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ABSTRACT 

Multiple-partners assignment game is the name used by Sotomayor (1992, 1999) to 

describe the cooperative approach to the many-to-many matching market with separable 

and additive utilities. The competitive approach explores a new way of studying this game. 

The question is to know whether competitive equilibria always exist, and if so, how they 

can be obtained. One confirms their existence and proves that the minimum competitive 

equilibrium price, as well as the two optimal stable outcomes, can be obtained through 

dynamic mechanisms that generalize the auction of Demange, Gale and Sotomayor (1986). 

Several properties of interest to the cooperative and competitive markets are derived.  

                                                           
1 This work was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil. 
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INTRODUCTION 

 

In the multiple-partners assignment game there are two finite and disjoint sets of 

players, B and Q.  The players of a set may form more than one partnership with the players 

of the other set. Every participant has a quota representing the maximum number of 

partners. As soon as b and q become partners, they undertake an activity together that 

produces income vbq, which is splitted between them at ubq≥0 for b and wbq=vbq-ubq≥0 for q. 

An outcome for this game is a matching, that is, any set of partnerships that does not 

exceed the quotas of the players, along with payoffs ubq's and wbq's. A widely known special 

case is the Assignment Game of Shapley and Shubik (1972), in which each agent is allowed 

to form one partnership at most. 

 There are two ways of studying such a game. The first one consists in looking at it 

as a model for a cooperative market, for instance, a job market where players are firms and 

workers. Each firm b can hire at most r(b) workers and each worker q can accept at most 

s(q)  jobs from different firms. The number vbq represents the productivity of worker q at 

firm b. This approach is dealt with in Sotomayor (1992 and 1999), and a different version is 

considered in Crawford and Knoer (1981).  

Sotomayor (1992) proves that the appropriate concept of  cooperative equilibrium is 

not the concept of the core, but that of pairwise-stability instead, and shows that stable 

outcomes always exist. An outcome x will be denominated pairwise-stable unless there are 

agents b and q that do not form a partnership at x, but that can increase their total payoff, 

becoming partners and at the same time leaving some of these partners, if necessary, in 

order to remain within their quotas. In a stable outcome, B-players can discriminate Q-

players and vice-versa. This is what usually occurs between firms and workers after 

negotiations: offers and counter-offers are made in such a way that, in the final allocation, a 

worker can receive different wages from different firms and one firm can obtain different 

profits from different workers. 

 Sotomayor (1999) uses a convenient vector representation of a player’s stable 

payoffs, which, after ordering the agents in B  (respectively, Q), allows immersing these 

players’ set of stable payoffs in a Euclidean space. Therefore, the natural partial order of 
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this space produces a partial order in the set of stable payoffs for players in B (respectively, 

Q). That paper proves that, according to this representation, the set of stable payoffs has a 

complete lattice structure. If we compare any two stable payoffs by comparing the two 

payoff vectors of B-players, for example, there is a stable payoff vector that is optimal for 

these agents, since it is larger than any other stable payoff vector. Due to the symmetry of 

the model, there is also an optimal stable payoff for Q-players. 

 Another way of studying the multiple partners assignment game, still unexplored in 

the literature, is to use it to model a competitive market. In this approach, players are 

conveniently assumed to be buyers and sellers. Every seller q owns s(q) identical and 

indivisible objects with zero reservation prices. Every buyer b has a quota r(b), which 

represents the maximum number of objects she can buy. The value of object q for buyer b 

is vbq≥0.  If buyer b purchases object q at price wbq≥0 then b receives the individual payoff 

ubq=vbq-wbq≥0.  The total payoff of a buyer is the sum of her individual payoffs. No buyer is 

interested in purchasing more than one object from the same seller. Thus, we may think of 

every buyer b as a broker instead of a final consumer, who has in hand an offer of $vbq for 

every seller q, from a client who is interested in purchasing r(b) objects at those prices, if b 

obtains them in the market. 

 The solution concept used is that of competitive equilibrium: allocation  (w, µ )  is a 

competitive equilibrium if (i) µ  is an allocation of the objects to buyers that respects the 

quotas of the agents such that no buyer will receive more than one object from the same  

seller; (ii) prices  wq's  are non-negative; (iii) every buyer is assigned by µ  to a set of 

objects in her demand set, and  (iv) every unsold object has zero price. 

 Unlike the cooperative market, as corroborated in the text, sellers cannot 

discriminate the buyers in a competitive equilibrium: Every seller sets the same price for 

each of his objects2. Moreover, every seller with a positive price will sell all of his objects 

and the number of objects in the market  will be enough to meet the demand of all buyers.  

                                                           
2  In 1981, Stherby Parke Bernet ran a sequential auction to sell seven identical licenses to use RCA’s communications 
satellite for cable television broadcasts. The winning bids varied widely. The highest was $14.4 million and the lowest 
was $10.7 million. The FCC nullified the auction saying the procedure was “unjustly discriminatory” in charging different 
prices for the same service and ordered RCA to charge the same price to all. This story is told in PR Newswere, 
November 9, 1981; Cristian Science Monitor, June 29, 1982 and Time, December 13, 1982, pp. 148.    
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The purpose of the present paper is to determine whether competitive equilibria 

always exist and, in the affirmative case, to find an algorithm to obtain them.  

