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Abstract

Multiple martingale, or bubble, solutions exist when expectations about future values of endogenous
variables enter a model under rational expectations. Such solutions reproduce bubble behavior, as
seen in asset markets for example, and have implications about the nature of rational expectations
in many contexts. Economists often select a unique rational expectations solution from the class of
martingale solutions using a principle such as minimum state variables. In contrast, we allow agents
to choose from di¤erent forecasts based on bubble solutions. Evolutionary game theory selection
dynamics describe agents�choices of forecasts using squared forecast errors as payo¤s, and we study
whether agents�expectations converge to a unique, fundamental solution. Under the commonly
studied replicator dynamic, agents come to agree on a fundamental forecast. However, under
convex monotonic selection dynamics, when agents switch more rapidly to forecasts with lower
errors, bubble solutions can play an important role in the evolution of the model. These results
show how bubbles can arise and raise doubts about focusing on a unique rational expectations
solution.



Metaphysics, or the attempt to conceive the world as a whole by means of thought,
has been developed, from the �rst, by the union and con�ict of two very di¤erent human
impulses, the one urging men towards mysticism, the other urging them towards science.

Bertrand Russell, Mysticism and Logic, 1917.

1. Introduction

The existence of the martingale solutions for models with forward-looking expectations re-

�ects the fact that the rational expectations assumption alone does not identify a unique solution.

Uniqueness in applications involving forward-looking expectations is generally achieved by assuming

that agents use deeper theorizing to construct a principle that singles out a fundamental solution.1

The candidates for this principle include expectational stability [Evans (1986), Evans and Honkapo-

hja (2001)], stationarity [Gourieroux, La¤ont, and Monfort (1982)], minimal use of state variables

[McCallum (1983,1997)], and minimum variance [Taylor (1977)]. Although the multiplicity of

these proposed principles raises the issue of how a single principle becomes common knowledge,

the various principles in fact agree on the same fundamental solution in many cases.2 The real

challenge the martingale solutions pose is how agents acquire the sophisticated analytic ability it

takes to understand the mathematical subtleties of the problem they face. If the agents are not

endowed with the necessary sophisticated analytic ability, then the question becomes how they

come to behave as if they are.3

Using an evolutionary game theory framework, we establish conditions under which practical

1Pesaran (1987, p. 96) uses the term deeper theorizing and surveys the various principles.
2We use the term common knowledge here in the sense that not only do all agents use the same forecasting

strategy, but all agents know that they all use the same forecasting strategy, all agents know that all agents know
they all use the same forecasting strategy, and so forth [Osborne and Rubinstein (1994, p. 73)]. If any link in this
chain is broken by some free-spirited, inquisitive agent, then the original theory does not specify what any of the
agents will do.

3The as if postulate has a long history in economics. Friedman (1953) supports the standard analytics of price
theory with analogies to how leaves on a tree solve the problem of maximizing collective exposure to sunlight and
how expert billiards players make shots as if they had spent years in the classroom learning to solve mathematical
formulas. Lucas (1978, p. 1429) explicitly states that the sophisticated rational behavior he assumes is the outcome
of an unspeci�ed as if process. Here, we investigate how agents might learn to behave as if they had thought through
the martingale solutions problem.
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experience will lead agents holding heterogeneous beliefs to agree on the fundamental solution.4

The agents choose among three forecasting strategies that all satisfy the principle of rational ex-

pectations.5 A fraction t of the agents follow the fundamentalist forecast e;t that agrees with

the deeper theorizing analysis. Another fraction �t follow a mystical forecast e�;t that adds a

martingale to the fundamentalist forecast. The remaining fraction �t = 1 � t � �t follow the

re�ective forecast e�;t that equals the mathematical expectation of yt taking into account t; e;t;

�t, and e�;t.

The evolutionary dynamics of the fractions t, �t, and �t provide some insights into the merits

of assuming that a unique fundamental solution is common knowledge. If a small fraction of the

agents experiment with the mystical forecast, there are two possible outcomes. The agents might

return fairly quickly to unanimous belief in the fundamental solution, lending support to the notion

of imposing the fundamental solution by assumption. Mysticism might, on the other hand, grow in

popularity and persist for a long period of time, giving rise to an episode that could be characterized

as a bubble. Occurrences of such episodes with a nontrivial probability would weaken the basis

for simply imposing the fundamental solution by assumption.

Evolutionary game theory is well suited to studying the dynamics of beliefs and the robustness

of an outcome.6 It is based on the notion that agents might arrive at sophisticated behavior as

the result of selection among heterogeneous, less sophisticated behavioral rules. Samuelson (1998,

p. 15) cites the parallel to the process by which competitive markets are typically described as

reaching equilibrium, with high-pro�t behavior being rewarded at the expense of low-pro�t behavior.

Theoretical developments have been aimed at understanding how agents might narrow the set of

interesting equilibria for models with large sets of Nash equilibria without necessarily understanding

the subtle mathematical details of game theory. Binmore, Gale, and Samuelson (1995), for example,

use drift, which is an injection of small fractions of agents using each strategy at each period,

4To focus attention on the issues raised by the martingale solutions, we assume that all agents know the model�s
parameters. The extensive literature on convergence to rational expectations detailing how agents might attempt
to learn the parameters of a model with expectations includes Bray (1982) and Marcet and Sargent (1989a,1989b).
The sunspot equilibria considered in that context by Woodford (1990) and Howitt and McAfee (1992) share the
extraneous nature of the mysticism considered here, but our agents do know the parameters of the model. Evans
and Honkapohja (2001) and Grandmont (1998) survey this literature.

5Others studies of heterogeneous expectations, including Brock and Hommes (1997,1998), Chiarella (2002), De-
grauwe (1993), DeLong, Shleifer, Summers, and Waldmann (1990), and LeBaron, Arthur, and Palmer (1999), pit
agents with various naive forecasting strategies against agents who have perfect foresight or rational expectations.
All our agents understand rational expectations.

6Samuelson (1998) and Weibull (1997) survey evolutionary game theory.
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to evaluate and select among Nash equilibria. This is similar to our e¤orts to study whether

nearly universal belief in the fundamentalist forecast is robust to some agents experimenting with

mysticism.

Implementing an evolutionary game theory approach to the contest among fundamentalism,

mysticism, and re�ectivism requires some speci�cs of how agents choose among the three strategies.

