theorem 1: Aumann and Drèze proved an existence of a one-to-
one correspondence between the rational expectations in the game G and
the conditional correlated equilibrium payoffs in the doubled game 2G. That
is α is a rational expectation in G if and only if there exists a correlated
equilibrium of the game 2G s.t. α is a conditional payoff in some strategy of
Player one.

Therefore α is a rational expectation of Player 1 iff α ∈ C(2G). In
particular, we get the rational expectations set as a closed set. So we get
Theorem 1 as a corollary of the fundamental proposition.

Corollary 2.2: Using algorithms of linear programming we can character-
ize the rational expectations set.

Proof: We have just seen how C(2G) is determined by the vertices of
π(2G). Now using the simplex algorithm (for example) we can run through
the vertices and compute the relevant values.

Theorem 2
We will divide the proof of Theorem 2 into two parts. On part a we will

prove the convexity of the rational expectations set for a semi-elementary
games. On part b we will show that the rational expectations set is the
interval

[ max
v∈∆(S1)

min
s−1∈S−1

U1(s1, v), max
s∈S1×...×Sn

U1(s)].

Definition: For a strategic game G, we will say that the strategy s1 ∈ S1

is a best reply for v ∈ ∆(S−1) if for every s
′
1 ∈ S1 : Hs1(v) ≥ Hs

′
1
(v).

Let G be a semi-elementary game. We will show that the rational
expectations set is a convex (closed) set.

We will first prove the following proposition:

Proposition 2.1: For every semi-elementary game G and a best-reply
distribution vector v ∈ ∆(S−1) for some strategy s1. there exists a correlated
equilibrium µ of 2G, s.t. (µ | s∗1) = v (where s∗1 , s∗∗1 are the two copies of the
strategy s1 in 2G).
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Proof: Let π be the correlated equilibrium attained from G being semi-
elementary. We will define a correlated equilibrium µ on 2G s.t. (µ | s∗1) = v.

Let δ be s.t. 0 < δ < mins−1∈S−1{π(s1, s−1) | π(s1, s−1) > 0}. First we
show that there exists a small enough 0 < ε ≤ δ s.t. for every s

′
1 6= s1:

(∗) ∑

s−1∈S−1

(π(s1, s−1)−εvs−1)·U1(s1, s−1) ≥
∑

s−1∈S−1

(π(s
′
1, s−1)−εvs−1)·U1(s

′
1, s−1)

Now both sides of (∗) are continuous functions of ε. For ε = 0 the
inequality in (∗) is strict and both sides of (∗) are monotonic in ε. As a
result for every s

′
1 6= s1 we can choose 0 < ε (s,

1) s.t. the inequality in (∗)
holds for every 0 ≤ ε ≤ ε(s

′
1). If we define

ε = min{ε(s,
1) | s

′
1 ∈ S1, s

′
1 6= s1}

we will get the desired ε.
We define µ as follows:
For every s

′
1 6= s1 and for every s−1 ∈ S−1

µ(s
′∗
1 , s−1) = π(s

′
1, s−1)

µ(s
′∗∗
1 , s−1) = 0

and for s1

µ(s∗∗1 , s−1) = π(s1, s−1)− εvs−1

µ(s∗1, s−1) = εvs−1 .

Lemma 2.3: The above µ is a correlated equilibrium of 2G.

Proof: For any player other than player 1 all the required inequalities
hold because π is a correlated equilibrium. Now for s

′
1 6= s1 we have the

same argument for the relevant s
′∗
1 . So what we have left to show is that the

inequalities hold for the two copies of s1.
From the definition of ε and the fact that the inequalities in (∗) hold, for

every s
′
1 6= s1 we have

Hs1(µ | s∗∗1 ) ≥ Hs
′
1
(µ | s∗∗1 ).

From the fact that v is a best reply to s1 we deduce directly from the definition
that
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Hs∗1(µ | s∗1) = Hs∗1(v) ≥ Hs
′
1
(v) = Hs

′
1
(µ | s∗1).

We get µ as a correlated equilibrium of 2G and we proved Lemma 2.3. But
(µ | s∗1) = v so we have also proved proposition 2.1.

Part a of Theorem 2:

proof: Let G be a semi-elementary game and let α, β be rational
expectations of G, α ≤ β. We would like to show that the interval [α, β]
is included in the rational expectations set of G.

From the fact that α, β are rational expectations we got µα and µβ

correlated equilibria of 2G and s1, s
′
1 ∈ S1 s.t.

Hs1(µα | s1) = αand

Hs
′
1
(µβ | s

′
1) = β.

We define functions v(t) : [0, 1] → ∆|S−1|−1 and f(t) : [0, 1] → R as follows:

v(t) = t(µβ | s′1) + (1− t)(µα | s1)

f(t) = max
s1∈S1

Hs1(v(t)).

Hs1(v(t)) is a continuous function for every s1 ∈ S1. Therefore f(t) is a
continuous function as a maximum over a finite set of continuous functions.
Now for every 0 ≤ t ≤ 1 v(t) is a best-reply distribution vector for some
s1 ∈ S1.

