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Abstract. Present economic theories make a common-knowledge assump-

tion that implies that the first or the second-order beliefs determine all higher-

order beliefs. We analyze the role of such closing assumptions at finite orders

by instead allowing higher orders to vary arbitrarily. Assuming that the space

of underlying uncertainty is sufficiently rich, we show that the resulting set

of possible outcomes, under an arbitrary fixed equilibrium, must include all

outcomes that survive iterated elimination of strategies that are never a strict

best reply. For many games, this implies that, unless the game is dominance-

solvable, every equilibrium will be highly sensitive to higher-order beliefs, and

thus economic theories based on such equilibria may be misleading. More-

over, every equilibrium is discontinuous at each type for which two or more

actions survive our elimination process.
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“Game theory . . . is deficient to the extent it assumes other fea-

tures to be common knowledge, such as one player’s probability

assessment about another’s preferences or information. I foresee

the progress of game theory as depending on successive reduc-

tions in the base of common knowledge required to conduct use-

ful analyses of practical problems. Only by repeated weakening

of common knowledge assumption will the theory approximate

reality.” Wilson (1987)

1. Introduction

Most economic theories are based on equilibrium analysis of models that are

closed after specifying the first and second-order beliefs, i.e., the beliefs about

underlying uncertainty and the beliefs about other players’ beliefs about un-

derlying uncertainty. These models assume that the specified belief structure is

common knowledge, i.e., conditional on the first and the second-order beliefs,

all of the players’ higher-order beliefs are common knowledge. Since these as-

sumptions may easily fail in the in the actual incomplete-information situation

modeled, these theories may be misleading when the impact of higher-order be-

liefs on equilibrium behavior is large. There are examples that suggest that this

impact might indeed be large in some situations (see Rubinstein (1989), Fein-

berg and Skrzypacz (2002), and also Milgrom and Weber (1985)). To overcome

this fundamental deficiency, one may want to close the model at higher orders,

specifying more orders of beliefs, and hence weakening the common knowledge

assumption. As Wilson (1987), one might hope that by specifying more and

more orders of beliefs, the theory would “approximate reality.” We demonstrate

that this is not the case. We show that regardless of how many orders of beliefs

are specified, the closing assumption is required to gain any predictive power

beyond that of iterated elimination of strategies that are never strict best reply.
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Consider a situation where players have incomplete information about some

payoff-relevant parameter. Each player has a probability distribution about

the parameter, which represents his first-order beliefs, a probability distribu-

tion about other players’ first-order beliefs, which represents his second-order

beliefs, and so on. Imagine a researcher who has computed an equilibrium of

this game, where a type of a player is an infinite hierarchy of his beliefs,1 and

would like to make a prediction about the action of a player i according to this

equilibrium. Fix a type ti of player i as his actual type, and write A1i (ti) for the

set of all actions that are played by some alternative type of i whose first-order

beliefs agree with ti. This set is the set of actions that the researcher cannot rule

out if he only knows the first-order beliefs and assumes that the player plays

according to the equilibrium. Similarly, write Ak
i (ti) for the set of actions that

the researcher cannot rule out by looking at the first k orders of beliefs. Write

A∞i (ti) for the limit of these (decreasing) sets as k approaches infinity, i.e., the

set of all actions that cannot be ruled out by the researcher by looking at (ar-

bitrarily many) finite orders of beliefs. This definition can be put another way.

Consider two researchers who agree on the equilibrium played. One researcher

is certain that player i is of type ti. The other (slightly suspicious) researcher

is willing to agree with this assessment for the first k orders of beliefs but does

not have any further assumption. The set Ak
i (ti) is precisely the set of actions

that will not be ruled out by the second researcher.

In a model that is closed at order k, all higher-order beliefs are determined

by the first k orders of beliefs and the assumption that is made when the model

is closed. We wish to emphasize the sensitivity of the model’s predictions to the

closing assumption. In a given equilibrium, the model predicts a unique action

for each possible set of beliefs at orders 1 through k, namely the equilibrium

1For technical reasons, we assume that beliefs at each finite order have countable support.
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action for the complete type implied by this set of beliefs and the closing as-

sumption. But in the general model, every other action in Ak
i (ti) is played by

a type whose first k orders of beliefs will be exactly as this type (but will fail

the closing assumption.) Therefore, we cannot rule out any action in Ak
i (ti)

without resorting to the closing assumption.

Our main result gives a lower bound for Ak
i (ti). We assume that the space

of underlying uncertainty is rich enough so that our fixed equilibrium has full

range, i.e., every action is played by some type. For countable-action games,

we show that Ak
i (ti) includes all actions which survive the first k iterations of

eliminating all actions which are never a strict best reply under ti. In particu-

lar, A∞i (ti) includes all actions that survive iterated elimination of actions that

cannot be a strict best reply. On the other hand, Ak
i (ti) is a subset of actions

that survive the first k iterations of eliminating strictly dominated actions, and

hence A∞i (ti) is a subset of rationalizable actions. When there are no ties,

these elimination procedures lead to the same outcome, and therefore A∞i (ti)

is precisely equal to the set of rationalizable outcomes. We extend this charac-

terization to nice games, where the action spaces are one-dimensional compact

intervals and the the utility functions are strictly concave in own action and

continuous–as in many classical economic models.

To illustrate the main argument in the proof of the lower bound, we now

explain whyA1i (ti) includes all actions that survive the first round of elimination

process. Let t̃i vary over the set of types that agree with ti at first order (i.e.,

concerning the underlying parameter) but may have any beliefs at higher orders

(i.e., concerning the other players’ type profile.) Our full range assumption

implies that there are types t̃i with any beliefs whatsoever about other players’

equilibrium action profile. Given any action ai of i that is a strict best reply

to his fixed belief about the parameter and some belief about the other players’
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actions, there is a type t̃i who has these beliefs in equilibrium, and therefore must

play the strict best reply, ai, in equilibrium. This argument will be formalized

as part of an inductive proof of the main result.

For general games, Nash equilibrium has weak epistemic foundations (Au-

mann and Brandenburger (1995)) in comparison to iterative admissibility (Bran-

denburger and Keisler (2000)) and rationalizability (Bernheim (1985), Pearce

(1985)). Yet, in application, researchers frequently use equilibrium analysis and

further focus on a particular equilibrium, invoking refinement arguments and

such, so that they can make predictions. Our result shows that the predictive

power–beyond that of our elimination process–obtained in this way comes

from the assumption that is (implicitly) made when the model is closed. That

is, for any such prediction, there are types that are ruled out by the closing

assumption and that behave inconsistently with the prediction in the focused

equilibrium. Therefore, our result suggests that the closing assumption deserves

a close scrutiny, and needs to be justified at least as much as the explicit as-

sumptions of the model. It would be highly desirable to investigate whether the

types that behave inconsistently with the prediction of the closed model can be

excluded by a weaker set of assumptions.

From an evolutionary point of view, when there are privately observed sig-

nals, if a myopic adjustment process converges, its limit is a Nash equilibrium of

the incomplete-information game with these signals as private information. Our

result suggests then that the limit behavior of such a process may depend on the

elusive signals about the distribution of other players’ signals, higher-order sig-

nals about these signals, and so on. Incidentally, our result has counterparts in

sophisticated and Bayesian learning models: the learning of sophisticated agents

leads to equilibrium if and only if the game is dominance solvable (Milgrom and
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Roberts (1991)), and in a specific model, any sequence of rationalizable action

profiles can be a sample path in Bayesian learning (Nyarko (1996)).

Our result also points to a close link between higher-order reasoning and

the equilibrium impact of higher-order uncertainty. When there are no ties,

assuming kth-order mutual knowledge of payoffs and that a fixed equilibrium

(with full range) is played is equivalent to assuming kth-order mutual knowledge

of rationality and common knowledge of payoffs.2 This implies that when the

equilibrium impact of high-order uncertainty is large, the impact of high-order

failures of rationality is also large. In that case, predictions may be unreliable

without a very accurate knowledge of players’ reasoning capacity.

It is well known that some Nash equilibria may be discontinuous in product

topology and with respect to higher-order uncertainty, as in the electronic-mail

game of Rubinstein (1989). There is an interest in understanding how severe this

discontinuity is. Monderer and Samet (1989,1997) and Kajii and Morris (1998)

have analyzed the weakest topologies that make the equilibrium continuous

over all games (see also Milgrom and Weber (1985) for a continuity result.)