In a general notation for n strategies, let xt = (x1;t; :::; xn;t) denote the population shares at time

t for strategies (s1:::; sn). Let u(si; xt) denote the payo¤ to following strategy si given that the

overall distribution across strategies at time t is xt. The payo¤s are taken here to be the negatives

of the squared forecast errors. We assume that the distribution of agents across strategies evolves

according to
xi;t+1 � xi;t

xi;t
= �(xt) f(u(si; xt)) + �(xt) ; i = 1; :::; n; (1.1)

where f(�) is a possibly nonlinear transformation of the payo¤, �(xt) is a scale factor, and �(xt)

ensures that the population shares sum to one. This is a discrete time version of Hofbauer and

Weibull�s (1996) equation (6).7

We consider two possibilities that we refer to as imitation of successful agents (ISA) and review

of unsuccessful forecasts (RUF).8 Imitation of successful agents emphasizes the choice of a new

forecasting strategy, assuming that agents reconsider their strategies each period and that agents

tend to adopt new strategies that have small realized forecasting errors and are popular in the

overall population. Review of unsuccessful forecasts focuses on the decision to review a forecasting

strategy, assuming that the decision to review depends on a forecast�s current performance. Poorly

performing forecasts are more likely to be reviewed and replaced. Both principles can be expressed

as algebraic special cases of (1.1).

For both ISA and RUF, we are able to demonstrate monotone convergence to universal belief in

the fundamental solution under certain conditions. Central among these is the replicator dynamic,

where f(�) in (1.1) is linear in the payo¤ u(si; xt) and the growth rate for xi;t is proportional to the

�tness of xi;t, which is the di¤erence between its payo¤ u(si; xt) and the population average payo¤

7Bjornerstedt and Weibull (1993) and Weibull (1997) develop evolutionary game theory as a model of social
interaction rather than biological evolution. Cabrales and Sobel (1992) provide some theoretical background for
discrete time selection dynamics. Hofbauer and Weibull (1996) show that (1.1) ecompasses dynamics approaching
both best-reply and worst-reply (when almost all agents abandon the strategy with the worst payo¤) behavior, with
the replicator dynamic being an intermediate case.

8Both cases are discussed by Bjornerstedt and Weibull (1993) and Weibull (1997).
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Pn
j=1 xj;tu(sj ; xt).

9 We also examine the dynamics for a convex f(�), where agents are switching

to superior strategies more aggressively than under the replicator.10 For convex functions f(�), we

�nd that convergence occurs if the errors driving the process are su¢ ciently small relative to the

degree of convexity of f(�). We conclude, therefore, that, if f(�) is linear, or minimally convex,

mysticism will quickly disappear and agents will follow some combination of fundamentalism and

re�ectivism. The exact mix will not matter because, if the following for the mystical forecast is

zero, the fundamentalist and re�ective forecasts are identical.

We also demonstrate, however, that this convergence may not be robust with respect to the

introduction of mysticism. Robustness tends to fail when the error variances are large, indicating

substantial uncertainty about the fundamentals, and when f(�) is convex because agents are aggres-

sively pursuing superior strategies. Under those conditions, there can be a nontrivial probability

that mysticism has a signi�cant following for an extended period. If so and if agents occasionally

experiment with mysticism, then mysticism can be an important feature of the overall process.

Other evidence exists that the long run might not be dominated by the fundamental rational

expectations solution. Brock and Hommes (1998) analyze heterogeneous expectations in an asset

pricing model under the assumption that the level of xi;t (rather than the growth rate) is propor-

tional to exp(u(si; xt)). Using trading pro�ts as the payo¤s, they come to a conclusion similar

to ours in that they �nd persistent deviations from the fundamental price, and highly irregular,

chaotic asset price �uctuations, when the intensity of choice to switch prediction strategies becomes

high (p. 1265). This �nding echoes their conclusions for a cobweb model [Brock and Hommes

(1997)]. Branch (forthcoming) emphasizes that the variety of available forecasting strategies can

be an important determinant of stability by showing that the introduction of agents following adap-

tive expectations can dampen the cobweb model price oscillations. Blume and Easley (1992) use

an evolutionary approach to study asymptotic behavior in an asset market, showing that ad hoc

behavior can survive asymptotically. LeBaron, Arthur, and Palmer (1999) conduct simulations

using a genetic learning algorithm and are able to replicate many of the time series features of real

markets. They �nd [p. 1513] that the agents concentrate on rules using those pieces of forecasting

9Branch (2001) studies a version of the Brock and Hommes (1997) cobweb model using the replicator dynamic.
10Such dynamics fall into the class of convex monotonic dynamics [Hofbauer and Weibull(1996)]. Extreme convexity

implies that agents are approaching best-reply behavior where nearly all agents switch to the strategy with the highest
current payo¤.
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information which appear signi�cant in the time series tests, but should not be important inside a

homogeneous linear rational expectations equilibrium.

Our results are unique in that, while earlier studies with heterogeneity explore the implications

of misspeci�ed beliefs, all our agents are attempting to implement behavior satisfying the concept of

rational expectations. We �nd that disagreements about how to implement rational expectations

can lead to an outcome that is not robust with respect to experimentation with mysticism. If some

of the agents adopt the fundamentalist forecast and some adopt the re�ective forecast, then the

circumstances are fertile for the emergence of bubble-like episodes of mysticism. Such episodes are

particularly likely if agents are aggressively pursuing superior forecasting strategies.

The outline of our discussion is as follows. In Section 2 we lay out the strategies and payo¤s

available to agents facing a model with potential martingale solutions. Section 3 puts forth a

general structure of evolutionary dynamics. Sections 4 and 5 present convergence results for two

speci�c forms of evolutionary dynamics, imitation of successful agents and review of unsuccessful

forecasts. Section 6 explores the robustness of these results with respect to experimentation with

mysticism. Section 7 summarizes the implications of our results for the existence of periodic

episodes of bubbles in processes that admit martingale solutions.

2. The Model

Lucas�s (1978) study of asset pricing shows that optimizing behavior can lead to an equation of

the form

yt = �(y
e
t+1 + E(ut+1j
t)); � < 1: (2.1)

In his setting, yet+1 is a representative agent�s expectation of next period�s value for a stock price

yt, and E(ut+1j
t) is the mathematical expectation of next period�s dividend for that stock given

an information set 
t. We assume that agents know the parameter � and the mathematical

expectations E(ut+kj
t); k = 1; 2; ::: . Agents will determine the realization yt on the basis of 
t

so we do not include yt in 
t.

If we let

y�t =
1X
s=1

�sut+s (2.2)

denote the perfect foresight fundamental solution that would arise if agents knew the entire future
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path of a stationary ut, then the solution set for (2.1) includes

yt = E(y
�
t j
t) + ��tmt; (2.3)

for any martingale mt = mt�1+�t, where �t is a serially independent martingale innovation. Such

solutions arise because of the self-ful�lling nature of expectations in (2.1).

