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Abstract
We consider the problem of sharing the cost of a public facility

among agents who have different needs for it. We show that the
nucleolus is the only rule satisfying efficiency, equal treatment of
equals, last-agent cost additivity, and last-agent consistency. Our
result reveals the importance of the last agent in characterizing the
rule and generalizes that of Potters and Sudhölter (1999). Journal
of Economic Literature Classification Numbers: C71; D30; D63.

Keywords: airport problems; nucleolus; consistency; cost addi-
tivity.

1 Introduction

We consider a class of cost sharing problems in which agents are ordered

in terms of their needs for a public facility, and satisfying a given agent

∗I would like to thank William Thomson for helpful suggestions and discussions. I
am grateful to Xiao Luo, Man-Chung Ng, Fan-Chin Kung, and Takashi Hayashi for
detailed comments. I am also indebted to an associate editor and two anonymous ref-
erees for extensive valuable comments on an early draft of this paper. I am responsible
for any remaining deficiency.
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implies satisfying all agents with smaller needs than his. An example is

the so-called airport problem: different airlines need airstrips of different

lengths. The larger a plane, the longer the airstrip it needs. Serving a

given plane implies serving all smaller planes. To accommodate all planes,

the airstrip must be long enough for the largest plane. A “rule” is a func-

tion that associates an allocation of the total cost of the airstrip, called a

“contribution vector,” with each airport problem. A number of properties

of good behavior of rules have been formulated from different perspectives

such as fairness criteria or operational principles. The literature devoted

to the search for existence of rules satisfying these properties, singly and

in various combinations, is initiated by Littlechild and Owen (1973).1

To any solution defined on the class of TU games can be adapted

to airport problems. First, we transform an airport problem into a TU

game, called an “associated airport problem,” by defining the worth of

each coalition as the cost of satisfying the agent with the largest need in

that coalition. We then apply a TU game solution to solve the associ-

ated airport game. This yields a payoff vector for the game. Finally, the

contribution vector for the airport problem is determined by taking the

inverse image of this payoff vector. A well-known example is the “nucleo-

lus” (Schmeidler, 1969), which lexicographically maximizes the “welfare”

of the worst-off coalitions.

When the nucleolus is adapted to airport problems, it satisfies the

following properties. To condense the verbal definitions of the proper-

ties, suppose that there are n agents indexed by {1, . . . , n}, agent i’s cost

parameter ci represents the cost of satisfying his need, and these cost pa-

rameters are ordered as c1 ≤ · · · ≤ cn. Agent n is referred to as the “last

agent.” The first property is equal treatment of equals : agents with equal

cost parameters should contribute equal amounts. Second is homogene-

ity : if all cost parameters are multiplied by the same positive number, so

should the contribution vector. Third is others-oriented cost additivity :

1For a survey of this literature, see Chun and Thomson (2001).
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if cn increases by some positive amount δ, then the contribution of the

last agent should increase by δ, and all other agents should contribute

the same amounts as they did initially.2 Last is “cost complement consis-

tency,”3 which is the expression for airport problems of a general principle

of “consistency.”4 Applying this principle requires that certain conceptual

ideas be discussed. We describe them as follows.

Consider a problem and suppose that a contribution vector x is chosen

for it. Then, imagine that agent i pays his contribution xi and leaves, and

reassess the situation from the viewpoint of the remaining agents. Instead

of thinking of xi as covering an abstract part of cn, it is natural to impute

it to the cost parameters of the remaining agents. The question is how

these imputations are calculated. One way to do so is to consider xi as

being used to cover ci. Thus, agent j with cj ≥ ci benefits by xi no matter

which part of ci is covered first. Agent j’s revised cost parameter is then

cj−xi. What if cj < ci? Suppose that xi is mainly intended to cover ci−cj.

In this case, agent j may or may not benefit from agent i’s contribution.

It depends on the difference between xi and ci− cj. If xi ≤ ci− cj, agent j

does not benefit; otherwise, his benefit is xi − (ci − cj). Thus, his revised

cost parameter is defined as the difference between cj and the maximum of

xi− (ci − cj) and zero. In other words, it is the minimum of ci−xi and cj.

Cost complement consistency says that the components of x pertaining to

the remaining agents should still be chosen for the problem just defined.