We prove an existence theorem of competitive equilibria, show that every 

competitive payoff is pairwise-stable, and we confirm several properties that are inherent to 

such allocations, of interest to the market. One of them is the existence of minimum and 

maximum competitive equilibrium prices. An unexpected result is that, unlike the one-to-

one and many-to-one matching models, the set of competitive payoffs can be smaller than 

the set of stable payoffs: the buyer-optimal stable payoff is a competitive payoff and sells 

the objects for the minimum competitive equilibrium price. However, the competitive 

payoff corresponding to the maximum competitive equilibrium price is a pairwise-stable 

payoff that is not always optimal for sellers. As a matter of fact, the seller-optimal stable 

payoff may not even allocate the objects in accordance with a competitive equilibrium 

price. This result seems to be related to the fact that sellers own identical objects. 

 It is easy to build examples in which arbitrary competitive equilibria sell similar 

objects, belonging to different sellers, for different prices. Nevertheless, one of our results 

shows that, when these sellers have the same quota, the prices of such objects, under a 

minimum competitive equilibrium, are the same.  

Knowing that competitive equilibria always exist, we address the question of 

obtaining a procedure that allows us to find competitive equilibria. Bearing this goal in 

mind, we propose a dynamic mechanism that yields the minimum competitive equilibrium 

price for the competitive market, so it can be used to obtain the optimal stable payoff for 

the buyers in the cooperative market. By reversing the roles between B and Q players, the 

mechanism can be used to produce the Q-optimal stable payoff for the cooperative market. 

This procedure resembles the English auction when the market has a single object and, 

restricted to the Assignment game of Shapley and Shubik, it coincides with the dynamic 

auction of Demange, Gale and Sotomayor (1986). To our knowledge, it is the first 

generalization of these auctions to the many-to-many matching model. Its main feature is 

that it is simple enough to be implemented in real auctions: In any step of the auction, given 

the prices announced by the auctioneer, the buyers indicate their most preferred sets of 

objects according to those prices (their demand sets). The auctioneer replicates each buyer 

the number of times of her quota and finds all the demand structures (this will be defined 
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further ahead in the text) corresponding to the buyers’ demands. This includes precisely 

associating each copy of a buyer with one object or with a set of objects. The demand sets 

of any two copies are disjoint. If a demand structure exists, in such a way that it is possible 

to assign each copy of a buyer to an object in her demand set  (which is equivalent to 

assigning every buyer to her most preferred set of objects at the given prices), respecting 

the sellers’ quotas, then the auction ends. Otherwise, Hall’s theorem3 implies that, for every 

demand structure there is a minimal overdemanded set of objects, that is, an overdemanded 

set with the property that none of its proper subsets is overdemanded. A set of objects is 

overdemanded if the number of buyers who demand only items from this set is greater than 

the number of items in the set. Among all demand structures, the auctioneer chooses one 

that has the minimum number of minimal overdemanded sets. Afterwards, he chooses a 

minimal overdemanded set from the selected demand structure and raises the price of each 

object in the set by one unit. All other prices remain the same as those in the previous step. 

 The present article is structured as follows. Section 2 describes the cooperative 

market and proves some preliminary results related to this market. Section 3 outlines the 

competitive approach and proves the existence of competitive equilibria and several 

properties of such outcomes. Section 4 describes the mechanism, with an illustrative 

example in section 4.1, and the main results in Section 4.2. Section 5 concludes and 

discusses related works. Some of the proofs are presented in the Appendix.  

 

2.THE COOPERATIVE FRAMEWORK AND PRELIMINARY RESULTS 

There are two finite and disjoint sets of players,  B  and  Q.  The  B-players may 

form more than one partnership with Q-players, and  Q-players may form more than one 

partnership with  B-players. The set  B  has  m elements and the set  Q  has  n  elements. 

Each  b∈B  has a quota  r(b)  and each  q∈Q  has a quota  s(q),  representing the maximum 

number of partnerships they can form. For each pair  (b,q)  there is a non-negative number  

vbq  which is splitted between  b  and  q  if both form a partnership. Dummy players, 

                                                           
3 Let  B  and  C  be two finite disjoint sets. For each  b  in  B,  let  Db  be a subset of   C.  A simple assignment is an 
assignment of  C  to  B,  such that each  b  is assigned exactly one element  j  of  C,  such that  j  is in  Db,  and each  j  in  C  
is assigned to at most one element of  B. Then, the Theorem of Hall is: 
A simple assignment exists, if and only if, for every subset  B’  of  B,  the number of objects in  D(B’)  is at least as great 
as the number of buyers in  B'. 
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denoted by  0,  are included for technical convenience in both sides of the market. We have 

that  vb0=v0q= 0  for all  b∈B  and  q∈Q. As for the quotas, a dummy player can form as 

many partnerships as needed to fill up the quotas of the non-dummy players. If  b  and  q  

form a partnership  then  b  receives the individual payoff  ubq≥0  and  q  receives the 

individual payoff  wbq=vbq - ubq≥0.  The game is then given by M≡(B,Q,v,r,s). 