We apply evolutionary game theory to study the outcome when agents do not agree on a single

expectation yet+1, but do attempt to adhere to the rational expectations philosophy underlying

Lucas�s paper. From the equations in Lucas (1978), we construct three forecasts.

The Fundamentalist Forecast. A fraction t of our agents read Lucas (1978, p.1439) and adopt

the fundamentalist one period ahead forecast

e+1;t = E(y
�
t+1j
t); (2.4)

which is the equation immediately following Lucas�equation (14). We use the term fundamentalist

because this forecast corresponds to the fundamental (bubble-free) solution in the deeper theorizing

literature.

The Mystical Forecast. Another fraction �t of the agents opt to follow the mystical forecast

e+1�;t = E(y
�
t+1j
t) + ��t�1mt: (2.5)

Sargent (1987, equation (3.8)) con�rms to them that (2.5) is a valid solution to Lucas�equation

(14).

The results in this paper do not depend on the speci�c origin of the martingale mt. While the

mystical forecast could be constructed from an intentionally extraneous martingale, it could also

arise from some disagreement about what is fundamental. The followers of the mystical forecast

might envision an uncertain, but forecastable lump-sum return ��TMT at a date T in the future.

Although the fundamentalists would insist that the mystical forecast is based on a pot of gold at the

end of a rainbow, the true nature of ��TMT might not be so obvious. For example, ��TMT might

be the ultimate return envisioned for a hedge fund founded by Nobel Prize winning economists or

��TMT might be the ultimate return for a company with a near monopoly on hardware needed
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for the vastly expanding Internet. Given belief in a return ��TMT at a �xed date T that remains

in the future, calculating the discounted expected value ��tmt = �
T�tE(��TMT j
t) will generate

the martingale term in (2.5).

The Re�ective Forecast. A third fraction �t of the agents consider (2.1) to be the essential

conclusion of Lucas (1978) and adopt the re�ective forecast e+1�;t, which is de�ned by the property

yt = �(e
+1
�;t + E(ut+1j
t)): (2.6)

Followers of the re�ective forecast understand that their choice of e+1�;t a¤ects yt and they use the

algebra given below and their knowledge of t; e
+1
;t ; �t; and e

+1
�;t to �nd the value for e

+1
�;t that

achieves (2.6).

Given these three heterogeneous forecasting strategies, determining yt requires a basis for ag-

gregating expectations. For agents optimizing over the mean and variance of returns, Brock and

Hommes (1998) extend Lucas�s model of representative agent optimizing behavior to heteroge-

neous expectations. We adopt their conclusion (their equation (2.7)), which can be written in our

notation as11

yt = �(te
+1
;t + �te

+1
�;t + �te

+1
�;t) + �E(ut+1j
t)): (2.7)

The quantity yet+1 = te
+1
;t + �te

+1
�;t + �te

+1
�;t functions as the aggregate expectation. Combining

(2.6) and (2.7) yields

e+1�;t = (1� nt)e
+1
;t + nte

+1
�;t ; (2.8)

where

nt =
�t

�t + t
:

The re�ective forecast is thus aptly named because it achieves (2.6) by adopting a weighted average

of the other two forecasts.12

The re�ective forecast di¤ers in one important regard from the fundamentalist and mystical

forecasts. Followers of the re�ective forecast take into account the beliefs of others, regardless of

whether or not they agree with the basis for those beliefs. Followers of the fundamentalist and

11Evans and Honkapohja (2001, p. 46 and p. 223) introduce a similar equation by assumption.
12 If nt equals zero or one, then there is e¤ectively no disagreement about forecasts because e+1�;t equals either e

+1
;t

or e+1�;t.
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mystical forecasts, on the other hand, do not react to the other forecasts. Considerably before the

advent of the rational expectations principle, Keynes�beauty contest view of investment recognized

the growing importance of the re�ective forecast: We have reached the third degree where we

devote our intelligences to anticipating what average opinion expects the average opinion to be. ...

Investment based on genuine long-term expectation is so di¢ cult today as to be scarcely practicable.

He who attempts it must surely lead much more laborious days and run greater risks than he who

tries to guess better than the crowd how the crowd will behave; and, given equal intelligence, he

may make more disastrous mistakes.13 We will quantify this natural advantage accruing to the

re�ective forecast.

The �rst step is computing the forecast errors that agents consider in choosing strategies. At

time t� 1, the forecasts of yt are

e+1;t�1 = E(y
�
t j
t�1); (2.9a)

e+1�;t�1 = E(y
�
t j
t�1) + ��tmt�1; (2.9b)

e+1�;t�1 = E(y
�
t j
t�1) + ��tntmt�1: (2.9c)

The re�ective forecast includes a martingale term ��tntmt�1, where the weight nt depends

on the fraction of other agents following mysticism. The fractions t; �t; �t, and nt are

set after yt�1 is determined and held constant until after yt is determined. At time t,

E(y�t j
t) and mt become available, resulting in the three forecasts of yt+114

e+1;t = E(y
�
t+1j
t); (2.10a)

e+1�;t = E(y
�
t+1j
t) + ��t�1mt; (2.10b)

e+1�;t = E(y
�
t+1j
t) + ��t�1ntmt: (2.10c)

These forecasts enter (2.7) to yield the realization

yt = E(y
�
t j
t) + ��tntmt:

The negatives of the three period t squared forecast errors can be written as

��;t = �U2t ; (2.11a)

13Keynes (1935, p. 156-157)
14We assume that agents commit to using a speci�c forecasting strategy at time t before mt and, therefore, yt is

known. This ordering does not allow agents to revise their choices of strategies given the realizations of the forecasts.
Brock and Hommes (1998) and LeBaron, Arthur and Palmer (1999) use the same assumption about yt.
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�;t = �U2t � 2ntUtAt � n2tA2t ; (2.11b)

��;t = �U2t + 2 (1� nt)UtAt � (1� nt)
2A2t ; (2.11c)

where At = ��tmt�1 is the level of the martingale term and the re�ective forecast

error Ut = Ft +Gt includes the innovation in the fundamentals for yt

Ft = E(y
�
t j
t)� E(y�t j
t�1)

and a term involving the innovation in the martingale multiplied by the weight nt measuring

the importance of mysticism
Gt = �

�tnt(mt �mt�1):

Given these squared forecast errors at time t, agents choose (t+1; �t+1; �t+1), which will remain

�xed until yt+1 is determined. Note that the re�ective forecast (2.10c) becomes

e+1�;t = E(y
�
t+1j
t) + ��t�1nt+1mt (2.10c*)

because nt+1 is now known just as nt was known for (2.9c).