From proposition 2.1 we’ve got a correlated equilibrium λ(t) of 2G s.t.

(λ(t) | s∗1) = v(t).

So f(t) is a rational expectation for every 0 ≤ t ≤ 1, that is f(t) ∈ C(2G).
But f(0) = α and f(1) = β so we can deduce from the continuity of f(t)
that [α, β] ⊆ C(2G).

Part b of Theorem 2
Let G̃ be the two-person zero-sum game derived from G where the strat-

egy set of the row player is S1 and the strategy set of the column player is
S−1. The payoff function is g(s1, s−1) = U1(s1, s−1). Let

a = max min G̃, b = max{U1(s) : s ∈ S1 × . . .× SN}
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Proof of part b: Aumann and Dreze showed that for every game G, C(2G)
is bounded from below by a and that in an elementary game b ∈ C(2G). Us-
ing proposition 2.1 it will be easy to generalize this also to semi-elementary
games.

Lemma 2.4. For every semi-elementary game G, b ∈ R(G).

Proof: Let G be a semi-elementary game and let s1 ∈ S1, s−1 ∈ S−1 s.t.
b = U1(s1, s−1). Now let v ∈ ∆(S−1) be defined by

vs−1 = 1andvs
′
−1

= 0, fors
′
−1 6= s−1.

By the definition of v we get

b = Hs1 (v) ≥ Hs,
1
(v)foreverys

′
1 ∈ S1.

Therefore v is best reply to s1. So by proposition 2.1 there exists a correlated
equilibrium π of 2G s.t. (π | s∗1) = v and we get b as a rational expectation
of Player 1, b ∈ C(2G).

Lemma 2.5. For a semi-elementary game G, a ∈ C(2G).

Proof: a is the value of the game G̃ defined above. So by the min max
theorem we have y∗ = {y∗s−1

}s−1∈S−1 an optimal strategy for the column
player that assures him an expected payoff smaller than the value for every
strategy of the row player. x∗ = {x∗s1

}s1∈S1 an optimal strategy for the row
player that assures him an expected payoff greater than the value for every
strategy of the column player. So we have

(#)
∑

s−1∈S−1

y∗s−1
g(s1, s−1) = Hs1(y) ≤ a, foreverys1 ∈ S1.

On the other hand, for s1 ∈ S1 s.t. x∗s1
> 0 we have of course equality in

(#), so we get y∗ as a best-reply vector for that s1. According to proposition
2.1. we have a correlated equilibrium π of 2G s.t. (π | s∗1) = y∗. So we get a
as a rational expectation, a ∈ C(2G).

We proved that a, b ∈ C(2G), and they are also the boundaries of C(2G)
from below and above respectively. From part a of Theorem 2 (convexity of
C(2G) for semi-elementary games) we deduce that C(2G) = [a, b].

9



3 Failure of Theorem 2 without Semi-elementarity

We ask ourselves whether we can go one step further and abandon the de-
mand for semi elementarity, i.e., whether the conclusion of Theorem 2 holds
for full games that are not semi-elementary games.

The answer to this question is, unfortunately, no.

Take for example the following game:

G =
1,−1 −1, 1
−1, 1 1,−1
−4, 0 2, 0

We note first that the game G
′

=
1,−1 −1, 1
−1, 1 1,−1

is a two-person zero-

sum game, that has a unique correlated equilibrium, that is also a Nash
equilibrium assigns equal probability of 1

4
to every profile of strategies in G

′
.

Secondly, every correlated equilibrium of the game G that assigns positive
probability to one of the first two strategies has to satisfy the same constraint
of the game G

′
, i.e., the reduction of every correlated equilibria of the game

G, that assigns positive probability to one of the first two strategies, to the
game G

′
is a correlated equilibrium of G

′
.

Therefore we can deduce that the set of correlated equilibria of G is the
following:

(1−α)
4

(1−α)
4

(1−α)
4

(1−α)
4

αβ α(1− β)

for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1
4
.

Proposition: The set of conditional correlated equilibrium payoffs for
Player 1 in the game 2G is the same as in the game G.

Proof: It is clear that the set of payoffs for the two copies of the third
strategy is the same in G and in 2G. This follows from the fact that for every
distribution vector v ∈ ∆(S−1) where the third strategy is a best-reply to
it,there exist a correlated equilibrium π of G s.t. (π | s3

1) = v.
Now let µ = {µij}1≤i≤6,1≤j≤2 be a correlated equilibrium of 2G that as-

cribes a positive probability to one of the copies of the first two strategies.
Let a =

∑2
i,j=1 µij, a > 0. we can define a correlated equilibrium λ of 2G

′

using µ as follows:

λij =
1

a
µijfor1 ≤ i ≤ 4, 1 ≤ j ≤ 2
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The fact that λ is a correlated equilibria follows from:
a. µ being a correlated equilibrium of 2G.
b. Given that Player one is playing the third strategy the payoff of Player

two is zero.
Now every two-person zero-sum game has a unique rational expectation,

(Aumann and Drèze) which is the value. In this case namely zero thus

C(G) = C(2G) = {0} ∪ [
1

2
, 2].

And convexity fails.
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