This model, which is presented in Sotomayor (1992) and is a version of the one of 

Crawford and Knower (1981), is an extension of the Assignment game of Shapley and 

Shubik (1972) to the case of multiple partners.  

A matching  µ  is a set of partnerships of the kind  (b,q),  (b,0)  or  (0,q),  for  

(b,q)∈BxQ. If  b  and  q  are matched under  µ,  we write  b∈ µ(q)  or  q∈µ(b). A dummy 

player may be matched to more than one player of the opposite side and more than once to 

the same player. We will say that a subset  S ⊆Q  is an allowable set of partners for b∈B,  

if  ⏐S⏐=r(b). We will extend this terminology to include the sets  S  with  k  non- dummy 

players and  r(b)-k  repetitions of the dummy player. Analogously, we define an allowable 

set of partners for  q∈Q.  In order to simplify our notation, we will also write  S⊆B  or  

S⊆Q  for any allowable set  S  of B-players or Q-players, respectively. 

If we consider that a player may be assigned to the dummy player as many times as 

needed to fill up his/her/its quota, we can define a matching  µ  to be feasible, if each 

player is matched to an allowable set of partners.  The value of  µ  is  . The 

matching  µ  is optimal if it attains the maximum value among all feasible matchings.  

∑
∈∈ )(, qbQq

bqv
µ

 

Definition 1. A feasible outcome for  M, denoted by  (u,w; µ),  is a feasible matching  µ  

and a pair of payoffs  (u,w),  where the individual payoffs of each  b∈B  and q∈Q  are 

given by the arrays of numbers  ubq,  with  q∈µ(b),  and  wbq,  with  b∈µ(q),  respectively,  

such that  ubq + wbq=vbq,  ubq≥0  and  wbq≥0. Consequently,  ub0=u0q=wb0=w0q=0  in case 

these payoffs are defined. 

 

If  (u,w; µ)  is a feasible outcome, we say that  µ  is compatible with payoff  (u,w)  

and vice-versa. 
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The key notion is that of stability. We will be assuming that agents' preferences are 

separable across pairs, in the sense that the payoff of the partnership  (b,q),  vbq,  does not 

depend on which other partnerships are formed by players  b  and  q.  If  S  is an allowable 

set of partners for  b∈B,  the payoff of the coalition  S∪{b}  is the sum of the numbers  vbq’s  

with  q∈S.  Similarly, we define the payoff of  S∪{q},  where  S  is an allowable set of 

partners for  q∈Q. Under this structure of preferences it is proved in Sotomayor (1992) that 

the essential coalitions for this game are the pairs  (b,q)’s,  and so the appropriate concept 

of stability is that of pairwise-stability: A feasible outcome is stable if, for all pairs  b  and  

q,  such that  (b,q)  is not a partnership,  the sum of any  b's individual payoff with any  q's  

individual payoff is not less than  vbq. The interpretation of this condition is the natural one. 

If it is not satisfied then it would pay  b  and  q  to break up one of their present 

partnerships, if necessary, and form a new one together, because this could give to both of 

them a higher payoff. By defining  ub(min)=min{ubq; q∈µ(b)}  and wq(min)=min{wbq; 

b∈µ(q)} for a feasible outcome  (u,w; µ), the definition of stability is equivalent to: 

  

Definition 2. The feasible outcome  (u,w;µ)  is stable for  M  if  ub(min) + wq(min)≥vbq  for 

all pairs  (b,q)  with  b∉µ(q).. 

 

If (u,w;µ)  is a stable outcome we say that  (u,w)  is a stable payoff. It is proved in 

Sotomayor (1999) that, by using a convenient vectorial representation of the stable payoffs, 

there exists a stable payoff which is weakly preferred by any player in B  (respectively,  Q) 

to any other stable payoff. This payoff is called  B-optimal stable payoff (respectively,  Q-

optimal stable payoff). Furthermore, if, for example,  (u',w';µ')  is a B-optimal stable 

outcome and  (u,w;µ) is any other stable outcome, then, each component of  u' (represented 

as a vector)  is greater than or equal to the corresponding component of  u  (represented as 

a vector).  In particular, if  µ=µ' then for every  b∈B,  u'bq≥ubq  for all  q∈µ(b).  

The following proposition asserts that, under the  B-optimal stable payoff, no  Q-

player  discriminates his partners: He gets the same individual payoff with any partner. 
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Proposition 1. Let  (u',w')  be  the B-optimal stable payoff for  M. Let  µ  be a matching 

compatible with  (u',w').   Then, w'bq=w'b'q   for all  q∈Q  and all  b  and  b'  in  µ(q). (b  and  

b'  might be dummy players). 