Sönmez (1994) provides a “recursive” formula for the contribution vec-

tor chosen by the nucleolus. In the formula, the contribution of the last

agent is defined as the difference between his cost parameter and the sum

of the contributions of all other agents. Note that the rule satisfies cost

complement consistency. If we restrict attention to the departure of the

last agent, each agent becomes the last agent after several reductions.

2Potters and Sudhölter (1999) combine others-oriented cost additivity and homo-
geneity as a property, referred to as covariance.

3Potters and Sudhölter (1999) refer to it as ν-consistency.
4For a survey of the literature on consistency and its converse, see Thomson (2000).
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Thus, the contribution of the last agent determines the entire contribu-

tion vector. We ask whether the rule can be characterized on the basis of

properties that concern the contribution of the last agent.

We weaken others-oriented cost additivity to “last-agent cost additiv-

ity” by dropping the requirement that all other agents should contribute

the same amounts as they did initially, and cost complement consistency

to “last-agent consistency” by restricting attention to the last agent. Be-

sides, we replace homogeneity with efficiency : the sum of all contributions

should be equal to the cost parameter of the last agent. We show that the

nucleolus is the only rule satisfying efficiency, equal treatment of equals,

last-agent cost additivity, and last-agent consistency (Theorem 1).

The result is appealing on two accounts. First, in contrast to other

models of fair allocation for which the departure of a particular agent

does not play any role, our result points out the importance of the last

agent in characterizing the nucleolus. If last-agent consistency is replaced

with “first-agent consistency,” obtained by restricting attention to the

first agent (the agent with the smallest cost parameter), the nucleolus is

no longer the only acceptable rule. An alternative is the “sequential equal

contributions” rule (Littlechild and Owen, 1973), whose contributions vec-

tor is identical to that prescribed by the Shapley value (Shapley, 1953) of

the associated airport game.5 Second, Potters and Sudhölter (1999) show

that the nucleolus is the only rule satisfying equal treatment of equals,

homogeneity, other-oriented cost additivity, and cost complement consis-

tency. Note that homogeneity, others-oriented cost additivity, and cost

complement consistency altogether imply efficiency. In addition, others-

oriented cost additivity and cost complement consistency are stronger than

last-agent cost additivity and last-agent consistency, respectively. Thus,

our result generalizes that of Potters and Sudhölter.

The rest of this paper proceeds as follows. Section 2 introduces the

model, the nucleolus, and the properties. Sections 3 and 4 present the main

5Aadland and Kolpin (1998) refer to it as the “serial cost-share” rule. We follow
Chun and Thomson (2001)’s terminology.
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result and show the independence of the properties. Section 5 concludes.

2 Notation and definitions

There is an universe of “potential” agents, denoted by I j N where N
is the set of natural numbers. Let N be the class of finite subsets of I.

Given N ∈ N and i ∈ N , let ci ∈ R+ be agent i’s cost parameter and

c ≡ (ci)i∈N the profile of cost parameters.6 An airport problem for N , or

simply a problem for N , is a list c ∈ RN
+ .7 Let CN be the class of all

problems for N . A contribution vector for c ∈ CN is a vector x ∈ RN .

Let X (c) be the set of all contribution vectors for c ∈ CN . A rule is a

function defined on
⋃

N∈N CN that associates with each N ∈ N and each

c ∈ CN a vector in X (c). Let S be our generic notation for rules. For

simplicity, we assume that N ≡ {1, . . . , n} and c1 ≤ · · · ≤ cn where n is

the cardinality of N . Thus, agent n is referred to as the “last agent.” For

each coalition N ′ ⊂ N , we denote (ci)i∈N ′ by cN ′ , (Si (c))i∈N ′ by SN ′ (c),

and so on.

We now introduce the nucleolus. Since the contribution vector chosen

by the rule is calculated by a sequence of linear programs, it is not easy

to compute in general. However, Littlechild (1974) and Sönmez (1994)

provide explicit formulae. For our purpose, we adopt Sönmez’s formula.

Nucleolus, Nu: For each N ∈ N and each c ∈ CN ,

Nu0(c) ≡ 0

Nui(c) ≡ min

{
ck−

∑i−1
p=0 Nup(c)

k−i+2
| i ≤ k ≤ n− 1

}
where 1 ≤ i ≤ n− 1

Nun(c) ≡ cn −
∑n−1

p=0 Nup (c) .