These topologies are quite strong, but since they focus on the worst case games,

such as the electronic-mail game, it is not clear whether the equilibria used

in applications will be highly sensitive to higher-order uncertainty. Our result

implies (and we formally establish) that, if the space of underlying uncertainty

is sufficiently rich, every equilibrium is discontinuous (with respect to product

topology and higher-order beliefs) for every game at every type for which two

or more actions survive our elimination process.

2The relationship between assumptions about rationality and payoff uncertainty is not

straightforward; A∞i may differ from both rationalizability and iterative admissibility.
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As a precedent to our main result, Brandenburger and Dekel (1987) show that

every rationalizable outcome is the outcome of a subjective correlated equilib-

rium (see Section 3 for a discussion.) Battigalli and Siniscalchi (2003) extended

this result to dynamic games and investigated the implications of the restrictions

on first-order beliefs and common strong belief in sequential rationality on the

rationalizable outcomes, which coincide with all equilibrium outcomes. It seems

that, using their methodology (and that of Battigalli (2003)), one can obtain

sharp predictions in sequential games using relatively mild assumptions. Note

that in sequential games, our lower bound is usually weak, and assumptions

about sequential rationality yield strong predictions (Battigalli and Siniscalchi

(2002) and Feinberg (2002)).

Our next section contains the basic definitions and preliminary results. Sec-

tion 3 is the heart of the paper. There we develop our main notions and prove

our main theorem. Our main theorem is extended to the nice games as a charac-

terization in Section 4, and to mixed strategies and to the spaces of uncertainty

that are not necessarily rich in Section 5. In Section 6, we present our discon-

tinuity results and discuss their methodological implications for global games

and robustness of equilibria. Section 7 contains a very negative result about

Cournot oligopoly as an application. Section 8 concludes. Some of the proofs

are relegated to the appendix.

2. Basic Definitions and Preliminary Results

Notation 1. Given any list Y1, . . . , Yn of sets, write Y =
Q

i Yi, Y−i =
Q

j 6=i Yj,

y−i = (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Y−i, and (yi, y−i) = (y1, . . . , yi−1, yi, yi+1, . . . , yn).

Likewise, for any family of functions fj : Yj → Zj, we define f−i : Y−i → Z−i

by f−i (y−i) = (fj (yj))j 6=i. Given any metric space (Y, d), we write ∆(Y ) for

the space of probability distributions on Y , suppressing the fixed σ-algebra on
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Y which at least contains all open sets and singletons; we use the product

σ-algebra in product spaces. The support of π is denoted by suppπ.

We consider a game with finite set of players N = {1, 2, . . . , n}. The source
of underlying uncertainty is a payoff-relevant parameter θ ∈ Θ where (Θ, d) is a

compact, complete and separable metric space, with d a metric on set Θ. Each

player i has action space Ai and utility function ui : Θ × A → R, where A =Q
iAi. We endow the game with the universal type space of Brandenburger and

Dekel (1993), a variant of an earlier construction by Mertens and Zamir (1985),

with an additional assumption that the players’ beliefs at each finite order have

countable (or finite) support.3 Types are defined using the auxiliary sequence

{Xk} of sets defined inductively by X0 = Θ and Xk =
h
∆̂ (Xk−1)

in
× Xk−1

for each k > 0, where ∆̂ (Xk−1) is the set of probability distributions on Xk−1

that have countable (or finite) support. We endow each Xk with the weak

topology and the σ-algebra generated by this topology. A player i’s first order

beliefs (about the underlying uncertainty θ) are represented by a probability

distribution t1i on X0, second order beliefs (about all players’ first order beliefs

and the underlying uncertainty) are represented by a probability distribution t2i

onX1, etc. Therefore, a type ti of a player i is a member of
Q∞

k=1 ∆̂ (Xk−1). Since

a player’s kth-order beliefs contain information about his lower-order beliefs, we

need the usual coherence requirements. We write T =
Q

i∈N Ti for the subset

of
³Q∞

k=1 ∆̂ (Xk−1)
´n
in which it is common knowledge that the players’ beliefs

are coherent, i.e., the players know their own beliefs and their marginals from

different orders agree. We will use the variables ti, t̃i ∈ Ti as generic types of

any player i and t, t̃ ∈ T as generic type profiles. For every ti ∈ Ti, there exists

3This assumption is made to avoid technical issues related to measurability (see Remark

1.) Our type space is dense in universal type space, and any countable type space with no

redundant type is embedded in our space.
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a probability distribution κti on Θ× T−i such that

(2.1) tki = δtk−1i
×margΘ×[∆(Xk−2)]N\{i}

κti , (∀k)

and t1i = margΘκti, where δtk−1i
is the probability measure that puts probability

1 on the set
©
tk−1i

ª
and marg denotes the marginal distribution. Conversely,

given any distribution κti on Θ× T−i, we can define ti ∈ Ti via (2.1), as long as

margΘ×[∆(Xk−2)]N\{i}
κti is always countable.

A strategy of a player i is any measurable function si : Ti → Ai. Given any

type ti and any profile s−i of strategies, we write π (·|ti, s−i) ∈ ∆ (Θ×A−i)

for the joint distribution of the underlying uncertainty and the other players’

actions induced by ti and s−i; π (·|ti, σ−i) is similarly defined for correlated
mixed strategy profile σ−i. For each i ∈ N and for each belief π ∈ ∆ (Θ×A−i),

we write BRi (π) for the set of actions ai ∈ Ai that maximize the expected

value of ui (θ, ai, a−i) under the probability distribution π. A strategy profile

s∗ = (s∗1, s
∗
2, . . .) is a Bayesian Nash equilibrium iff at each ti,

s∗i (ti) ∈ BRi

¡
π
¡·|ti, s∗−i¢¢ .

An equilibrium s∗ is said to have full range iff

(FR) s∗ (T ) = A.

The following assumption implies that every equilibrium s∗ has full range.

Assumption 1 (Richness of Θ). Given any i ∈ N , any µ ∈ ∆ (A−i), and any

ai, there exists a probability distribution ν on Θ with countable support and such

that

BRi (ν × µ) = {ai} .

Lemma 1. Under Assumption 1, every equilibrium s∗ has full range.

Proof. The proofs that are omitted in the text are in the appendix. ¤
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Elimination Processes. We will use interim notions and allow correlations

not only within players’ strategies but also between their strategies and the un-

derlying uncertainty θ. Such correlated rationalizability is introduced by Batti-

galli (2003), Battigalli and Siniscalchi (2003) and Dekel, Fudenberg, and Morris

(2003). Clearly, allowing such correlation only makes our sets larger. Since our

main result is a lower bound in terms of these sets, this only strengthens our

result. Moreover, our characterization provides yet another justification for this

correlated rationalizability. Write Mi for the set of all measurable functions

from Θ× Ti to Ai. Towards defining rationalizability, define sets Sk
i [ti], i ∈ N ,

ti ∈ Ti, k = 0, 1, . . ., iteratively as follows. Set S0i [ti] = Ai. For each k > 0, let

Ŝk−1
−i ⊂M−i be the set of all measurable functions f : Θ×T−i → A−i such that

f (θ, t−i) ∈ Sk−1
−i [t−i] for each t−i. Let also Σk−1

−i be the set of all probability

distributions on Ŝk−1
−i . Note that Σ

k−1
−i is the set of all possible beliefs of player

i on other players’ allowable actions that are not eliminated in the first k − 1
rounds. Write

Sk
i [ti] =

[
σ−i∈Σk−1−i

BRi (π (·|ti, σ−i))

for the set of all all actions ai of i that are best reply against some of his beliefs

in Σk−1
−i . The set of all rationalizable actions for player i (with type ti) is

S∞i [ti] =
∞\
k=0

Sk
i [ti] .

Next we define the set of strategies that survive iterative elimination of strate-

gies that are never strict best reply, denoted by W∞ [ti], similarly. We set

W 0
i [ti] = Ai and

W k
i [ti] =

n
ai|BRi (π (·|ti, σ−i)) = {ai} for some σ−i ∈ ∆

³
Ŵ k−1
−i
´o

,
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where Ŵ k−1
−i ⊂ M−i is the set of all functions f : Θ × T−i → A−i such that

f (θ, t−i) ∈W k−1
−i [t−i] for each t−i. Finally, we set

W∞
i [ti] =

∞\
k=0

W k
i [ti] .