Three overall properties of the model are important to the evolution of beliefs. First, the

results are invariant to the actual process determining the fundamentals in the following sense. The

payo¤s (2.11) involve the fundamentals only through the innovation Ft, which is serially independent

regardless of the time series properties of E(y�t j
t). A given realization for the series Ft; t = 1; 2; :::

is consistent with a wide range of dynamic properties for y�t .

Second, we can now quantify the natural advantage that Keynes recognized for the re�ective

forecast. The payo¤ for the re�ective forecast is given by

��;t = ��t +
t�t
t + �t

A2t ; (2.12)

where ��t = t�;t+�t��;t+�t��;t is the population average payo¤and ��;t � ��t. This relation does

not involve UtAt because the terms involving UtAt in (2.11b) and (2.11c) cancel in the weighted

average. The covariance terms �2UtAtnt and 2UtAt (1� nt) do, on the other hand, determine

the ranking of ��;t relative to �;t and the ranking of ��;t relative to ��;t. In particular, the

mystical forecast can have the highest payo¤ if 2 (1� nt)UtAt > A2t . This can happen if Ut di¤ers

signi�cantly from zero and At happens to be of the same sign.
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Third, the contest between fundamentalism and mysticism is symmetric, but biased in favor of

the currently favored alternative. This follows from

��;t � �;t = 2UtAt + 2(nt � 1
2)A

2
t : (2.13)

If nt = 1
2 , then (2.13) does not favor either fundamentalism or mysticism because E(UtAt) = 0.

If nt > 1
2 , then the term 2(nt � 1

2)A
2
t favors a further increase in �t and, hence, nt. A further

decrease in nt is, on the other hand, made more likely if nt < 1
2 .

These general observations provide some intuition about the properties of the complete model.

In Section 3 we present a general model of evolutionary dynamics for (t; �t; �t), and in Sections 4

and 5 we give speci�c behavioral equations that complete the speci�cation of agents�behavior.

3. Evolutionary Dynamics

Studying the evolutionary dynamics of the model requires a speci�cation of how agents choose

forecasts given the payo¤s. We consider two alternative models of agents�behavior that we refer

to as imitation of successful agents and review of unsuccessful forecasts. These principles feature

agents choosing among possible forecasts, all of which attempt to implement rational expecta-

tions, using plausible behavioral rules without making the �nal step of adopting one of the deeper

theorizing principles as common knowledge.

We use a discrete time version of evolutionary dynamics. Let xi;t be the fraction of agents

using forecast i at time t. Let ri;t be the fraction of agents using forecast i who review their choice

of strategy at time t; and let pij;t be the probability that an agent using forecast j in period t who

reviews switches to forecast i in the next period. If there are n available forecasts, then the change

in xi;t is given by

xi;t+1 � xi;t =
nX
j=1

rj;txj;tp
i
j;t � ri;txi;t: (3.1)

This is the discrete time version of equation (4.24) in Weibull (1997). Hofbauer and Weibull (1996,

pp. 564-6) consider two speci�c behavioral models contained within this general framework.

The process that we refer to as imitation of successful agents assumes that agents review at a

rate invariant to the payo¤s (we use ri;t � 1, assuming all agents review every period), but that
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the transition probabilities pij;t are functions of forecast performance in that agents tend to switch

to strategies with lower forecast errors. Agents use payo¤ weighting functions w (�i;t) to arrive at

the transition probabilities

pij;t =
w (�i;t)xi;t

wt
; (3.2)

where wt =
nP
h=1

w (�h;t)xh;t. The transition probability pij;t into strategy i depends on its current

weighted payo¤ w (�i;t) relative to the population average wt and its current popularity xi;t. The

latter factor can be thought of as a measure of past forecast performance. Substituting (3.2) into

(3.1) yields

xi;t+1 � xi;t = xi;t
w (�i;t)� wt

wt
; (3.3)

which is of the form (1.1) with f(u(si; xt)) = w (�i;t), �(xt) = 1=wt, and �(xt) = �1.

The process we refer to as review of unsuccessful forecasts assumes that the review rates ri;t

depend on forecast performance, with agents more likely to review forecasts with large squared

errors. The review rates can then be given by a function

ri;t = r(�i;t); (3.4)

where r(�i;t) is decreasing in its argument. To focus on the e¤ects of conditional review rates, we

assume reviewing agents choose a new strategy using pij;t = xi;t. This is equivalent to adopting the

strategy of a randomly selected member of the population, which could be motivated by a belief

that popular strategies are the more successful ones. Substituting (3.4) into (3.1) yields

xi;t+1 � xi;t = xi;t (rt � r(�i;t)); (3.5)

where rt =
Pn
j=1 r(�j;t)xj;t: This is of the form (1.1) with f(u(si; xt)) = �r (�i;t), �(xt) = 1, and

�(xt) = rt. Convexity of f(�) in (1.1) in this case takes the form of concavity in r(�) because r(�i;t)

enters (3.5) with a negative sign.

The evolutionary dynamics given by (3.3) or (3.5) along with the payo¤s (2.11) determine the
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movement of (t; �t; �t) within a simplex

� = f(t; �t; �t) j t; �t; �t � 0; �t + t + �t = 1g:

The two forces described by (2.12) and (2.13) will generally push (t; �t; �t) toward one of two

edges, f(t; �t; �t) j �t = 0; t + �t = 1g and f(t; �t; �t) j t = 0; �t + �t = 1g. Along either

edge there is no tendency for further change because agents agree on a single forecast. If �t = 0,

the re�ective forecast equals the fundamentalist forecast so that fundamentalists and re�ectivists

follow di¤erent procedures, but in fact agree on the same forecast. A similar agreement on the

mystical forecast occurs if t = 0.

The fraction of the agents following the fundamentalist forecast is not, however, likely to ever

reach zero. While fundamentalism is, in a sense, just one of the martingale solutions, it is the

only speci�c solution that is written up in numerous scholarly publications. We assume, therefore,

that a percentage min > 0 of the agents have read and �rmly agree with the deeper theorizing

literature.15 This restricts (t; �t; �t) to the simplex

� = f(t; �t; �t) j t � min; �t; �t � 0; �t + t + �t = 1g: (3.6)

Restricting (�t; t; �t) to the simplex � eliminates the paradox that, if �t were to equal 1 because

all agents adopt re�ectivism, then the re�ective forecast, which is a weighted average of other

forecasts, would not exist.

The actual mechanism restricting (t+1; �t+1; �t+1) to the simplex � takes the following form.