Proof. For all  q∈Q  define  w"bq=w'q(min), if  b∈µ(q). Let  u"  be the corresponding 

payoff for the B-players.  We claim that  (u",w";µ)  is stable. In fact, if  b∈µ(q)  for some  

q,  u"bq=vbq - w"bq =vbq - w'q(min) ≥ vbq - w'bq=u'bq.  Then,   

u"bq≥u'bq,  for  all pairs  (b,q)  with  b∈µ(q),    (1) 

so  u"b(min) ≥ u'b(min)  for all  b.  Therefore, for every pair  (b,q) with  b∉µ(q), 

u"b(min)+w"q(min)≥u'b(min)+w'q(min)≥vbq  by stability of  (u',w'),  so  (u",w";µ)  is stable. 

The B-optimality of  (u',w',µ)  and  (1)  imply that u'bq=u"bq,  for  all pairs  (b,q)  with  

b∈µ(q), which implies that  w"bq=w'bq for  all  (b,q)  with  q∈µ(b). Hence, w'bq=w'q(min)  

for all  b∈µ(q),  and the proof is complete.ζ    

 

Symmetrical conclusions apply by reverting the roles between B-agents and  Q-

agents in Proposition 1. The following propositions, from Sotomayor (1992) and  

Sotomayor (1999), respectively, will be necessary in the next sections: 

 

Proposition 2. Let  (u,w;µ)  be a stable outcome for  M. Then  µ  is an optimal matching. 

 

Proposition 3. If  (u,w; µ)  is a stable outcome for  M  and  µ’  is an optimal matching, then  

(u,w; µ’) is also stable for  M. 

 

3. THE COMPETITIVE FRAMEWORK AND PRELIMINARY RESULTS 

In this section we will define a competitive market related to the cooperative market  

M.  The concept of competitive equilibrium is the adequate solution concept. This 

framework is more appropriate for a buyer-seller market than for a labor market. In fact, as 

we will see later, Q-players do not discriminate their partners under competitive 

equilibrium prices. That is, it is natural that every seller sells his objects for the same price, 

but it is reasonable that, some times, a worker does not get the same salary in all her jobs or 

a firm does not get the same profit with all workers it hires. Thus,  B-players and  Q-players 
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will be conveniently assumed to be buyers and sellers, respectively. Quota  s(q)  of seller  q  

means that  q  owns  s(q)  identical and indivisible objects, and  quota  r(b)  of buyer  b  

represents the maximum number of objects  b  is allowed to buy. No buyer is interested in 

acquiring more than one object of a given seller. An allocation of the objects to the buyers 

will be called a matching.  

Every object has a reservation price of  0  (which can be obtained after 

normalization). Generically, we will denote buyers by  b,  b',  and sellers and objects by  q,  

q'. The value of any object of seller q  to buyer  b  is  vbq≥0. That is,  vbq  is the gain of trade 

when any of the objects of seller  q  is sold to buyer  b.  If  buyer  b  acquires some object  

of  q  for price  π≥0  then  b  will receive an individual payoff  ubq=vbq - π ≥0. Without loss 

of generality we can consider  r(b)≤n.  We will also include the dummies: an artificial 

"null-object",  0,  whose value is zero to all buyers and whose price is always zero and a 

fictitious buyer,  0,  whose value is zero for all objects and whose payoff is always zero. If 

an object is matched to the dummy buyer we say that it is left unsold. An outcome is a 

matching plus a price for each object. This market will be denoted by  M*. 

An allowable set of objects for buyer  b  contains  r(b)  objects, some of which may 

be repetitions of the null-object. Furthermore, it does not contain more than one object of 

the same seller. A feasible matching matches a buyer to an allowable set of objects and 

each non-null object to one buyer (who might be the dummy buyer).  

A vector of prices   p ∈RN
+,  with  N≡∑q∈Q s(q),  is called a feasible price vector 

for  M*. Since the quota restriction imposes a limit on the number of objects that a buyer 

may acquire, and a buyer is not interested in buying more than one object from the same 

seller, her preferences under a feasible price vector are defined only over allowable sets of 

objects. The value of  an allowable set of objects  S  to buyer  b  is the sum of the values  of 

the objects in  S  to  b. Then, given a feasible price vector,  the preferences of buyers are 

completely described by  the numbers  vbq: For any two allowable sets of objects  S  and  S’,  

buyer  b  prefers  S  to  S’  at prices  p,  if her total payoff when she buys  S  is greater than 

her total payoff when she buys  S'. She is indifferent between these two sets, if  she gets the 

same total payoff with both sets. Object  q  is acceptable to buyer  b  at  prices  p  if, under 

these prices,  b  likes  q  at least as well as the null-object.  
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Under the structure of preferences we are assuming, each buyer  b  can determine 

which allowable sets of objects she would most prefer to buy at a given price vector  p. We 

denote the set of all such allowable sets by  Db(p)  and call it the demand set of  b  at 

prices  p. (Note that  Db(p)  is never empty, because there is always the option of buying  

r(b)  copies of the null object. Note also that, if  S∈ Db(p),  then every element of  S  is 

acceptable to  b). 

 

Definition 3. The feasible price vector  p  is called competitive for  M*, if there is a 

feasible matching  µ  such that, if  µ(b)=S  then  S  is in  Db(p).  

 

 Therefore, at competitive prices  p,  each buyer is assigned to a set of objects in her 

demand set. The matching  µ  is said to be compatible with the competitive price  p.  A 

matching  µ is called competitive if it is compatible with a competitive price.  