Notice that we eliminate a strategy if it is not a strict best-response to any

belief on the remaining strategies of the other players. Clearly, this yields a

smaller set than the result of iterative admissibility (i.e., iterative elimination

of weakly dominated strategies).4 In some games, iterative admissibility may

yield strong predictions. For example, in finite perfect information games it

leads to backwards induction outcomes. Nevertheless, in generic normal-form

games (as defined in Definition 1 below), all these concepts are equivalent and

usually have weak predictive power.

3. Equilibrium predictions with finite-order beliefs

We are interested in how robust equilibrium is against the failure of assump-

tions made at high orders, such as the failure of the common knowledge as-

sumption at high orders. We now formalize our notion of robustness.

Let us fix an equilibrium s∗ and a type ti of a player i. According to equi-

librium, he will play s∗i (ti). Now imagine a researcher who only knows the first

kth-order beliefs of player i and knows that equilibrium s∗ is played. All the re-

searcher can conclude from this information is that i will play one of the actions

in

Ak
i [s

∗, ti] ≡
©
s∗i
¡
t̃i
¢ |t̃mi = tmi ∀m ≤ k

ª
.

4In particular, if we use non-reduced normal-form of an extensive-form game, many strate-

gies will be outcome equivalent, in which case our procedure will eliminate all of these strate-

gies. To avoid such over-elimination, we can use reduced-form, by representing all outcome-

equivalent strategies by only one strategy.
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Assuming, plausibly, that a researcher can verify only finitely many orders of a

player’s beliefs, all a researcher can ever know is that player i will play one of

the actions in

A∞i [s
∗, ti] =

∞\
k=0

Ak
i [s

∗, ti] .

We are now ready to prove our main result for countable-action games, i.e.,

games where each player i has a countable or finite action space Ai.

Proposition 1. For any countable-action game, any equilibrium s∗ with full

range, any k ∈ N, i ∈ N , and any ti,

W k
i [ti] ⊆ Ak

i [s
∗, ti] ⊆ Sk

i [ti] ;

in particular,

W∞
i [ti] ⊆ A∞i [s

∗, ti] ⊆ S∞i [ti] .

Proof. The inclusion Ak
i [s

∗, ti] ⊆ Sk
i [ti] is established by Proposition 8 in the

Appendix for general games and all equilibria. We will now show thatW k
i [ti] ⊆

Ak
i [s

∗, ti]. For k = 0, the statement is given by the full-range assumption.

For any given k and any player i, write each t−i as t−i = (l, h) where l =¡
t1−i, t

2
−i, . . . , t

k−1
−i
¢
and h =

¡
tk−i, t

k+1
−i , . . .

¢
are the lower and higher-order beliefs,

respectively. Let L = {l|∃h : (l, h) ∈ T−i}. The induction hypothesis is that

W k−1
−i [l] ≡

[
h0
W k−1
−i [(l, h0)] ⊆ Ak−1

−i [s
∗, (l, h)] (∀ (l, h) ∈ T−i).

Fix any type ti and any ai ∈ W k
i [ti]. We will construct a type t̃i such that

s∗i
¡
t̃i
¢
= ai and the first k orders of beliefs are same under ti and t̃i, showing that

ai ∈ Ak
i [s

∗, ti]. Now, by definition, for some σ−i ∈ ∆(Ŵ k−1
−i ), ai is the unique

best reply for type ti if ti assigns probability distribution σ−i on the other play-

ers’ strategies, i.e., BRi (π (·|ti, σ−i)) = {ai}. Let P (·|ti, σ−i) be the probability
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distribution on Θ×L×A−i induced by κti and σ−i. By the induction hypoth-

esis, for each (θ, l, a−i) ∈ suppP (·|ti, σ−i), a−i ∈ W k−1
−i [l] ⊆ Ak−1

−i [s
∗, (l, h)] for

some h. Hence, there exists a mapping µ : suppP (·|ti, σ−i)→ Θ× T−i,

(3.1) µ : (θ, l, a−i) 7→
³
θ, l, h̃ (a−i, θ, l)

´
,

such that

(3.2) s∗−i
³
l, h̃ (a−i, θ, l)

´
= a−i.

We define t̃i by

κt̃i ≡ P (·|ti, σ−i) ◦ µ−1,

the probability distribution induced on Θ × T−i by the mapping µ and the

probability distribution P (·|ti, σ−i). Notice that, since tki has countable support
and the action spaces are countable, the set suppP (·|ti, σ−i) is countable, in
which case µ is trivially measurable. Hence κt̃i is well-defined. By construction

of µ, the first k orders of beliefs (about (θ, l)) are identical under ti and t̃i:

margΘ×Lκt̃i = margΘ×LP (·|ti, σ−i) ◦ µ−1 = margΘ×LP (·|ti, σ−i) = margΘ×Lκti ,

where the second inequality is by (3.1) and the last equality is by definition of

P (·|ti, σ−i). Moreover, using the mapping γ : (θ, l, h) 7→
¡
θ, l, s∗−i (l, h)

¢
, we can

check that the distribution induced by κt̃i and s∗−i on Θ× L×A−i is

P
¡·|t̃i, s∗−i¢ ≡ κt̃i ◦ γ−1 = P (·|ti, σ−i) ◦ µ−1 ◦ γ−1 = P (·|ti, σ−i) ,

where the last equality is due to the fact that µ is the inverse of the restriction

of γ to suppκt̃i. Therefore,

π
¡·|t̃i, s∗−i¢ = margΘ×LP ¡·|t̃i, s∗−i¢ = margΘ×LP (·|ti, σ−i) = π (·|ti, σ−i) .

That is, the equilibrium beliefs of t̃i about Θ× A−i are identical to the beliefs

of ti about Θ × A−i when ti assigns probability distribution σ−i on the other
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players’ strategies. Since ai is the only best reply to these beliefs, t̃i must play

ai in equilibrium:

(3.3) s∗i
¡
t̃i
¢ ∈ BRi

¡
π
¡·|t̃i, s∗−i¢¢ = BRi (π (·|ti, σ−i)) = {ai} .

¤

Remark 1. Notice that the countability assumptions about the finite-order

beliefs and the action spaces are used only to make sure that κt̃i is a well-

defined probability distribution, or µ is measurable. In fact, whenever µ is

measurable, our proof is valid. In the next section, we present another class of

games in which µ is measurable; µ may not be measurable in general.

The conclusion thatW k
i [ti] ⊆ Ak

i [s
∗, ti] can be spelled out as follows. Suppose

that we know a player’s beliefs up to the kth order and do not have any further

information. Suppose also that he has an action ai that survives k rounds of

iterated elimination of strategies that cannot be a strict best reply–for some

type whose first k orders of beliefs are as specified. Then, we cannot rule out

that ai will be played in equilibrium s∗. Put it differently, if we have a model

that is closed at order k and if an action survives k rounds of iterated elimination

of strategies that cannot be a best reply for a type within the model, then we

cannot rule out action ai as an equilibrium action for that type without invoking

the closing assumption. Hence, any prediction that does not follow from the

first k steps of this elimination process comes from the closing assumptions,

rather than the assumptions that lead to a specific equilibrium s∗. This suggests

that, contrary to the current practice in economics, a researcher needs to justify

his closing assumption at least as much as the other assumptions, such as the

rationale for equilibrium selection.
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The part Ak
i [s

∗, ti] ⊆ Sk
i [ti] is proved in the Appendix for general games and

for all equilibria (see Proposition 8). Although the proof for the general case is

somewhat involved, it is straightforward for the complete-information case.

Notation 2. For any θ̄ ∈ Θ, write tCKi
¡
θ̄
¢
for the type of a player i who is

certain that it is common knowledge that θ = θ̄.

For the types of the form tCKi
¡
θ̄
¢
, the proof is as follows. Notice that

Ak
i

£
s∗, tCKi

¡
θ̄
¢¤ ⊆ Sk

i

£
tCKi

¡
θ̄
¢¤
means that, if a player i has kth-order knowl-

edge of θ = θ̄, then his equilibrium action (according to s∗) will survive kth

round of iterated elimination of strictly dominated strategies under the restric-

tion that Θ =
©
θ̄
ª
. Towards an induction, assume that Ak−1

j

£
s∗, tCKj

¡
θ̄
¢¤ ⊆

Sk
j

£
tCKj

¡
θ̄
¢¤
for each j. That is, if a player j has k − 1st-order knowledge of

θ = θ̄, j will play an action in Sk−1
j (under Θ =

©
θ̄
ª
.) But any type of player

i who has kth-order knowledge of θ = θ̄ is certain that every other player j

has k − 1st-order knowledge of θ = θ̄. Hence, in equilibrium, he is certain that

j plays an action in Sk−1
j . Since his equilibrium action is a best response to

such a belief (with support contained in Sk−1
−i ), it must survive the kth round

of elimination.