Let D[(t; �t; �t)] = (0t+1; �
0
t+1; �

0
t+1) denote the dynamics described by (3.3) or (3.5), and let

H[(0t+1; �
0
t+1; �

0
t+1)] = (t+1; �t+1; �t+1) denote a projection onto �. That is, H[(; �; �)] =

(; �; �) for (; �; �) 2 �, and H[(; �; �)] 2 � for any (; �; �) with  + � + � = 1. To avoid

t+1 < min or, more generally, to avoid (t+1; �t+1; �t+1) =2 � we assume that the evolutionary

dynamics are given by the composition H[D[(t; �t; �t)]] = (t+1; �t+1; �t+1). In Section 6, we

consider a speci�c H, but our convergence results in Sections 4 and 5 require only a general

15 It is also possible to implement this constraint by creating a fourth forecast strategy (unshakeable fundamentalism)
that uses the fundamental solution with a review rate of zero. This would complicate the notation, but lead to very
similar conclusions.
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assumption about H. We assume that H does not change the signs of the changes given by the

mapping D. That is, H must satisfy

sgn(t+1 � t) = sgn(0t+1 � t);

sgn(�t+1 � �t) = sgn(�0t+1 � �t);

sgn(�t+1 � �t) = sgn(�0t+1 � �t);

where sgn(x) = 1 for x > 0, sgn(0) = 0; and sgn(x) = �1 for x < 0. This property is easily

attained for any projection H by adding the condition that (t+1; �t+1; �t+1) = (t; �t; �t) if the

projection would have violated the assumption.

Our convergence results in Sections 4 and 5 will focus on conditions under which �t is monotone

nondecreasing, forcing �t to zero. Once �t reaches zero, the re�ective and fundamentalist forecasts

are identical. In Section 6, we consider cases where this convergence is not monotone, leaving open

the possibility that mysticism might survive long enough and gain enough popularity to make the

e¤ects of agents experimenting with that strategy an important consideration.
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4. Imitation of Successful Agents

While some intuitive observations on the imitation of successful agents (ISA) can be gained

using general equations and Taylor series approximations, concrete results on convergence require

speci�c functional forms. We present two, a linear function and an exponential function.

4.1 The General Model

We will describe the evolution of the populations shares (t; �t; �t) in terms of �t and nt =

�t=(t + �t). It will prove convenient to write the equation of motion for �t (3.3) with �t=�t+1 on

the left, keeping in mind that a ratio less than one implies that �t is increasing. This yields

�t
�t+1

= 1 + (1� �t)
�
ntw(��;t) + (1� nt)w(�;t)

w(��;t)
� 1
�
: (4.1)

The following for the re�ective forecast �t increases if w(��;t) is greater than the weighted average

ntw(��;t) + (1 � nt)w(�;t). For a di¤erentiable payo¤ weighting function, a second-order Taylor

series approximation to (4.1) is

�t
�t+1

�= 1�
t�t
t + �t

�
w0(��;t)

w(��;t)
A2t + 2

w00(��;t)

w(��;t)
(UtAt)

2

�
;

where we omit powers of At higher than two on the grounds that At is initially small. The term

involving A2t unambiguously works in favor of an increase in �t, but the term involving (UtAt)
2 can

cause a decrease if UtAt is su¢ ciently large in absolute value. Large absolute values for UtAt are,

from (2.11b) and (2.11c), associated with success or failure for the fundamentalist and mystical

forecasts.

We can reorganize this as

�t
�t+1

�= 1�
t�t
t + �t

w0(��;t)

w(��;t)
A2t

�
1� 2w

00(��;t)

w0(��;t)
U2t

�
:

The factor w0(��;t)=w(��;t) measures the extent to which agents di¤erentiate between forecasts.

Convexity, measured by the factor w00(��;t)=w0(��;t), determines whether large values of U2t can

have a negative impact on �t. If U
2
t is small or the convexity is small, there is a natural tendency

14



for �t to increase toward one.
16

The equation of motion for nt is

nt
nt+1

= 1 + (1� nt)
�
w(�;t)

w(��;t)
� 1
�

(4.2)

if nt+1 > 0 and w(��;t) > 0. (If w(��;t) = 0, then nt+1 = 0.) If the payo¤ weight w(�;t)

for fundamentalism is less than the payo¤ weight w(��;t) for mysticism, then nt = �t=(t + �t)

increases. The Taylor series approximation to (4.2), again using powers of At of order 2 and lower,

is

nt
nt+1

�= 1� 2(1� nt)
w0(��;t)

w(��;t)

�
UtAt + (nt � 1

2)A
2
t

�
:

If nt is near zero or one, then the factor nt� 1
2 acts to put the weight of the squared martingale A

2
t

toward reinforcing that value of nt. The factor w0=w again measures the extent to which agents

di¤erentiate between forecasts. This result is a more speci�c instance of the general property

(2.13).

4.2 Linear Payo¤Weighting Functions

The linear payo¤ weighting function w(�) = c+� leads to the replicator dynamic. The growth

rate for strategy i is proportional to that strategy�s �tness, which is the di¤erence between its payo¤

and the population average payo¤. The updating equation (3.3) takes the form17

xi;t+1 � xi;t = xi;t
�i;t � ��t
c+ ��t

:

The parameter c is given various interpretations in the evolutionary game theory literature.18

Larger values for c decrease the change in xi;t caused by a given di¤erence �i;t� ��t. In the present
16Given that ��;t = �U2t , this statement formally requires that x � w00(�x)=w0(�x)!1 as x!1.
17The general linear payo¤ weighting function would be w(�) = a + b�, but the results are invariant to a scalar

multiple. We will thus work with a linear weighting function of the form w(�) = c+ �.
18Samuelson (1998, pp. 63-67).
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case, the payo¤s are negative and we impose the constraint

! (�) =

8><>: c+ � for � > �c

0 for � � �c

9>=>; (4.3)

to guarantee nonnegative payo¤ weights.

Proposition 1. The dynamics given by (3.3) and (4.3) will lead to �t+1 � �t for (t; �t; �t) 2 �

if w(�;t) > 0 and w(��;t) > 0. The latter bounds are satis�ed if (Ut+At)2 < c and (Ut�At)2 < c.

Proof: The �rst statement follows directly from (2.12) and (3.3) because all the payo¤ weights

are positive. The second statement can be seen from (2.11). �

The conditions on the payo¤s in the above proposition suggests that a large martingale term A2t

could cause nonrobustness. Our simulations in Section 6 show that the variance of the martingale

is not a major determinant of the properties of the outcome, and we are able to establish the

following result that does not involve the size of the martingale.

Proposition 2. If there exists a constant K such that U2t < K for all t � 0 and if (0; �0; �0) 2

� with n0 � 1�
K

c
; then the dynamics given by (3.3) and (4.3) starting at (0; �0; �0) will converge

to a point where � = 0 with �t+1 � �t until �t+1 = 0.