The rule satisfies the following properties. First, each agent should

6By R+ we denote the set of real numbers, R+ ≡ {x ∈ R | x ≥ 0}.
7By RN

+ we denote the Cartesian product of |N | copies of R+, indexed by the
elements of N .
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contribute a non-negative amount and at most as much as his cost param-

eter.

Reasonableness: For each N ∈ N and each c ∈ CN , 0 5 S (c) 5 c.8

Next are the properties informally defined in the introduction.

Efficiency: For each N ∈ N and each c ∈ CN ,
∑

i∈N Si (c) = maxi∈N ci.

Equal treatment of equals: For each N ∈ N , each c ∈ CN , and each

pair {i, j} ⊆ N , if ci = cj, then Si (c) = Sj (c).

Last-agent cost additivity: For each N ∈ N , each pair {c, c′} of ele-

ments of CN , and each δ ∈ R+, if c′n = cn + δ and for each j ∈ N\ {n},
c′j = cj, then Sn (c′) = Sn (c) + δ.

A variable-population property follows. To introduce it, we need the

following notation. Let N ∈ N , c ∈ CN , i ∈ N , and x ∈ X (c). The

reduced problem of c with respect to N ′ ≡ N\ {i} and x, rx
N ′ (c),

is defined by

(i) for each j ∈ N ′ such that cj < ci, (rx
N ′ (c))j ≡ min {cj, ci − xi} , and

(ii) for each j ∈ N ′ such that cj ≥ ci, (rx
N ′ (c))j ≡ cj − xi.

Cost complement consistency: For each N ∈ N , each c ∈ CN , and

each N ′ ⊂ N , if x ≡ S (c), then rx
N ′ (c) ∈ CN ′

and xN ′ = S (rx
N ′ (c)).

A weaker version of cost complement consistency is obtained by re-

stricting attention to the last agent.9

8Vector inequalities: x = y, x ≥ y, and x > y.
9Our definition of the “last-agent reduced problems” is the same as the one used

by Potters and Sudhölter (1999). Intuitively, the definition makes sense only when
xn ≥ cn − cn−1. Although it is more appropriate to define such reduced problems
only when xn ≥ cn − cn−1, our result does not change essentially even if we use this
alternative definition.
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Last-agent consistency: For each N ∈ N and each c ∈ CN , if x ≡ S (c),

then rx
N\{n} (c) ∈ CN\{n} and xN\{n} = S

(
rx
N\{n} (c)

)
.

Remark: Efficiency and last-agent consistency together imply reason-

ableness.

3 The result

We begin with a lemma. It says that the nucleolus satisfies the following

monotonicity property: if all cost parameters increase in such a way that

of two agents, the larger cost parameter increases by at least as much as

the smaller one, then the last agent should contribute at least as much as

he did initially.10

Last-agent marginal cost monotonicity: For each N ∈ N and each

pair {c, c′} of elements of CN , if for each pair {i, j} ⊆ N with i < j,

0 ≤ c′i − ci ≤ c′j − cj, then Sn (c) ≤ Sn (c′).

Lemma 1 The nucleolus satisfies last-agent marginal cost monotonicity.

Proof. Let N ∈ N and c ∈ CN . Without loss of generality, we assume

that N ≡ {1, . . . , n} and c1 ≤ · · · ≤ cn. Let c′ ∈ CN be such that

0 ≤ c′1 − c1 ≤ · · · ≤ c′n − cn. Let x ≡ Nu (c) and y ≡ Nu (c′). We show

that xn ≤ yn. The proof is in two steps. Step 1 shows that for each

agent j ∈ N\ {n}, the sum of the contributions of those agents whose

cost parameters are at most as large as agent j’s increases by at most

c′n−1 − cn−1. For each i ∈ N , let δi ≡ c′i − ci. Thus, 0 ≤ δ1 ≤ · · · ≤ δn.

Step 1: For each j ∈ {1, . . . , n − 1} , 0 ≤
j∑

k=1

yk −
j∑

k=1

xk ≤ δn−1.

The proof is by induction on j.