Brandenburger and Dekel (1987) show that, given any rationalizable outcome

of a game, by adding payoff irrelevant types, we can construct a type space with

an equilibrium that yields the original rationalizable outcome.5 Since we need

to choose a different equilibrium for each rationalizable outcome, there is a large

multiplicity of equilibria, and thus equilibrium as a solution concept does not

have more predictive power than rationalizability has. One may want to ignore

this multiplicity by focusing on a particular equilibrium or relying on one of the

many refinements developed in the last few decades–in order to cope with the

5See Bergemann and Morris (2003) for an important application of this adea.
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usual multiplicity problem. Our result shows that, once we abandon artificial

restrictions on type space, this unpredictability reappears as high variability

of any fixed equilibrium with respect to very high-order beliefs, albeit with

somewhat smaller scope due to the stronger elimination process. There is an

intuitive relation between these two results. Since type spaces in general can

be embedded in the universal type space, given any fixed set of beliefs at finite

orders and a fixed equilibrium behavior in a fixed type space, we can envision a

coherent type whose lower-order beliefs are as the former but whose higher-order

beliefs assigns high probability to the latter. That type will give a best reply to

the equilibrium in the latter. Hence, multiplicity of equilibria in various type

spaces tends to yield high variability of equilibria with respect to the higher-

order beliefs in universal type space. This intuition, however, does not yield a

proof. This is because the distinctions among the types in Brandenburger and

Dekel are all payoff irrelevant, and thus their type spaces are not contained in

the universal type space in general. More importantly, the equilibrium behavior

in various type spaces need not be different within a fixed equilibrium.

Our next example shows that either of the inclusions in Proposition 1 may

be strict. Hence, (i) some rationalizable strategies may not be in A∞i , showing

the distinction between the results of Brandenburger and Dekel and ours, and

(ii) A∞i may include some weakly dominated strategies, distinguishing our result

from the characterization of Brandenburger and Keisler (2000).

Example 1. Take N = {1, 2}, Θ = {θ0, θ1}, and let the action spaces and the
payoff functions for each θ be given by

a0 a1

a0 0,0 0,0

a1 0,0 1,1

.



FINITE-ORDER IMPLICATIONS 17

(Note that θ is not payoff relevant.) Define s∗ by

s∗i (ti) =

 a0 if ti = tCKi (θ0) ;

a1 otherwise.

Clearly, for each k ≥ 1, we have W k
i [ti] = {a1} and Sk

i [ti] = {a0, a1} for each
ti, while Ak

i

£
s∗; tCKi (θ0)

¤
= {a0, a1}, and Ak

i

£
s∗; tCKi (θ1)

¤
= {a1}.

Proposition 1 yields a characterization whenever the payoffs are generic in

the following (standard) sense.

Definition 1. We say that the payoffs are generic at θ iff there do not exist i,

non-zero α ∈ RAi, and distinct ai, a0i, a−i, and a0−i such that (i) ui (θ, ai, a−i) =

ui (θ, a
0
i, a−i) or (ii)

P
ai
α (ai)ui (θ, ai, a−i) =

P
ai
α (ai)ui

¡
θ, ai, a

0
−i
¢
= 0.

When the payoffs are generic at θ̄ and it is common knowledge that θ = θ̄,

then any action that is not strictly dominated will be a strict best reply against

some belief (at each round), and hence the two elimination processes will be

equivalent. In that case, Proposition 1 yields the following characterization.

Corollary 1. For any finite-action game and any equilibrium s∗ with full range,

if the payoffs are generic at some θ, then for each i and k,

Ak
i

£
s∗, tCKi (θ)

¤
= Sk

i

£
tCKi (θ)

¤
.

That is, in generic finite-action games, a researcher’s predictions based on

finite orders of players’ beliefs and equilibrium will be equivalent to the predic-

tions that follow from rationalizability. This characterization will be generalized

to the following widely-used class of games.
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4. Nice games

We will now consider a class of “nice” games (Moulin (1984)), which are

widely used in economic theory, such as imperfect competition, spatial compe-

tition, provision of public goods, theory of the firm, etc. We will show that

Ak
i [s

∗, ti] = Sk
i [ti] for each k whenever equilibrium s∗ has full range.

Definition 2. A game is said to be nice iff for each i, Ai = [0, 1] and ui (θ, ai, a−i)

is continuous in a = (ai, a−i) and strictly concave in ai.

We use the strict concavity assumption to make sure that a player’s utility

function for any fixed strategy profile of the others is always single-peaked in

his own action. (Single-peakedness is not preserved in presence of uncertainty.)

We use the continuity assumption to make sure that a player’s strategy best

response is continuous with respect to the other players’ strategies. For the

complete information types, our results in this section will be true under the

weaker condition that ui (θ, ·, a−i) is single-peaked with a maximand that is
continuous in a−i. Now, since our players have always unique best reply, our

elimination processes will be equivalent, yielding the functional equation

(4.1) W = S.

Moreover, our next lemma ensures that, despite our uncountable action spaces,

we only need to consider countably many actions for types with countable sup-

ports, allowing us to circumvent the measurability issue discussed in Remark

1.

Lemma 2. For any nice game, for any i, ti, k, and any ai ∈ Sk
i [ti], there exists

ŝ−i ∈ Ŝk−1
−i such that

BRi (π (·|ti, ŝ−i)) = {ai}.
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Together with (4.1), Lemma 2 gives us our main result for this section.

Proposition 2. For any nice game, let s∗ be any equilibrium with full range.

Let also Θ̂ × T̂ be a countable subset of Θ × T such that for each t̂i ∈ T̂i,

suppκt̂i ⊆ Θ̂× T̂−i. Then, for any k ∈ N, i ∈ N , and t̂i ∈ T̂i,

Sk
i

£
t̂i
¤
= Ak

i

£
s∗, t̂i

¤
;

in particular,

S∞i
£
t̂i
¤
= A∞i

£
s∗, t̂i

¤
.

Proof. For any ai ∈ Sk
i

£
t̂i
¤
= W k

i

£
t̂i
¤
, by Lemma 2, there exists ŝ−i ∈ Ŝk−1

−i =

Ŵ k−1
−i such that ai is a strict best reply against π (·|ti, ŝ−i). Since κt̂i has count-

able support, P
¡·|t̂i, ŝ−i¢, the probability distribution induced by κt̂i and ŝ−i

on Θ× L×A−i, has a countable support:

suppP
¡·|t̂i, ŝ−i¢ = {(θ, l, ŝ−i (θ, l, h)) | (θ, l, h) ∈ suppκti} .

Hence our proof of Proposition 1 applies. That is, there exists t̃i ∈ Ti (not

necessarily in T̂i) such that s∗i
¡
t̃i
¢
= ai and t̃mi = t̂mi for each m ≤ k. ¤

5. Extensions

For ease of exposition, we have so far focused on pure strategy equilibria

with full range. In this section, we will extend our results for mixed strategy

equilibria and beyond the full-range assumption.

5.1. Mixed Strategies. Since all equilibria in nice games are in pure strate-

gies, we will focus on the countable-action games. Using interim formulation,

we define a mixed strategy as any measurable function σi : Ti → ∆ (Ai).

A mixed strategy profile σ∗ is Bayesian Nash equilibrium iff suppσ∗i (ti) ⊆
BRi

¡
π
¡·|ti, σ∗−i¢¢ for each i and ti. Writing T σ∗

i = {ti| |suppσ∗i (ti)| = 1} for
the set of types who play pure strategies, we define a mapping sσ

∗
i : T σ∗

i → Ai
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by suppσ∗i (ti) =
©
sσ
∗

i (ti)
ª
. We then use this “pure part of” σ∗ to extend our

previous definitions and results to mixed strategies. We say that σ∗ has full

range iff sσ
∗ ¡
T σ∗

¢
= A and set

Ak
i [σ

∗; ti] =
©
sσ
∗

i

¡
t̃i
¢ |t̃i ∈ T σ∗

i , t̃mi = tmi ∀m ≤ k
ª
,

the set of all actions that are played with probability 1 under σ∗ by some type

t̃i whose first k orders of beliefs are identical to those of ti. Clearly, every

equilibrium has full range under Assumption 1, i.e., when Θ is sufficiently rich.