 

Definition 4. The pair  (p, µ)  is a competitive equilibrium for  M*, if  p  is competitive,  µ  

is compatible with  p,  and  pq=0  if  object  q  is left unsold. If  (p, µ)  is a competitive 

equilibrium,  p  will be called an equilibrium price vector.  

 

An important difference between the cooperative behavior and competitive behavior 

of the sellers is that under competitive equilibrium prices, every seller sells all their 

objects for the same price. In fact, if  a seller has two identical objects,  q  and  q',  and  

pq>pq'  for some price vector  p,  then no buyer  b  will demand, at prices  p, a set  S  of 

objects that contain object  q.  This is because , by replacing  q  by  q'  in  S,  b  gets a more 

preferable allowable set of objects. But then,  q  will remain unsold with a positive price, 

and so  p  cannot be competitive. Thus,  if  a seller does not complete his quota under a 

competitive equilibrium, then some of his objects will have a price of zero, so the price 

of any of his objects  must be zero. This implies that, if  pq>0  then the owner of  q  has 

sold all his objects. 

 

Remark 1. Since a seller sells his identical objects for the same competitive price 

and no buyer is  allowed to buy more than one object of a seller, we do not cause any 
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confusion by using the same notation for a seller and any of his objects. At competitive 

prices, since the array of payoffs for any seller  q  in  M  is given by the array of prices of 

his objects, so the array of individual payoffs for any seller  q  in the related cooperative 

market  M  is given by s(q)  repetitions of a same number and so, in order to represent such 

payoffs, we do not need to make any reference to the buyers who are matched to  q. For 

example, (pq, pq,..., pq)  will denote the array of payoffs of seller  q  and  pq  will denote the 

price of any of his objects.  If  µ*  is a feasible matching for  M* we can define a 

corresponding  matching  µ  for the related cooperative market  M  such that seller  q∈µ(b)  

if and only if one of his objects is allocated to  b  at  µ*. Thus,  q∈µ*(b)  means that   object  

q  is allocated to buyer  b  and q∈µ(b)  means that   buyer  b  and seller  q  are partners at  

µ.. We say that  µ  and  µ*  correspond to each other. Clearly,  µ   and  µ*  have the same 

value, so µ  is optimal for  M  if and only if   µ*  is optimal for  M*.   If   (p*, µ*)  is a 

competitive equilibrium, we can define the corresponding outcome  (u,p*,µ), called 

competitive equilibrium outcome, where the  ubq's,  given by  ubq=vbq - p*q if   q∈µ*(b),  

define  the array of payoffs for buyer  b. The array of payoffs for seller  q  is given by   s(q)  

repetitions of the number  p*q.  According to our previous definitions,  µ*(b)  belongs to  

Db(p*)  for every  b.  Then, for all b∈B,  (vbq - p*q ) ≥(vbk - p*k)  for all  q∈µ*(b) and  

k∉µ*(b),  from which follows that   ub(min) = min{(vbq - p*q ); q∈µ*(b)}  ≥ (vbk - p*k)   for 

all  b∈B  and  k∉µ*(b). That is,  ub(min) + p*k ≥ vbk  for all  (b,k)  with  k∉µ(b), and so the 

competitive equilibrium outcome  (u,p*; µ)  is stable for the related cooperative 

market M.  With an analogous argument we can show that, if  (u,w;µ)  is stable for  M  and  

the array of payoffs for any seller   q  is given by   s(q)  repetitions of the number  wq , then   

(u,w;µ)  is a competitive equilibrium outcome.ν 

 

Definition 5. The competitive equilibrium price  p  is the minimum (respectively, 

maximum) competitive equilibrium price for  M*,  if  pq≤p’q (respectively, if  pq≥p’q)   for 

all objects  q  and all competitive equilibrium price  p’.  

 

Proposition 4 . If  (p*,µ*)  is a competitive equilibrium then  µ*  is an optimal matching 

for  M*. 
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Proof. Let  (u,p*; µ)  be the stable outcome, for the related cooperative market M, 

corresponding to  (p*, µ*). By Proposition 2,  µ  is optimal for  M . The result follows from 

Remark 1.ν 

 

Proposition 5. Let  (p*,µ*)  be a competitive equilibrium for  M*.  Let  λ*  be an optimal 

matching for  M*. Then  (p*,λ*)  is a competitive equilibrium for  M*. 

Proof.  Let  (u,p*; µ)  be the stable outcome, for the related cooperative market M, 

corresponding to  (p*, µ*).  Let  λ  be the corresponding matching to  λ*,  which is optimal 

for  M  by Remark 1.  By Proposition 3,  (u,p*; λ)  is stable for  M,  so (p*,λ*),  is a 

competitive equilibrium for  M*,  by Remark 1.ν 

 

The existence of stable outcomes for  M is proved in Sotomayor (1992, 1999). For  

the competitive equilibria  it is an immediate consequence of: 

  

Proposition 6. Let  (u,p*;µ)  be  a  B-optimal stable outcome for the related cooperative 

market  M. Let µ*  be the corresponding matching to  µ.. Then  (p*,µ*)  is a competitive 

equilibrium for the competitive market  M*. 