10Aadland and Kolpin (1998) define a stronger version of last-agent marginal cost
monotonicity under the name of “cost monotonicity” obtained by adding the require-
ment that all other agents should also contribute at least as much as they did initially.
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Case 1: j = 1. Note that for each j ∈ {1, . . . , n− 1}, jδn−1 ≥ 0. Then

the formulae for y1 and x1 give

y1 ≡ min

{
c1 + δ1

2
, · · · , cn−1 + δn−1

n

}

≥ min
{c1

2
, · · · , cn−1

n

}

≡ x1,

and

y1 ≡ min

{
c1 + δ1

2
, · · · , cn−1 + δn−1

n

}

≤ min

{
c1 + δn−1

2
, · · · , cn−1 + δn−1

n

}

≤ min
{c1

2
, · · · , cn−1

n

}
+ δn−1

≡ x1 + δn−1.

Thus, 0 ≤ y1 − x1 ≤ δn−1.

Case 2: j > 2. The induction hypothesis is that for each j ∈ {1, . . . , t},
0 ≤ ∑j

k=1 yk −
∑j

k=1 xk ≤ δn−1, where t ∈ N is such that t < n − 1. We

show that 0 ≤ ∑t+1
k=1 yk −

∑t+1
k=1 xk ≤ δn−1. Let βt ≡

∑t
k=1 yk and γt ≡∑t

k=1 xk. Since x = 0 and y = 0, then βt ≥ 0 and γt ≥ 0. By the induction

hypothesis, γt − βt ≤ 0. It follows that for each j ∈ {t + 1, . . . , n− 1},
(j − t) (γt − βt) ≤ 0. Note that for each j ∈ {t + 1, . . . , n− 1}, δj ≥ 0.

Then, the formulae for yt+1 and xt+1 give

yt+1 ≡ min

{
ct+1 + δt+1 − βt

2
, · · · , cn−1 + δn−1 − βt

n− t

}

≥ min

{
ct+1 − βt

2
, · · · , cn−1 − βt

n− t

}

≥ min

{
ct+1 − γt

2
, · · · , cn−1 − γt

n− t

}
+ γt − βt

≡ xt+1 + γt − βt.

Thus,
∑t+1

k=1 yk −
∑t+1

k=1 xk ≥ 0.
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We show next that
∑t+1

k=1 yk −
∑t+1

k=1 xk ≤ δn−1. Let αt ≡ γt −
βt + δn−1. By the induction hypothesis, αt ≥ 0. It follows that for

each j ∈ {t + 1, . . . , n− 1}, (j − t) αt ≥ 0. Note that for each j ∈
{t + 1, . . . , n− 1}, 0 ≤ δj ≤ δn−1. Then, the formulae for yt+1 and xt+1

give

yt+1 ≡ min

{
ct+1 + δt+1 − βt

2
,
ct+2 + δt+2 − βt

3
, · · · , cn−1 + δn−1 − βt

n− t

}

≤ min

{
ct+1 + δn−1 − βt

2
,
ct+2 + δn−1 − βt

3
, · · · , cn−1 + δn−1 − βt

n− t

}

≤ min

{
ct+1 − γt

2
,
ct+2 − γt

3
, · · · , cn−1 − γt

n− t

}
+ αt

≡ xt+1 + γt − βt + δn−1.

It follows that
∑t+1

k=1 yk −
∑t+1

k=1 xk ≤ δn−1.

Step 2: Completion of the proof.

Note that yn ≡ cn + δn −
n−1∑
k=1

yk and that xn ≡ cn −
n−1∑
k=1

xk. By Step 1,

0 ≤
n−1∑
k=1

yk −
n−1∑
k=1

xk ≤ δn−1. Since δn−1 ≤ δn, it follows that xn ≤ yn.

Q .E .D .

With the help of Lemma 1, we are now ready to prove our main result.

Theorem 1 The nucleolus is the only rule satisfying efficiency, equal

treatment of equals, last-agent cost additivity, and last-agent consistency.

Proof. Clearly, the nucleolus satisfies efficiency and last-agent cost ad-

ditivity. It also satisfies equal treatment of equals and last-agent consis-

tency (Potters and Sudhölter, 1999).