Proposition 3. For any countable-action game, any (possibly mixed strategy)

equilibrium σ∗ with full range, any k ≤ ∞, i ∈ N , and any ti,

W k
i [ti] ⊆ Ak

i [σ
∗, ti] ⊆ Sk

i [ti] .

Proof. In the proof of Proposition 1, insert sσ
∗
everywhere s∗ appears, and

restrict the range of µ and the domain of γ to Θ× T σ∗
−i . Notice that, by (3.3),

t̃i ∈ T σ∗
i . ¤

That is, if σ∗ has full range (e.g., if Θ is sufficiently rich) and we know only the

first k orders of a player’s beliefs, then for any ai ∈ W k
i [ti], we cannot rule out

that ai is played with probability 1 according to σ∗. For k ≥ 1, the full-range
assumption can replaced by the weaker assumption that Ai ⊆ ∪ti suppσ∗i (ti).

5.2. Without full range. Our full range assumption allowed us to consider

large changes. A researcher may be certain that it is common knowledge that the

set of parameters are restricted to a small subset, or equivalently, the equilibrium

considered may not vary much as the beliefs about the underlying uncertainty

change. We will now present extension of our main result to such cases.
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Local Rationalizability. For any B1 × · · · × Bn ⊂ A, define sets Sk
i [B; ti],

i ∈ N , k ∈ N, ti ∈ Ti, by setting

S0i [B; ti] = Bi,

Sk
i [B; ti] =

[
σ−i∈∆(Ŝk−1−i [B])

BRi (π (·|ti, σ−i)) ,

where Ŝk−1
−i [B] ⊂M−i is the set of all measurable functions f : Θ× T−i → A−i

such that f (θ, t−i) ∈ Sk−1
−i [B; t−i] for each t−i. Notice that this is the same

procedure as iterated strict dominance, except that the initial set is restricted

to a subset. Unlike iterated strict dominance, these sets can become larger as

k increases. Hence we define the set of locally rationalizable strategies by

S∞i [B; ti] =
∞\
k=0

∞[
m=k

Sm
i [B; ti] .

Notice that the set S∞ [B; ti] may be much larger than B. We define local

version of W∞, similarly, by setting W 0
i [B; ti] = Bi,

W k
i [B; ti] =

n
ai ∈ Ai|BRi

¡
θi, σ−i

¢
= {ai} for some σ−i ∈ ∆

³
Ŵ k−1
−i [B]

´o
,

and W∞
i [B; ti] =

T∞
k=0

S∞
m=kW

m
i [B; ti]. Notice that we consider all actions in

our process, which is no longer an elimination process.

Proposition 4. For any equilibrium s∗, if the game has countable action spaces,

then

W k
i [s

∗ (T ) ; ti] ⊆ Ak
i [s

∗, ti] ⊆ Sk
i [s

∗ (T ) ; ti] (∀i, k, ti) ;
if the game is nice, then with notation of Proposition 2, for any B ⊆ s∗ (T ),

Sk
i

£
B; t̂i

¤ ⊆ Ak
i [s

∗, ti] = Sk
i

£
s∗ (T ) ; t̂i

¤ ¡∀i, k, t̂i¢ .
The last statement implies that, for nice games, even the slight changes in

very higher-order beliefs will have substantial impact on equilibrium behavior,

unless the game is locally dominance-solvable. There are important games in
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which a slight failure of common knowledge assumption in very high orders leads

to substantially different outcomes–as in Section 7.

6. Continuity of Equilibrium

It is well known that equilibrium may be discontinuous with respect to the

product topology. In this section we will introduce our notion of continuity with

respect to higher-order beliefs, which appears much weaker than continuity with

respect to the product topology. We will show that even this weaker continuity

property is violated in every equilibrium on a very large set.

6.1. Equilibrium in pure strategies. We consider an arbitrary metric d on

A. A sequence (am)m∈N is said to converge to some a ∈ A iff for each > 0,

there exists k such that d (am, a) < for each m > k. Given any subset B ⊆ A,

we write D (B) = sup {d (a, b) |a, b ∈ B} for the diameter of B. As usual, we
write Ak [s∗, t] =

Q
iA

k
i [s

∗, ti], Sk [s∗, t] =
Q

i S
k
i [ti], etc.

Definition 3. An equilibrium s∗ is said to be continuous (with respect to prod-

uct topology) at t iff for each sequence
¡
t̃ [m]

¢
m∈N of type profiles£

t̃k [m]→ tk ∀k¤⇒ £
s∗
¡
t̃ [m]

¢→ s∗ (t)
¤
.

An equilibrium s∗ is said to be continuous with respect to higher-order beliefs at

t iff for each > 0, there exists k such that for each t̃,£
t̃m = tm ∀m ≤ k

¤⇒ d
¡
s∗
¡
t̃
¢
, s∗ (t)

¢
< .

The latter continuity concept is uniform continuity with respect to the prod-

uct topology (on the type space) of discrete topologies on each order of beliefs.

Of course, continuity with respect to discrete topology is much weaker than

other topologies. The next lemma presents some basic facts.
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Lemma 3. For any equilibrium s∗ and for any t, the following are true.

(1) If s∗ is continuous at t, then s∗ is continuous with respect to higher-order

beliefs at t.

(2) s∗ is continuous with respect to higher-order beliefs at t iffD
¡
Ak [s∗, t]

¢→
0 as k →∞.

(3) If s∗ is continuous with respect to higher-order beliefs at t, then A∞ [s∗, t] =

{s∗ (t)}.

For nice games, Lemma 3.3 and Proposition 2 imply that if an equilibrium

s∗ with full range is continuous with respect to higher-order beliefs at t, then

S∞ [t] = {s∗ (t)}, yielding the following discontinuity result. (One can obtain
a similar result for countable-action games by replacing S∞ [t] = {s∗ (t)} with
|W∞ [t]| ≤ 1.)

Proposition 5. For any nice game, every equilibrium s∗ with full range is dis-

continuous with respect to the higher-order beliefs (and the product topology) at

each type profile t for which there are more than one rationalizable action pro-

files. In particular, if a nice game possesses an equilibrium s∗ that is continuous

with respect to higher-order beliefs or with respect to the product topology, then

the game is dominance solvable.

6.2. Mixed-strategy equilibria in finite-action games. Endow the space

of mixed action profiles, ∆ (A), with an arbitrary metric d. Extend the defini-

tions of continuity with respect to product topology and higher-order beliefs to

mixed-strategy equilibria σ∗ by replacing s∗ with σ∗ in Definition 3.

Definition 4. A mixed-strategy equilibrium σ∗ is said to be weakly continuous

with respect to higher-order beliefs at t iff there exists k such that for each t̃,£
t̃m = tm ∀m ≤ k

¤⇒ supp
¡
σ∗
¡
t̃
¢¢ ∩ supp (σ∗ (t)) 6= ∅.
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Now, continuity in product topology implies continuity with respect to higher-

order beliefs. For finite-action games, the latter in turn implies weak continuity

with respect to higher-order beliefs, as we show in the Appendix (see Lemma

6). There we also show that strong and weak continuity of σ∗ at t with respect

to higher-order beliefs imply that |A∞ [σ∗, t]| ≤ 1 and A∞ [σ∗, t] ⊆ supp(σ∗ (t)),
respectively. This yields the following result.

Proposition 6. For any finite-action game and any equilibrium σ∗ with full

range, |W∞ [t]| ≤ 1whenever (i) σ∗ is continuous with respect to higher-order
beliefs at t, or (ii) σ∗ is weakly continuous with respect to higher-order beliefs

at t and σ∗ (t) is pure.

Proof. Either of the conditions (i) and (ii) implies that |A∞ [σ∗, t]| ≤ 1 (see

Lemma 6). Hence, by Proposition 3, |W∞ [t]| ≤ |A∞ [σ∗, t]| ≤ 1. ¤

That is, for sufficiently rich Θ, every equilibrium is discontinuous with respect

to higher-order beliefs (and the product topology) at each type profile for which

two or more action profiles survive iterated elimination of strategies that can-

not be a strict best reply. These type profiles include the generic instances of

complete-information without dominance solvability. At each such type profile,

even the weakest continuity property fails if the equilibrium actions are pure.