Proof: Appendix A. �

Proposition 2 shows that bounding the uncertainty U2t driving the re�ective forecast error

guarantees a region of monotone convergence given by n0 � 1�K=c.19 While the valueK = min �c

necessary to guarantee monotone convergence over the entire simplex � is small, the conditions in

the proposition are su¢ cient, but not necessary for convergence, which simulations show to occur

from anywhere in �. In Section 6, we show that convergence can be nonmonotone if U2t is large,

making it possible for �t to be signi�cantly nonzero for a period of time.

19These bounds are reminiscent of the projection facility in least squares learning of Marcet and Sargent (1989b),
which involves restricitions on agents�beliefs concerning model parameters. Grandmont (1998) discusses the inter-
pretation of the projection facility in detail.
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4.3 Exponential Payo¤Weighting Functions

A convex payo¤ weighting function incorporates the notion that agents emphasize the impor-

tance of the best payo¤s. The degree of convexity then determines how aggressively agents pursue

this goal. The exponential function

w(�) = e��

with � > 0 provides a straightforward example.20 The relative slope w0(�)=w(�) = � and the

convexity w00(�)=w0(�) = � are constant over �. Discarding powers of At greater than two (on the

grounds that the martingale is small in its early stages) yields:

�t
�t+1

�= 1� nt(1� nt)A2t�
�
1� 2�U2t

�
: (4.4)

The magnitude of U2t relative to the convexity � determines the direction of change in �t. We can

extend this intuition with the following result that does not involve any Taylor series approximation.

Proposition 3: The dynamics given by (3.3) with w(�) = e�� will lead to �t+1 > �t

for (�t; t; �t) 2 � if
maxf�(Ut + 1

2At)
2; �(Ut � 1

2At)
2g < a�; (4.5)

where a� = 0:351733711::: satis�es a� = 1
2exp(�a

�):

Proof: Appendix B. �

This condition is su¢ cient, but not necessary for �t+1 > �t. In Section 6, we use simulations

to explore the properties of the process when (4.5) is not satis�ed.

5. Review of Unsuccessful Forecasts

The review of unsuccessful forecasts (RUF) provides an alternative to imitation of successful

agents (ISA). The broad similarities in the results for the two principles provide evidence that

our overall results are not unique to speci�c behavioral assumptions. We consider linear and

exponential review rate functions.
20Bjornerstedt and Weibull (1993) and Weibull (1997) use this functional form.
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5.1 The General Model

The equation of motion (3.5) for �t is

�t+1
�t

= 1� (r(��;t)� rt); (5.1)

where rt = tr(�;t) + �tr(��;t) + �tr(��;t). The re�ective forecast gains weight if its review rate

r(��;t) is less than the weighted average of the review rates for the other two forecasts. The basic

properties of �t can again be seen from a Taylor series approximation

�t+1
�t

�= 1�
t�t
t + �t

�
r0 (��;t)A

2
t + 2r

00 (��;t) (UtAt)
2
�
:

The term involving A2t favors an increase in �t because r
0 (��) < 0: The term involving UtAt only

appears for a nonlinear review rate function (i.e. r00 (��;t) 6= 0). We can reorganize this as

�t+1
�t

�= 1�
t�t
t + �t

r0 (��;t)A
2
t

�
1� 2r

00 (��;t)

r0 (��;t)
U2t

�
: (5.2)

The factor in square brackets can be negative if the product of U2t and the curvature r
00 (��;t) =r

0 (��;t)

is large.21 In that case, �t falls, leaving open the possibility that mysticism could gain popularity.

5.2 Linear Review Rate Functions

The linear case is again the replicator dynamic. The piecewise linear, but globally concave

function

r (�) =

8><>: �b� for � b� < 1

1 for � b� � 1

9>=>; (5.3)

where b > 0, imposes the constraint that the review rates must be no greater than unity.22 An

analysis very similar to Propositions 1 yields:

21We assume, using (2.11a), that x � r00(�x)=r0(�x)!1 as x!1.
22The versions of the replicator dynamic following from (3.3) and (3.5) di¤er because (3.3) includes the denominator

c + �t. Both are valid discrete time approximations to the continuous time replicator dynamic, and adding a
denominator to (3.5) would unnecessarily complicate the notation for this section.
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Proposition 4. The dynamics given by (3.5) and (5.3) lead to �t+1 � �t for (t; �t; �t) 2 � if

r(�;t) < 1 and r(��;t) < 1. The latter bounds are satis�ed if b(Ut+At)2 < 1 and b(Ut�At)2 < 1.

Proof: All the review rates are less than unity, and (2.12) applies directly. �

Again, although the term At appears in these bounds, the magnitude of the martingale is

not a primary determinant of whether �t converges monotonically. Using methods similar to

Proposition 2, it is possible to show that, if there exists a constant K such that the errors are

bounded by U2t < K and if nt satis�es bK < nt < 1� bK, then �t is monotone nondecreasing for

all values of At.

5.3 Exponential Review Rate Functions

A concave review rate function places extra emphasis on reviewing less than successful forecast-

ing strategies. The degree of the concavity determines how aggressively agents pursue this goal.

The concave review rate function

r(�) = 1� e��

naturally incorporates the nonnegativity constraint and has the property that r00 (�) =r0 (�) = � is

constant. The approximation (5.2) becomes

�t+1
�t

�= 1 +
�

 + �
A2t�exp

�
��U2t

� �
1� 2�U2t

�
:

This shows that �t will tend to increase unless the product �U
2
t is large. In particular, we have

Proposition 5: The dynamics given by (3.5) and r(�) = 1� e�� will lead to �t+1 > �t

for (�t; t; �t) 2 � if

maxf�(Ut + 1
2At)

2; �(Ut � 1
2At)

2g < a�; (5.4)

where a� = 0:351733711::: satis�es a� = 1
2exp(�a

�):

Proof: Appendix B. �

6. Convergence and Robustness
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Propositions 1-4 establish conditions under which �t is unambiguously monotone nondecreasing,

leading the process toward the edge of � given by t + �t = 1. Along that edge mysticism is

eliminated and all agents agree numerically with the fundamentalist forecast. The conditions in

the propositions are, of course, su¢ cient, but not necessary to have convergence to that edge of

the simplex, and simulations from various starting points show that convergence to t + �t = 1

occurs from everywhere in �. The question of interest is thus not convergence, but the speed of

convergence. If �t remains signi�cantly positive long enough to generate an episode where the

martingale is important in determining yt, then the behavior of yt might well be characterized

as a bubble. Occasional experimentation with mysticism could then lead to periodic episodes of

bubbles.