Conversely, let S be a rule satisfying the four properties. Let N ∈ N ,

c ∈ CN , x ≡ S (c), and y ≡ Nu (c). Without loss of generality, we assume

that N ≡ {1, . . . , n} and c1 ≤ · · · ≤ cn. We show that x = y. The proof

is by induction on |N |.
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Figure 1: Illustration of the proof of Theorem 1 for |N | > 2,
cn = cn−1, and xn > yn. Here N ≡ {1, . . . , 5}, x ≡ S (c), and y ≡
Nu (c). If agent 5 pays x5 and leaves. The reduced problem with re-
spect to N ′ ≡ {1, . . . , 4} and x, rx

N\{5} (c), is denoted by (cx
1 , c

x
2 , c

x
3 , c

x
4).

If the agent pays y5 and leaves. The reduced problem with respect to
N ′ ≡ {1, . . . , 4} and y, ry

N\{5} (c), is denoted by (cy
1, c

y
2, c

y
3, c

y
4). In the

figure, c1 = cx
1 = cy

1, c2 = cx
2 = cy

2, and c3 = cy
3.

Case 1: |N | = 1. By efficiency, x = y.

Case 2: |N | = 2. Let N ≡ {i, j} and c ∈ CN . If ci = cj, then by equal

treatment of equals and efficiency, x = y. If ci 6= cj, then without loss of

generality, we assume that ci < cj. Let c′ ∈ CN be such that c′i = ci and

c′j = ci. By the previous argument, S (c′) = Nu (c′). By last-agent cost

additivity, xj = Sj (c′) + cj − ci and yj = Nuj (c′) + cj − ci. Thus, xj = yj.

By efficiency, xi = yi.

Case 3: |N | > 2. By the induction hypothesis, suppose that for each

N ′ ⊂ N with |N ′| ≤ |N | − 1 and each c∗ ∈ CN ′
, S (c∗) = Nu (c∗). We first

show that xn = yn. We distinguish two subcases.

Subcase 3.1: cn = cn−1. (Figure 1) Suppose, by contradiction, that

xn 6= yn. Thus, either xn > yn or xn < yn. If xn > yn, then by equal

treatment of equals, xn−1 = xn and yn−1 = yn. It follows that xn−1 > yn−1.

Let cx ≡ rx
N\{n} (c) and cy ≡ ry

N\{n} (c). Recall that xn > yn. Thus, for

each i ∈ N\ {n}, cx
i ≤ cy

i . Since c1 ≤ · · · ≤ cn, then cx
1 ≤ · · · ≤ cx

n.

Moreover, cy
1−cx

1 ≤ · · · ≤ cy
n−1−cx

n−1. By Lemma 1, the nucleolus satisfies

last-agent marginal cost monotonicity. Thus, Nun−1 (cy) ≥ Nun−1 (cx).

By last-agent consistency, xN\{n} = S (cx) and yN\{n} = Nu (cy). Thus,

Nun−1 (cy) = yn−1 and Sn−1 (cx) = xn−1. Note that |N\ {n}| = |N | − 1.
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By the induction hypothesis, S (cx) = Nu (cx). Thus, xn−1 = Nun−1 (cx).

Recall that Nun−1 (cy) ≥ Nun−1 (cx), and that Nun−1 (cy) = yn−1. It

follows that yn−1 ≥ xn−1, in violation of yn−1 < xn−1. If xn < yn, then by

a similar argument, we derive the desired contradiction.

Subcase 3.2: cn−1 < cn. Let c′ be such that for each j ∈ N\ {n}, c′j ≡
cj, and c′n ≡ cn−1. Thus, c′n = c′n−1. By Subcase 3.1, Sn (c′) = Nun (c′).

Note that for each i ∈ N\ {n}, ci = c′i, and that cn = c′n + cn − cn−1.

By last-agent cost additivity, Sn (c) = Sn (c′) + cn − cn−1 and Nun (c) =

Nun (c′) + cn − cn−1. Thus, xn = yn.

By last-agent consistency and the induction hypothesis, we conclude

that x = y. Q .E .D .

4 Independence of properties

We now show that the properties listed in Theorem 1 are logically inde-

pendent. For this purpose, we introduce additional rules.

• Example 1 A rule that satisfies equal treatment of equals, last-

agent cost additivity, and last-agent consistency, but not efficiency.