Proof. It is immediate from Proposition 1 and Remark 1. ν 

 

The existence of a minimum competitive equilibrium is proved in the proposition 

below: 

 

Proposition 7. Let  (u,p*,µ)  be a  B-optimal stable outcome for the related cooperative 

market  M. Let µ*  be the corresponding matching to  µ.  Then, (p*,µ*)  is a minimum 

competitive equilibrium for  M*.  

Proof.  In fact, by Proposition 6,  (p*,µ*)  is a competitive equilibrium. Then, suppose by  

way of contradiction that there is some competitive equilibrium  (w',λ*),  such that  

0≤w'q<p*q,  for some object  q . Let  (u',w'; λ)  be the stable outcome for  M  corresponding 

to  (w', λ*),  as defined in Remark 1. Proposition 3 asserts that every optimal matching for  

M is compatible with any stable outcome.  Then,  (u',w';µ)  is stable for M. The fact that  
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p*q>0  and  (p*,µ*)  is a competitive equilibrium implies that  q  is not left unsold at  µ*, 

and so at  µ.. Take  b∈µ.(q).  Then,  u'bq=vbq -w'q > vbq - p*q= ubq.  Thus,  u'bq > ubq  for at 

least one buyer  b,  contradicting the B-optimality of  (u,p*;µ).  Hence,  (p*,µ*)  is a 

minimum competitive equilibrium.ν 

 

We can also prove the existence of the maximum competitive equilibrium price. 

This allocation does not necessarily correspond to a  Q-optimal stable outcome for  M  as 

the following simple situation illustrates. Consider two buyers, each with quota of 1, and 

one seller with two objects. The values are given by  3  and  2, respectively. It is clear that 

the outcome which allocates one object to each buyer at prices  3  and  2,  and gives payoff 

zero to the buyers, is the Q-optimal stable outcome. However it is not competitive. The 

maximum competitive equilibrium price is  p=(2,2).  

 

Proposition 8.  There is a maximum competitive equilibrium for  M*. 

Proof. Let  (u,w;µ)  be a Q-optimal stable outcome for the related cooperative market M.  

For all  q∈Q  define  p*bq=wq(min), if  b∈µ(q). Set  p*q≡p*bq  for al  q∈Q.  Then, 

p*q(min)=wq(min).  We claim that  (u',p*;µ)  is stable for M, where  u'  is the corresponding 

payoff for the buyers.  In fact,  (u',p*;µ)  is clearly feasible and if  b∈µ(q)  for some  q,  

u'bq=vbq - p*q =vbq - wq(min) ≥ vbq - wbq=ubq.  Then,   

u'bq≥ubq,  for  all  b  and all  q∈µ(b),    (1) 

so  u'b(min) ≥ ub(min)  for all  b.  Therefore, for every pair  (b,q) with  b∉µ(q), 

u'b(min)+p*q(min)≥ub(min)+wq(min)≥vbq  by stability of  (u,w),  so  (u',p*;µ)  is stable for  

M,  and so  the corresponding allocation  (p*,µ*)  is a competitive equilibrium for  M*, by 

Remark 1.  We claim that  (p*,µ*)  is a maximum competitive equilibrium. Suppose not. 

Then,  there is some competitive equilibrium  (w',λ*) such that  w'q>p*q≥0,  for some  q . 

Let  (u',w'; λ)  be the corresponding stable outcome for M. Proposition 3 asserts that every 

optimal matching is compatible with any stable outcome.  Then,  µ  is compatible with  

(u',w'; λ),  so  (u',w';µ)  is stable for  M and  w'q>p*q for all  q, contradicting the Q-

optimality of  (u,p*;µ).  Hence,  (p*,µ*)  is a maximum competitive equilibrium and the 

proof is complete.ν 
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Objects owned by different sellers, but which are not distinguishable among buyers 

may be sold for different prices, even under a minimum competitive equilibrium price. See 

example below. 

 

Example 1. B={1,2,3,0},  Q={j,k,q,0}, r(1)=r(2)=r(3)=2, s(j)=2, s(k)=3, s(q)=1.The 

values of the buyers are given by: v1=(6,6,1,0),  v2=(4,4,,2,0)  and  v3=(3,3,1,0),  where the 

first coordinate is the value of any object of seller  j, the second coordinate is the value of 

any object of seller  k,  and so on. It is a matter of verification that the minimum 

equilibrium price allocates the objects of  j  to  1  and  2  at price  pj=2;  the three objects of  

k  to  the three buyers at price  pk=0  and  the object of  q  to buyer  3  at price  pq=0. 

Hence, the prices of  the objects of sellers  j  and  k  are not the same although all them have 

the same value to any buyer. ν 

  

The fact illustrated in the example above does not occur when the quotas of the 

sellers of the non-distinguishable objects are the same. 

 

Proposition 9. Let  p  be the minimum competitive equilibrium price for  M*. Let  j, k∈Q,  

such that  s(j)=s(k) and  vbj=vbk  for every  b∈B.  Then,  pj=pk. 