Example 2. Consider the coordinated attack game with payoff matrix

Attack No Attack

Attack 1,1 -2,0

No Attack 0,-2 0,0

where there are two pure strategy equilibria: the efficient equilibrium (Attack,

Attack) and the risk-dominant equilibrium (No Attack, No Attack). Since

each action is a strict best reply, no action is eliminated in our elimination
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process. Therefore, Lemma 1 and Proposition 6 imply that when we embed the

coordinated-attack game in a rich type space as a type profile, every equilibrium

must be discontinuous with respect to higher-order beliefs at that type profile.

Rubinstein’s (1989) electronic-mail game presents a type space in which any

equilibrium that selects the efficient equilibrium in the coordinated-attack game

must be discontinuous with respect to higher-order uncertainty. In that example

there is also a continuous equilibrium, which selects the risk-dominant action

profile for each type profile. Our example shows that the latter continuous

equilibrium is an artifact of the small type space utilized, and in fact in a rich

type space, no equilibrium could have been robust against higher-order beliefs,

and thus every equilibrium theory would have been sensitive to the assumptions

about higher-order uncertainty, strengthening Rubinstein’s position.

Following Carlsson and Van Damme (1993), global games literature investi-

gate the equilibria in nearby type profiles that are generated by a model that

is closed at the first order. At these type profiles, the game is dominant solv-

able, and the resulting equilibrium action profile converges to the risk-dominant

equilibrium as these type profiles approach the coordinated-attack game. In this

way, they select the risk-dominant equilibrium. Our result uncovers a difficulty

in this methodology: every equilibrium must be discontinuous at the limit-

ing type profile, and an equilibrium selection argument based on continuity

is problematic–as there is another path that we could have taken the limit in

which we would have selected the other equilibrium. This is despite the fact that

the equilibrium outcome is robust against higher-order beliefs in these nearby

type profiles themselves (by Proposition 8 in the Appendix.)

On a positive note, Kajii and Morris (1997) show that the risk-dominant equi-

librium is robust to incomplete information under common prior assumption.
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That is, if the common prior puts sufficiently high weight on the original game,

then the incomplete information game has an equilibrium in which the risk-

dominant equilibrium is played with high probability according to the common

prior. Similar positive results are obtained by others, such as Ui (2001), Morris

and Ui (2003). This suggests that, when there is a common prior, it may put

low probability on the paths that converge to other equilibria.

7. Application: Cournot Oligopoly

In a linear Cournot duopoly, the game is dominant-solvable, and hence Propo-

sition 8 (in the Appendix) implies that higher-order beliefs have negligible im-

pact on equilibrium. (This has also been shown by Weinstein and Yildiz (2003)

and is also implied by a result of Nyarko (1996).) On the other hand, in a linear

Cournot duopoly with three or more firms, any production level that is less

than or equal to the monopoly production is rationalizable, and hence Propo-

sition 2 implies that a researcher cannot rule out any such output level for a

firm no matter how many orders of beliefs he specifies. We will now show a

more disturbing fact. Focusing complete-information types, tCK (θ), for fairly

general oligopoly models we will show that when there are sufficiently many

firms, any such outcome will be in S∞i
£
B; tCK (θ)

¤
for every neighborhood B of

s∗
¡
tCK (θ)

¢
. Therefore, by Proposition 4, even a slight doubt about the model

in very high orders will lead a researcher to fail to rule out any outcome that is

less than monopoly outcome as a firm’s equilibrium output.

General Cournot Model. Consider n firms with identical constant marginal

cost c > 0. Simultaneously, each firm i produces qi at cost qic and sell its

output at price P (Q; θ) where Q =
P

i qi is the total supply. For some fixed

θ̄, we assume that Θ is a closed interval with θ̄ ∈ Θ 6= ©
θ̄
ª
. We also as-

sume that P
¡
0; θ̄
¢
> 0, P

¡·; θ̄¢ is strictly decreasing when it is is positive, and
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limQ→∞ P
¡
Q; θ̄

¢
= 0. Therefore, there exists a unique Q̂ such that

P
³
Q̂; θ̄

´
= c.

(In order to have a nice game, we can impose an upper bound for q, larger

than Q̂, without affecting the equilibria.) We assume that, on [0, Q̂], P
¡·; θ̄¢ is

continuously twice-differentiable and

P 0 +QP 00 < 0.

It is well known that, under the assumptions of the model, (i) the profit

function, u
¡
q,Q; θ̄

¢
= q (P (q +Q)− c), is strictly concave in own output q; (ii)

the unique best response q∗ (Q−i) to others’ aggregate production Q−i is strictly

decreasing on [0, Q̂] with slope bounded away from 0 (i.e., ∂q∗/∂Q−i ≤ λ for

some λ < 0); (iii) equilibrium outcome at tCK
¡
θ̄
¢
, s∗

¡
tCK

¡
θ̄
¢¢
, is unique and

symmetric (Okuguchi and Suzumura (1971)).

Lemma 4. In the general Cournot model, for any equilibrium s∗, there exists

n̄ <∞ such that for any n > n̄ and any B =
£
s∗1
¡
tCK1

¡
θ̄
¢¢− , s∗1

¡
tCK1

¡
θ̄
¢¢
+
¤n ⊂

A with > 0, we have

S∞i
£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤
(∀i ∈ N),

where qM is the monopoly output under P
¡·; θ̄¢.

Proof. Let n̄ be any integer greater than 1 + 1/ |λ|, where λ is as in (ii). Take
any n > n̄. By (iii), B = [q0, q̄0]n for some q0, q̄0 with q0 < q̄0. By (ii), for any

k > 0, Sk
£
B; tCK

¡
θ̄
¢¤
= [qk, q̄k]n, where

q̄k = q∗
¡
(n− 1) qk−1¢ and qk = q∗

¡
(n− 1) q̄k−1¢ .

Define Qk ≡ (n− 1) qk, Q̄k ≡ (n− 1) q̄k, and Q∗ = (n− 1) q∗, so that

Q̄k = Q∗
¡
Qk−1¢ and Qk = Q∗

¡
Q̄k−1¢ .
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Since (n− 1)λ < 1, the slope of Q∗ is strictly less than −1. Hence Qk decreases

with k and becomes 0 at some finite k̄, and Q̄k increases with k and takes value

Q∗ (0) = (n− 1) qM at k̄+1. That is, Sk
£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤n
for each k > k̄.

Therefore, S∞
£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤n
. ¤

Together with Proposition 4, this lemma yields the following.

Proposition 7. In the general Cournot model, assume that Θ =
£
θ̄ − ε, θ̄ + ε

¤
for arbitrarily small ε > 0, and that the best-response function q∗ (Q−i; θ) is

a continuous and strictly increasing function of θ at
¡
Q−i, θ̄

¢
where Q−i =

(n− 1) s∗j
¡
tCK

¡
θ̄
¢¢
is the others’ aggregate output in equilibrium. Then,

A∞i
£
s∗, tCKi

¡
θ̄
¢¤
=
£
0, qM

¤
(∀i ∈ N),

where qM is the monopoly output under P
¡·; θ̄¢.

Proof. By (i) above, we have a nice game. By the hypothesis, there exists

B ⊂ s∗ (T ) as in Lemma 4. Hence, Lemma 4 and Proposition 4 imply£
0, qM

¤
= S∞i

£
B; tCKi

¡
θ̄
¢¤ ⊆ A∞i

£
s∗, tCKi

¡
θ̄
¢¤ ⊆ £0, qM¤ ,

yielding the desired equality. ¤

In Proposition 7, the assumption that q∗ (Q−i; θ) is responsive to θ guaranties

that θ is a payoff-relevant parameter. Our proposition suggests that, with suf-

ficiently many firms, any equilibrium prediction that is not implied by strict

dominance will be invalid whenever we slightly deviate from the idealized com-

plete information model. To see this, consider the confident researcher and his

slightly skeptical friend in the Introduction. The former is confident that it

is common knowledge that θ = θ̄, while the latter is only willing to concede

that it is common knowledge that
¯̄
θ − θ̄

¯̄ ≤ ε and agrees with the kth-order

mutual knowledge of θ = θ̄. He is an arbitrarily generous skeptic; he is willing
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to concede the above for arbitrarily small ε > 0 and arbitrarily large finite k.

Our proposition states that the skeptic nonetheless cannot rule out any output

level that is not strictly dominated.