To quantify this possibility, we consider the path of the population shares when a small fraction

�� of the agents experiment with mysticism. We use �� = min = 0:05 so that the simulations

start from the point (0; �0; �0) = (0:05; 0:05; 0:90): We start with �0 large and 0 small on the

grounds that previous experience would have tended to have driven out earlier episodes of mysticism

as �t increased. For low curvature and small errors, the system will very seldom leave a small

neighborhood of this starting point.

Tables 1 and 2 show simulation estimates of the survival probabilities for mysticism under

imitation of successful agents (3.3) and review of unsuccessful forecasts (3.5) using the payo¤s

(2.11). Table 1 shows a small martingale innovation variance (var(�t) = 0:01), and Table 2 shows

a larger martingale innovation variance (var(�t) = 0:25). In the linear cases (4.3) and (5.3), c = 1

and b = 1. In the exponential cases in Sections 4.3 and 5.3, � = 1. In all cases, the discount

factor in (2.1) is � = 0:95. We ensure that the population fractions remain within the simplex �

by projecting points outside that simplex back to its boundary using the projection described in

Appendix C. Each cell is based on 10,000 trials.

To quantify how long mysticism persists at a signi�cant level, we de�ne robustness in terms of

the probability Pr(�N > ���) that mysticism has a following of at least ��� in period N . We use

three values, 0.05, 0.10, and 0.20, for ���. We use six values, 0.01, 0.05, 0.1, 0.25, 1, and 5, for

var(Ft), where Ft = E(y�t j
t) � E(y�t j
t�1) is the innovation in fundamentals as the date of the

information set changes, and we calculate the survival probabilities for N = 10 and N = 20.

As expected, the fate of mysticism depends on var(Ft). For small values of var(Ft), mysticism
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does not survive for 10 or 20 periods with any appreciable probability. For larger values of var(Ft),

however, the probability that mysticism survives and even has a following greater than 0.10 or 0.20

is large enough to be of practical importance. In some cases, the probability that �t is greater

than 0.20 is nearly as large as the probability it is greater than 0.05. To put these �gures into

perspective, if a process that survives 10 periods has a 0.03 probability of starting in a given period,

then we would expect that process to be in existence about 1/3 of the time. Survival probabilities

of even a few percent for 10 or 20 periods are thus potentially of practical importance.

While nonrobustness occurs for both ISA and RUF given a su¢ ciently large var(Ft), RUF is

noticeably more robust with respect to experimentation with mysticism than is ISA for a given

var(Ft). This di¤erence is due to the RUF assumption about how reviewing agents choose a new

strategy. Even when the outcome UtAt in the payo¤s (2.11) favors an increase in �t for RUF,

reviewing agents randomly select among strategies according to their current popularities. This

does not tend to generate a rapid increase in a small �t. For ISA, on the other hand, agents are

directly attracted to currently successful forecasts and a rapid increase in �t can more easily occur.

Table 2 is included to show that the e¤ects of experimentation with mysticism do not greatly

depend on the variance of the martingale.23 In fact, many of the survival probabilities in Table 2

are smaller than the corresponding �gures in Table 1. The explanation for this can be seen in the

payo¤s (2.11). Conditions favor an increase in �t when UtAt is large and positive, but a large A2t

works against increases in either �t or t.

Figures 1 and 2 illustrate the potential implications of mysticism for the ISA-Exponential model

in Section 4.3.24 Each �gure shows a typical realization for a simulation over 1000 periods for

var(�t) = 0:01. We assume that a fraction �t = 0:05 of the agents experiment with mysticism in

any period where �t would otherwise be below 0.05. If �t > 0:05, we simply let the process run.

The top graph in each �gure shows the fundamentalist forecast error Ut + ntAt.25 The vertical

scale on the bottom graph shows t from the bottom and �t from the top so that �t is the distance

between the two lines.
23An extreme exception should be noted. It is possible for var(�t) to be large enough to cause instability with

var(Ft) = 0.
24The �gures for the other cases would be similar.
25As noted in Section 2, the results are invariant to the dynamic properties of the realized yt. The fundamentalist

forecast error is serially correlated only to the extent that the martingale component is sometimes signi�cant. The
realized yt is the sum of the fundamentalist forecast error and whatever process the fundamentalist forecast (2.4)
follows.
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Figure 1 with var(Ft) = 0:25 shows an outcome fairly robust with respect to the introduction

of mysticism. Similar �gures for smaller values of V ar(Ft) would show smaller and less frequent

deviations from minimal values for t and �t. Figure 2 with var(Ft) = 0:50 shows the character

of the nonrobustness that can result from a somewhat larger var(Ft). The upper graph shows the

occurrence of bubbles in the forecast error for the fundamentalist forecast. These bubbles occur

during episodes when mysticism gains a signi�cant following as shown in the lower graph. The

magnitude, but not the frequency of the bubbles depends on the size of the discount factor �, and

values of � closer to unity would produce less dramatic bubbles.

Figures 1 and 2 illustrate another feature of the contest among mysticism, fundamentalism, and

re�ectivism. The shifting weight on the martingale induces ARCH e¤ects in the outcome.26 During

periods when mysticism has an appreciable following, the extra variance in the fundamentalist

forecast error Ut + ntAt due to the martingale causes a variance increase that tends to persist as

long as mysticism survives.

7. Summary and Conclusions

In models with future expectations, economists have been inclined to rule out all martingale

solutions save one fundamental solution on the grounds that agents resort to deeper theorizing. We

use evolutionary game theory to study how agents with heterogeneous expectations might attempt

to choose among the martingale solutions. We assume that agents respond to squared forecast

errors through either a payo¤ weighting function (imitation of successful agents) or a review rate

function (review of unsuccessful forecasts).

Our main result is that the prospects for convergence to a single fundamental solution depend

primarily on the curvatures of the payo¤weighting or review rate functions relative to the variances

of the underlying error processes. We show that small error variances lead to stability with little

likelihood that incipient mysticism will survive for more than a few periods. This establishes that

nonrobustness is not an inevitable outcome of our model�s construction. In particular, the mere

existence of agents �irting with mysticism is not su¢ cient to cause nonrobustness.

The curvature that can lead to nonrobustness is not an arbitrary construct. The payo¤weight-

ing functions must be convex because the payo¤ weights cannot be negative, and the review rate

26LeBaron, Arthur, and Palmer (1999) �nd a similar e¤ect in simulations in a much more complex environment.
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function must be concave because review rates cannot exceed unity. If the errors are large enough

to make this curvature an important factor, then we observe nonrobustness characterized by mys-

ticism that survives for prolonged periods of time.