We distinguish two cases. Let δ ∈ R+, N ∈ N , c ∈ CN , and

c (δ) ≡ (c1 − δ, . . . , cn − δ). If c (δ) ∈ CN , then the rule chooses the

contribution vector recommended by the nucleolus for the problem

c (δ) instead of the problem c; otherwise, it chooses the contribution

vector recommended by the nucleolus.

Inefficient nucleolus, INuδ: For each N ∈ N and each c ∈ CN ,

INuδ (c) ≡
{

Nu (c (δ)) if c (δ) ∈ CN ,
Nu (c) otherwise.
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• Example 2 A rule that satisfies efficiency, last-agent cost additivity,

and last-agent consistency, but not equal treatment of equals.

The rule makes the agent with the largest cost parameter, if there

is a unique such agent, pay the entire cost; otherwise, the agent

with the largest index among them pays the entire cost (Potters and

Sudhölter, 1999). This rule just defined is the “free-rider” solution.

Last-agent rule, LA: For each N ∈ N , each c ∈ CN , and each

i ∈ N ,

LAi (c) ≡
{

0 if i 6= n,
cn otherwise.

• Example 3 A rule that satisfies efficiency, equal treatment of equals,

and last-agent consistency, but not last-agent cost additivity.

The rule is defined as follows: imagine that all agents are ordered

in terms of their cost parameters. To simplify our explanation, we

assume that all cost parameters are different. For each agent i, let Si

be the group of agents whose cost parameters are at most as large as

agent i’s. The rule requires that each agent contributes equally until

there is an agent j such that the equal amount is equal to
cj

|Sj | . Then,

each agent in Sj contributes
cj

|Sj | and leaves. For each agent not in

Sj, his cost parameter is decreased by cj. Continue by requiring

equal contributions from all agents not in Sj until there is an agent

k such that the amount is equal to
ck−cj

|Sk\Sj | . Then, each agent in Sk\Sj

contributes
ck−cj

|Sk\Sj | and leaves. Continue in this way until the cost of

the project is entirely covered (Aadland and Kolpin, 1998). It can

be shown that the rule is, in fact, the “egalitarian rule” (Dutta and

Ray, 1989) of the “associated airport game”11.12

11Given N ∈ N and c ∈ CN , the associated airport game is a TU game v (c) ∈ R2|N|−1

defined by setting for each ∅ 6= S j N , v (c) (S) ≡ maxi∈S ci.
12Aadland and Kolpin (1998) refer to it as the “restricted average cost-share” rule.
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Constrained equal contributions rule, CEC: For each N ∈ N
and each c ∈ CN ,

CEC0(c) ≡ 0

CECi(c) ≡ min

{
ck−

∑i−1
p=0 CECp(c)

k−i+1
| i ≤ k ≤ n

}
1 ≤ i ≤ n− 1

CECn(c) ≡ cn −
∑n−1

p=0 CECp (c) .

• Example 4 A rule that satisfies efficiency, equal treatment of equals,

and last-agent cost additivity, but not last-agent consistency.

Imagine that all agents are ordered in terms of their cost parameters.

Each agent first contributes an equal amount, and the sum of their

contributions of all agents is equal to the smallest cost parameter.

Then, each agent whose cost parameter is greater than the smallest

cost parameter continues to contribute an equal amount and the sum

of these additional contributions is equal to the difference between

the second smallest cost parameter and the first cost parameter,

and so on (Littlechild and Owen, 1973). The rule just defined is the

“Shapley value” (Shapley, 1953) of the associated airport game.13

Sequential equal contributions rule, SEC: For each N ∈ N ,

each c ∈ CN , and each i ∈ N ,

SECi (c) ≡ c1

n
+

c2 − c1

n− 1
+ · · ·+ ci − ci−1

n− i + 1
.

5 Conclusion

We provided an alternative characterization of the nucleolus for airport

problems. Namely, it is the only rule satisfying efficiency, equal treatment

Chun and Thomson (2001) provide a explicit formula to calculate the contribution
vector chosen by the rule, and refer to it as the “constrained equal contributions” rule.
We follow their terminology.

13Chun and Thomson (2001) refer to it as the sequential equal contributions rule.
We follow their terminology.
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of equals, last-agent cost additivity, and last-agent consistency. Our result

can be regarded as an axiomatic explanation of the importance of the last

agent for the nucleolus. It would be interesting to investigate whether this

importance can be understood from a non-cooperative viewpoint.
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