8. Conclusion

It is a common practice in economics to close the model after only specifying

the first or second order beliefs, using a (mostly implicit) common knowledge

assumption. In this paper, we have investigated the role of this assumption in

predictions according to an arbitrary fixed equilibrium. Finding strong lower

and upper bounds for the variations with respect to this assumption, we have

shown that it is this casually made common knowledge assumption that drives

any prediction that we could not have made already by iteratively eliminating

strategies that can never be strict best reply. In games like Cournot oligopoly,

this implies that no interesting conclusions could have been reached without

making a precise common knowledge assumption. In some other games, such

as sequential games, our lower bounds are weak, and one may plausibly make

sharp predictions using much weaker assumptions. Therefore, it is essential for

assuring the reliability of theories to pay special care to closing assumption and

justify it at least as much as the other assumptions.

When there are two or more actions that survive our elimination process,

there is an inherent unpredictability which cannot be avoided without making

an assumption on infinitely many orders of beliefs, as all of these actions are

played with probability 1 by some types whose finite-order beliefs agree for

arbitrarily high orders. In that case, equilibrium is necessarily discontinuous

with respect to higher-order beliefs and in product topology. Moreover, when

there are no ties, there is a one-to-one relationship between this sensitivity to

higher-order beliefs and sensitivity to higher-order assumptions about players’
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rationality. It then becomes very difficult in analyzing these situations to justify

the common knowledge of rationality as a good approximating assumption.

Appendix A. Proofs and further results

Proof of Lemma 1. Take any i and any ai. Take any γ ∈ ∆ (T−i) with countable
support, and let µ = γ ◦ ¡s∗−i¢−1 ∈ ∆ (A−i). Let ν be as in Assumption 1. Define ti
as the type such that κti = ν×γ. Notice that π ¡·|ti, s∗−i¢ = κti ◦β−1 = (ν × γ)◦β−1 =
ν×
³
γ ◦ ¡s∗−i¢−1´ = ν×µ. Hence, s∗ (ti) = BRi

¡
π
¡·|ti, s∗−i¢¢ = BRi (ν × µ) = ai. ¤

Proposition 8. For any equilibrium s∗, any player i, and any ti and k ≤ ∞,
Ak
i [s

∗, ti] ⊆ Sk
i [ti].

Proof. For k = 0, the proposition is true by definition. Assume that it is true for

some k − 1 ≥ 0, i.e., for any i, and for for each t−i, Ak−1
−i [s

∗, t−i] ⊆ Sk−1
−i [t−i]. Now,

T−i ⊂ L×H where L =
³Qk−1

l=1 ∆̂ (Xl−1)
´n−1

and H =
³Q∞

l=k ∆̂ (Xl−1)
´n−1

are the

spaces of lower and higher-order beliefs with generic members l and h, respectively.6

Now take any t̃i with t̃mi = tmi for all m ≤ k. Clearly,

(A.1) margΘ×Lκt̃i = margΘ×Lκti .

For each (θ, l) ∈ Θ×L with margΘ×Lκt̃i (θ, l) ≡ κt̃i ({(θ, l)} ×H) > 0, let P
¡·|θ, l, s∗−i¢

be the the probability distribution on A−i induced by the belief t̃i and s∗−i conditional

on (θ, l), i.e.,

(A.2) P
¡
a−i|θ, l, s∗−i

¢
= κt̃i

¡©
(θ, l, h) |s∗−i (l, h) = a−i

ª¢
/κt̃i ({(θ, l)} ×H)

at each a−i. Since there are only countably many (θ, l) with margΘ×Lκt̃i (θ, l) > 0,

there exists σ−i ∈ ∆ (M−i) such that σ−i ({s−i|s−i (θ, l, h) = a−i}) = P
¡
a−i|θ, l, s∗−i

¢
for each such (θ, l), and σ−i ({s−i|s−i (θ, t−i) = ŝ−i (θ, t−i)}) = 1 otherwise for some
fixed ŝ−i ∈ Ŝk−1

−i . Note that according to σ−i, at each (θ, l) in the support and for

6T−i 6= L ×H because of the coherency requirement, which has no impact on the rest of

the proof. (κti and κt̃i put probability 1 on the subset T−i.)



FINITE-ORDER IMPLICATIONS 31

each a−i, the probability that a−i is played is always P
¡
a−i|θ, l, s∗−i

¢
. By induction

hypothesis, we then have

(A.3) σ−i
³n

s−i|s−i (θ, l, h) ∈ Sk−1−i [(l, h)]
o´

= 1.

Moreover, for each
¡
θ̄, a−i

¢
with t1i

¡
θ̄
¢
= t̃1i

¡
θ̄
¢
> 0,

π ((θ, a−i) |ti, σ−i) =

Z
1{θ=θ̄}P

¡
a−i|θ, l, s∗−i

¢
dκti (θ, l, h)

=

Z
1{θ=θ̄}P

¡
a−i|θ, l, s∗−i

¢
κti ({(θ, l)} ×H) dmargΘ×Lκti (θ, l)

=

Z
1{θ=θ̄}κt̃i

¡©
(θ, l, h) |s∗−i (l, h) = a−i

ª¢
dmargΘ×Ldκt̃i (θ, l)

= π
¡
(θ, a−i) |t̃i, s∗−i

¢
,

where 1{θ=θ̄} is the indicator function for
©
θ = θ̄

ª
; the first equality is obtained

by integrating over σ−i appropriately; the second equality is due to the fact that

P
¡
a−i|θ, l, s∗−i

¢
does not depend on h, and the third equality is due to (A.1) and (A.2).

When t1i (θ) = t̃1i (θ) = 0, we trivially have π ((θ, a−i) |ti, σ−i) = π
¡
(θ, a−i) |t̃i, s∗−i

¢
=

0. Hence,

s∗i
¡
t̃i
¢ ∈ BRi

¡
π
¡·|t̃i, s∗−i¢¢ = BRi (π (·|ti, σ−i)) ⊂ Sk

i [ti] ,

where the last inclusion is by (A.3) and definition of Sk
i [ti]. ¤

Proof of Lemma 2. It follows from the following lemma. ¤

Lemma 5. For any nice game and for any i, ti, k, the following are true.

(1) Sk
i [ti] =

£
ak, āk

¤
for some aki , ā

k
i ∈ Ai, which depend on ti.

(2) For each aki ∈ Sk
i [ti], there exists ŝ−i ∈ Ŝk−1

−i such that

BRi (π (·|ti, ŝ−i)) = {aki }.

Proof. We will use induction on k. For k = 0, part 1 is true by definition. Assume

that part 1 is true for some k − 1, i.e., Sk−1
j [tj ] is a closed interval in Aj = [0, 1]

for each j. This implies that Ŝk−1
−i is a closed, convex metric space (with product
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topology).7 Moreover, by the Maximum Theorem, BRi (π (·|ti, s−i)) is an upper-semi-
continuous function of s−i. But by the strict concavity assumption, BRi (π (·|ti, s−i))
is singleton, and hence the function βi (·; ti) that maps each s−i ∈ Ŝk−1

−i to the unique

member of BRi (π (·|ti, s−i)) is continuous. Since Ŝk−1
−i is compact and convex, this

implies that βi
³
Ŝk−1
−i ; ti

´
is compact and connected, and hence it is convex as it is

unidimensional. That is, βi
³
Ŝk−1
−i ; ti

´
=
£
ak, āk

¤
for some aki , ā

k
i ∈ Ai. We claim that

βi

³
Ŝk−1
−i ; ti

´
= Sk

i [ti]. This readily proves part 1. Part 2 follows from the definition

of βi
³
Ŝk−1
−i ; ti

´
.

Towards proving our claim, for each (θ, t−i) ∈ suppκti and for each s−i ∈ Ŝk−1
−i ,

define function Ui (·|θ, t−i, s−i) by setting Ui (ai|θ, t−i, s−i) = ui (θ, ai, s−i (θ, t−i)) at

each ai. Clearly, Ui is strictly concave, and for each σ−i ∈ ∆
³
Ŝk−1
−i

´
, the expected

payoff of type ti is

(A.4)
Z

Ui (ai|θ, t−i, s−i) dκti (θ, t−i) dσ−i (s−i) .