Our results thus provide support for assuming convergence to the fundamental solution if the

error variances are small relative to the curvature in agents�behavioral functions. If that is not

the case, then our results provide a plausible mechanism for speculative bubbles. They require not

that all agents believe in mysticism, but only that some fraction of agents follow mysticism when it

has the smallest squared forecast errors. The latter event can happen even if only a small fraction

of the agents experiment with mysticism. It is also not necessary that any individual bubble last

forever for bubbles to be a permanent feature of the model. Most importantly, it is not necessary

for the agents in this model to ever abandon their belief in rational expectations. The agents

simply carry out a systematic empirical search among martingale solutions using squared forecast

errors to compare alternative forecasting strategies.

One might argue that the two evolutionary game theory principles we examine, imitation of

successful agents and review of unsuccessful forecasts, are too simple to guarantee the convergence

to the fundamental solution that economists envision. Another view, however, is that the agents

are trying to learn the right martingale solution when there simply is no underlying right answer.

The more aggressively they pursue the optimal forecasting strategy, as measured by the curvature

of their payo¤weighting or review rate functions, the less robust the outcome is to the introduction

of mysticism as a possible strategy. Indeed, these results suggest that sophisticated, aggressive

searching for the optimal forecasting strategy will provide fertile ground for the growth of mysticism

and bubbles. Recent events in the �nancial markets do not contradict these conclusions.
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Appendix A

Proof of Propositions 2

Proof of Proposition 2. For t � s, the bound on U2t guarantees that w(��;t) > 0. If

w(�;t) > 0 and w(��;t) > 0, Proposition 1 implies that �t+1 > �t. The same inequality holds

if w(�;t) = 0 and w(��;t) = 0. If w(�;t) > 0 and w(��;t) = 0, then �t+1 = 0 and we are done.

Suppose then that w(�;t) = 0 and w(��;t) > 0. We have �t+1 > �t if

w(��;t) > ntw(��;t) + (1� nt)w(�;t); (A.1)

which can be rewritten as

c� U2t > nt(c� U2t + 2 (1� nt)UtAt � (1� nt)
2A2t ):

Factoring out 1� nt yields

U2t + 2ntUtAt � nt (1� nt)A2t < c:

The maximum value of the left hand side of this inequality is achieved at At = Ut=(1� nt),

and making this substitution shows that (A.1) must hold if U2t =(1� nt) < c or nt � 1�
U2t
c
:

The latter inequality follows from nt � 1�
K

c
� 1� U

2
t

c
: We thus have �t monotone

nondecreasing, and the process stops when �t = 0. �

Appendix B

Proof of Propositions 3 and 5

Lemma 1: For y < x � 0 and 0 � � � 1,

ex + �(ey � ex)� ex+�(y�x) � 1
2e
x�(1� �)(y � x)2:

Proof: The function
f(z) = ez � 1� 1

2z
2

has the properties that that f(0) = 0 and f 00(z) = ez � 1 � 0 for z � 0. The function f is

thus concave, and
�f(z)� f(�z) � 0
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for z � 0. This can be rearranged as

1 + �(ez � 1)� e�z � 1
2�(1� �)z

2:

Letting z = y � x and multiplying by ex establishes the result. �

Proof of Propositions 3 and 5: In Propositions 3 and 5 �t+1 � �t if ntw(��;t) + (1 �

nt)w(�;t) � w(��;t) or ntr(��;t) + (1 � nt)r(�;t) � r(��;t), respectively. Both conditions are

equivalent to

ntexp(���;t) + (1� nt)exp(��;t) � exp(���;t): (B.1)

Let b1 and b4 denote the left-hand and right-hand sides of this inequality, which can be written as

b1 � b4. We will show that b1 � b2 � b3 � b4, where

b2 = exp(��
�
t ) +

1
2nt(1� nt)�

2(��;t � �;t)2;

b3 = exp(��
�
t ) + � exp(��

�
t )(��;t � ��t ); and

��t = nt��;t + (1� nt)�;t:

Lemma 1 implies, using � = nt, x = ��;t, and y = ���;t, that

ntexp(���;t) + (1� nt)exp(��;t) � exp(���t ) + 1
2exp(��

+
t )nt(1� nt)�2(��;t � �;t)2;

where �+t is the greater of �;t and ��;t. Because exp(��+t ) � 1, this implies b1 � b2. The

inequality b3 � b4 holds because ��;t � ��t = nt(1 � nt)A2t , which implies that �exp(���t ) is a

lower bound on @ exp(��)=@� for � between ��t and ��;t. We con�rm b2 � b3 by substituting

��t = �U2t �nt(1�nt)A2t and ��;t��;t = 2UtAt+2(nt� 1
2)A

2
t to produce the equivalent inequality

�(Ut + (nt � 1
2)At)

2 � 1
2exp(��(U

2
t + nt(1� nt)A2t )): (B.2)

Calculations show that a� = 1
2exp(�a

�) for a� = 0:351733711 : : : and that a1 < 1
2exp(�a2) if

a1 < a� and a2 < a�. The bounds (4.5) and (5.4) imply that (Ut + (nt � 1
2)At)

2 < a� because

(nt � 1
2)
2 = 1

4 � nt(1 � nt) �
1
4 and

��2(nt � 1
2)
�� � 1. The bounds (4.5) and (5.4) also imply that
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U2t +nt(1�nt)A2t < a� because nt(1�nt) � 1
4 . The last two inequalities together establish (B.2),

which is the last link in showing that b1 � b2 � b3 � b4. �

Appendix C

Constraining to the Simplex

The following algorithm achieves xi;t+1 � xi;min, i = 1; :::; 3, given the point (x01;t+1; x02;t+1; x03;t+1)

reached by the di¤erence equations (3.3) or (3.5). If all three fractions satisfy x0i;t+1 � xi;min, then

no adjustment is necessary. If one fraction, say x01;t+1 is less than x1;min, then set x1;t+1 = x1;min

and set x2;t+1 and x3;t+1 using

x2;t+1 = (1� x1;min)
x2;t+1

x2;t+1 + x3;t+1

and

x3;t+1 = (1� x1;min)
x3;t+1

x2;t+1 + x3;t+1
:

If two fractions, say x01;t+1 and x
0
2;t+1 are less than x1;min and x2;min, then set x1;t+1 = x1;min,

x2;t+1 = x2;min, and x3;t+1 = 1� x1;min � x2;min. All three fractions cannot violate x0i;t+1 � xi;min

because x01;t+1+x
0
2;t+1+x

0
3;t+1 = 1. If the outcome for these steps would cause sgn(xi;t+1�xi;t) 6=

sgn(x0i;t+1 � xi;t) for any i, set xi;t+1 = xi;t for i = 1; :::; 3.
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