Proof. Let  µ*  be some optimal matching for M*. Then,  (p,µ*)  is a minimum competitive 

equilibrium for  M*. Suppose by way of contradiction that  pj≠pk.  Without loss of 

generality, it can be assumed that  pj>pk≥0.  Then, seller  j  must have sold all his objects at  

µ * and for all  b  assigned to an object of  j  we have that  vbj- pj < vbj-pk = vbk – pk.  The 

competitivity of  p  then implies that if  b  is assigned to an object of  j  then she is also 

assigned to an object of  k.  Since  s(j)=s(k)  we have that  µ*(j)= µ*(k). We claim that the 

price vector  p*  is also competitive with matching  µ*,   where  p*j=p*k=pk  and  p*q =  pq  

for all objects of seller  q∉{j,k}.  We have to show that, if  q∈µ*(b),  then  vbq- p*q  ≥ vbq’ – 

p*q’,  for every  q’∉µ*(b).  (This is equivalent to requiring that  µ*(b)  is in  Db(p*),  by 

Remark 1). We have two cases. 
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Case 1. q∈{j,k}.  Then, for all  q’∉µ*(b),  we have that   vbj-p*j = vbk - p*k = vbk – pk 

≥ vbq’ – pq’ = vbq’ – p*q’,  where the inequality follows from the competitivity of  p.   

Case 2. q∉{j,k}. If  q’∉{j,k},  the result is immediate from the competitivity of  p.  

If  q’∈{j,k},  then  b∉µ*(j)=µ*(k). We have that, 

vbq– p*q= vbq– pq≥ vbk – pk = vbj – p*j = vbq’ – p*q’,  if  q’ = j,  and 

vbq– p*q = vbq – pq ≥ vbk – pk = vbk – p*k = vbq’ – p*q’,  if  q’ = k, 

where the inequalities follow from the competitivity of  p. 

 Then, in any case,  vbq- p*q ≥ vbq’ – p*q’.  Therefore,  p*  is competitive. However,  

p*<p,  which contradicts the minimality of  p.  Hence,  pj=pk  and the proof is complete. g  

 

4. THE DYNAMIC MECHANISM 

In order to describe the dynamic mechanism some preliminaries are necessary. For 

our purposes, if  p*∈RN
+,  with  s(q)  repetitions of  p*q  for each  q∈Q, it will be more 

convenient to work with the price vector in  Rn  obtained as follows: We replace the  s(q)  

repetitions of  p*q  by the number  p*q,  by keeping in mind that the coordinate  p*q  is the 

price of each one of the  s(q)  objects of seller  q.  Thus, we obtain a  competitive market  

associated to  M*, A(M*),  where a feasible price vector is a vector of  Rn
+ whose  q-th 

coordinate is the price of each one of the  s(q)  objects of seller  q. By introducing a 

dummy-seller, who can be repeated in order to fill up the quotas of the buyers, a feasible 

matching will assign a buyer to an allowable set of sellers for her (instead of an allowable 

set of objects for her), and a seller to an allowable set of buyers for him. Then, the feasible 

matchings for  A(M*)  are the feasible matchings for  M. The demand set of  b  at prices  p  

is the set of favorite allowable sets of sellers for buyer  b  at prices  p. The allocation  (p, µ)  

is a competitive equilibrium for  A(M*)  if each buyer is assigned to an allowable set of 

sellers in her demand set and  pq=0  whenever seller q  does not have completed his quota. 

We will keep the same notation as before,  Db(p),  for the demand set of  b  at prices  p.  It 

is immediate that  (p, µ)  is a competitive equilibrium for A(M*)   if and only if  (p*,µ*)  

is a competitive equilibrium for  M*, where  µ*  is the matching of  M*  corresponding 

to  µ  and  p*  is the extension of  p  to  M*  as described above.  
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We will describe a dynamic mechanism for the competitive market  A(M*),  and 

will see that it produces, in a finite number of steps, a competitive price. It will be proved in 

the next section that the resulting allocation is the minimum competitive equilibrium for  

A(M*),  which corresponds to the minimum competitive equilibrium for  M*,  as remarked 

above. It will follow from Proposition 7 that the dynamic mechanism also produces a B-

optimal stable outcome for the cooperative market  M.  

Given a feasible price  p  for  A(M*), buyers have preferences over individual sellers 

and over allowable sets of sellers. The preferences of each buyer  b∈B  over individual 

sellers can be  represented by an ordered list of preferences  Lb(p)  of the following form: 

Lb(p)= q1, q2, q3, 0, q4

indicates that, at prices  p,  buyer  b  prefers  any object of seller  q1  to  any object of seller  

q2,  any object of seller  q2  to  any object of seller  q3,  any of these objects to  0,  but prefers 

not to fill her quota to buy any object of seller  q4  at price  p  . The objects of  q1,  q2  and  

q3  are acceptable to  b  while the ones of  q4  are unacceptable. Buyer  b  may also be 

indifferent among several potential partners. Brackets in the preference list will denote this, 

so, for example, the list 

Lb' (p)=[q1,q2], q3,q4, [q5,q6,q7], 0

indicates that  b' is indifferent between  any of the objects of seller  q1  and seller  q2,  

prefers any object of these agents to any object of  q3,  and so on.  