Now, take any ai > āki . Then, for each (θ, t−i, s−i), by definition of ā
k
i and strict

concavity of Ui (·|θ, t−i, s−i), we have Ui (ai|θ, t−i, s−i) < Ui

¡
āki |θ, t−i, s−i

¢
. It then

follows from (A.4) that āki yields higher expected payoff than ai for each σ−i ∈
∆
³
Ŝk−1
−i

´
, and thus ai 6∈ Si [ti]. Similarly, ai 6∈ Si [ti] for each ai < aki . ¤

Proof of Lemma 3. Part 2 follows from the definitions, and Part 3 follows from Part

2 and the fact that D (A∞ [s∗, t]) ≤ D
¡
Ak [s∗, t]

¢
for each k. To prove Part 1, take

any > 0 and any sequence k > 0 that converges to 0. For each k, there exists t̃ [k]

such that t̃m [k] = tm for each m ≤ k and d
¡
s∗
¡
t̃ [k]

¢
, s∗ (t)

¢ ≥ D
¡
Ak [s∗, t]

¢
/2− k

so that

(A.5) 0 ≤ D
³
Ak [s∗, t]

´
≤ 2d ¡s∗ ¡t̃ [k]¢ , s∗ (t)¢+ 2 k.

7Proof: Firstly,
Q
(θ,tj ,j)

Sk−1j [tj ] is a compact space by Tychonoff’s theorem. But the

space of all measurable functions f : Θ× T−i → RN\{i} is closed. Hence, the intersection of

these two spaces, namely Ŝk−1−i , is compact. Convexity of Ŝ
k−1
−i follows from the facts that

measurability is preserved under point-wise multiplication and addition and that the range is

convex.
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But, by definition, for each m and each k > m, t̃m [k] = tm, and hence t̃m [k]→ tm as

k → ∞. Hence, if s∗ is continuous at t, then as k → ∞, s∗ ¡t̃ [k]¢ → s∗ (t), and thus

the right hand side of (A.5) converges to 0. That is, D
¡
Ak [s∗, t]

¢ → 0, showing by

part 2 that s∗ is continuous with respect to higher-order beliefs at t. ¤

Lemma 6. For any finite-action game, the following propositions are ordered with

logical implication in the following decreasing order.

(1) σ∗ is continuous with respect to product topology at t.

(2) σ∗ is continuous with respect to higher-order beliefs at t.

(3) σ∗ is weakly continuous with respect to higher-order beliefs at t.

(4) A∞ [σ∗, t] ⊆ supp(σ∗ (t)).

Moreover, (2) implies that |A∞ [σ∗, t]| ≤ 1.

Proof. Since mixed strategies can be considered as pure strategies with values in

∆ (Ai), by Lemma 3.1, (1) implies (2). To show that (2) implies (3), for each B ⊆ A,

write ΣB = {α ∈ ∆ (A) |supp (α) ⊆ B}, which is a compact set. Then, for each

disjoint B and C, dB,C = min {d (αB, αC) |αB ∈ ΣB, αC ∈ ΣC} > 0. Write dmin for

the minimum of dB,C among all disjoint B and C. Clearly, if d (α, α0) < dmin, then

the supports of α and α0 have non-empty intersection. But (2) implies that there

exists k such that whenever t̃m = tm for each m ≤ k, d
¡
σ∗
¡
t̃
¢
, σ∗ (t)

¢
< dmin/2,

whence supp
¡
σ∗
¡
t̃
¢¢∩supp(σ∗ (t)) 6= ∅–hence (3). (3) implies (4) because for each

a ∈ A∞ [σ∗, t] and each k, there exists t̃ such that t̃m = tm for each m ≤ k and

supp
¡
σ∗
¡
t̃
¢¢
= {a}. The last statement in the lemma also follows from the latter

observation because σ∗ (t) cannot be arbitrarily close to two distinct pure action

profiles. ¤

References

[1] Aumann, R. and A. Brandenburger (1995): “Epistemic Conditions for Nash Equilib-

rium,” Econometrica, 63, 1161-1180.



34 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

[2] Battigalli, P. (2003): “Rationalizability in infinite, dynamic games with complete infor-

mation,” Research in Economics, 57, 1-38.

[3] Battigalli, P. and M. Siniscalchi (2003): “Strong Belief and Forward-Induction Reason-

ing,” Journal of Economic Theory, 106, 356-391.

[4] Battigalli, P. and M. Siniscalchi (2003) “Rationalization and Incomplete Information,”

Advances in Theoretical Economics, Vol. 3: No. 1, Article 3.

[5] Bergemann, D. and S. Morris (2003): “Robust Mechanism Design,” mimeo.

[6] Bernheim, D. (1984): “Rationalizable strategic behavior,” Econometrica, 52, 1007-1028.

[7] Brandenburger, A. and E. Dekel (1987): “Rationalizability and Correlated Equilibria,”

Econometrica, 55, 1391-1402.

[8] Brandenburger, A. and E. Dekel (1993): “Hierarchies of Beliefs and Common Knowl-

edge,” Journal of Economic Theory, 59, 189-198.

[9] Brandenburger, A. and Keisler (2000): “Epistemic Conditions for Iterated Admissibility,”

mimeo (www.stern.nyu.edu/~abranden).

[10] Carlsson, H. and E. van Damme (1993): “Global Games and Equilibrium Selection,”

Econometrica, 61, 989-1018.

[11] Feinberg, Y. (2002): “Subjective Reasoning in Dynamic Games,” mimeo.

[12] Feinberg, Y. and A. Skrzypacz (2002): “Uncertainty about uncertainty and delay in

bargaining,” mimeo.

[13] Fudenberg, D., D. Kreps, and D. Levine (1988): “On the Robustness of Equilibrium

Refinements,” Journal of Economic Theory, 44, 354-380.

[14] Harsanyi, J. (1967): “Games with Incomplete Information played by Bayesian Players.

Part I: the Basic Model,” Management Science 14, 159-182.

[15] Kajii, A. and S. Morris (1997): “The Robustness of Equilibria to Incomplete Informa-

tion,” Econometrica, 65, 1283-1309.

[16] Kajii, A. and S. Morris (1998): “Payoff Continuity in Incomplete Information Games,”

Journal of Economic Theory, 82, 267-276.

[17] Kreps, D. and R. Wilson (1982): “Sequential Equilibria,” Econometrica, 50-4, 863-894.

[18] Mertens and Zamir (1985): “Formulation of Bayesian Analysis for Games with Incom-

plete Information,” International Journal of Game Theory, 10, 619-632.

[19] Monderer, D. and D. Samet (1989): “Approximating Common Knowledge with Common

Beliefs,” Games and Economic Behavior, 1, 170-190.



FINITE-ORDER IMPLICATIONS 35

[20] Monderer, D. and D. Samet (1997): “Proximity of information in games with incomplete

information,” Mathematics of Operations Research, 21, 707-725.

[21] Morris, S. (2002): “Typical Types,” mimeo.

[22] Morris, S. and Ui (2002): “Generalized Potentials and Robust Sets of Equilibria,” mimeo.

[23] Moulin, H. (1984): “Dominance solvability and Cournot stability,” Mathematical Social

Sciences 7, 83-102.

[24] Milgrom, P. and J. Roberts (1990): “Rationalizability, Learning, and Equilibrium in

Games with Strategic Complementarities,” Econometrica, 58-6, 1255-1277.

[25] Milgrom, P. and R. Weber (1985): “Distributional Strategies for Games with Incomplete

Information,” Mathematics of Operations Research, 10, 619-632.

[26] Nyarko, Y. (1996): “Convergence in Economic Models with Bayesian Hierarchies of

Beliefs,” Journal of Economic Theory, 74, 266-296.

[27] Okuguchi, K. and Suzumura, K. (1971): “Uniqueness of the Cournot Oligopoly Equilib-

rium,” Economic Studies Quarterly, 22, 81-83.

[28] Pearce, D. (1984): “Rationalizable Strategic Behavior and the Problem of Perfection,”

Econometrica, 52, 1029-1050.

[29] Rubinstein, A. (1989): “The Electronic Mail Game: Strategic Behavior Under ‘Almost

Common Knowledge’,” The American Economic Review, Vol. 79, No. 3, pp. 385-391.

[30] Townsend, R. (1983): “Forecasting the Forecasts of Others,” Journal of Political Econ-

omy, 9-4, 546-88.

[31] Ui, T. (2001). “Robust Equilibria of Potential Games,” Econometrica 69, 1373-1380.

[32] Wilson, R. (1987): “Game-Theoretic Analyses of Trading Processes,” in: Truman Bewley

(ed.) Advances in Economic Theory: Fifth World Congress, Cambridge UK: Cambridge

University Press, 33-70.

MIT

URL: http://econ-www.mit.edu/faculty/myildiz/index.htm