The following terminology will be needed for the description of the mechanism. 

The bid of  b  at p,  Bb(p),  is a truncation of the preference list  Lb(p) so that it contains 

exactly all  S∈Db(p).  To make this clear, consider that  Lb(p)=[q1,q2],q3,q4,[q5,q6,q7],...  and  

b has quota  r(b)=1.  Then,  Db(p)={q1,q2},  so  Bb(p)=[q1,q2]; if r(b)=2,  Db(p)={{q1,q2}},  

so  Bb(p)=[q1,q2]; if r(b)=4, Db(p)={{q1,q2,q3,q4}},  so  Bb(p)=[q1,q2],q3,q4;  if  r(b)=6,  

Db(p)={{q1,q2,q3,q4,q5,q6},{q1,q2,q3,q4,q5,q7},{q1,q2,q3,q4,q6,q7}}, so 

Bb(p)=[q1,q2],q3,q4,[q5,q6,q7],  and so on. Notice that, if Lb(p)=[q1,q2,0], q3  and r(b)=3,  for 

example, then Db(p)={{q1,q2,0},{q1,0,0},{ q2,0,0}, {0,0,0}}. In this case, we will write  

Bb(p)=[ q1,q2,0,0,0]. 

 

Remark 2. We will say that  q∈Bb(p)  if and only if  q  is listed by  b  in  Bb(p).  Therefore,  

q∈Bb(p)  if and only if the number of elements of  Lb(p)  strictly preferred to  q  by  b  at 
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prices  p  is less than  r(b). Of  course, the number of elements listed in Bb(p) (this set may 

include several copies of the dummy seller), is greater than or equal to  r(b). ζ 

 

 Now, for each non-dummy buyer  b,  break the ties of  Bb(p)  in any way desired. 

The resulting set will be denoted by  B*b(p). Then, we can define: 

Ab,i(p)  is the set formed by the  i-th element in  B*b(p),  if  i<rb; 

Ab,i(p)  is the set formed by the elements in  B*b(p)-[Ab,1(p)∪...∪ Ab,r(b)-1(p)],  if  

i=rb. 

The set  Ab(p)={Ab,1(p),..., Ab,r(b)(p)}  will be called a demand structure for  b  at 

prices  p  (corresponding to the given tie-breaking rule).   The set of all  Ab’s(p)  will be 

called a demand structure at  p  and will be denoted by  A(p). 

To illustrate these definitions, consider that buyer  b  has quota  r(b)=6  and that 

Bb(p)=[q1,q2],q3,q4,[q5,q6,q7]. If we break ties to get  B*b(p)=q1,q2,q3,q4,q6,q5,q7,  the 

corresponding demand structure for  b  at prices  p  is:  Ab,1(p)={q1}, Ab,2(p)={q2},  

Ab,3(p)={q3},  Ab,4(p)={q4},  Ab,5(p)={q6}  and  Ab,6(p)={q5,q7}.  Notice that, if 

Lb(p)=[q1,q2,0], q3  and r(b)=3,  for example, then Bb(p)=[ q1,q2,0,0,0], so we can break ties 

to get, for example,  B*b(p)=0,0,0,q1,q2 .  In this case, the corresponding demand structure 

for  b  at prices  p   is  :  Ab,1(p)={0}, Ab,2(p)={0}  and  Ab,3(p)={q1,q2,0}.    

The pair  (b,i),  with  b∈B  and  1≤i≤r(b),  is a loyal demander of  S  if  Ab,i(p)⊆S.   

 

Definition 6. Given  the feasible price vector  p  for A(M*),  we will say that the set  S⊆Q  

is overdemanded for the demand structure  A(p),  if there is a set  T of loyal demanders of  

S,  such that  |T|>∑q∈SS(q),  where  S(q)=min{s(q), number of  (b,i)∈T  with  q∈Ab,i(p)}.   

 

The overdemanded set  S  is said to be minimal, if no proper subset of  S  is 

overdemanded. Thus if, for example,  b  has quota  r(b)=1  and  Ab,1(p)={q3,q4};  b’   has 

quota  r(b’)=2  and  Ab’,1(p)={q3}  and  Ab’,2(p)={q4};   and  b”  has quota  r(b”)=2  and  

Ab”,1(p)={q1}, Ab”,2(p)={q3},  then,  T={(b,1),(b’,1),(b’,2),(b”,2)} is a set of loyal 

demanders of  S={q3,q4}.  If  s(q3)=1  and  s(q4)=3  then  S(q3)=1  and  S(q4)=2. Then  

4=|T|>3=S(q3)+S(q4). Set  S is overdemanded, but it is not minimal. In fact, the set  
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S’={q3}  is overdemanded by  T’={(b’,1),(b”,2)}. Indeed,  S’  is a minimal overdemanded 

set.   

 

Remark 3. It follows from the definition of competitive equilibrium that, if   p∈Rn  is a 

competitive equilibrium price for A(M*), then each buyer  b  can be matched to her most 

preferred allowable set of sellers at prices  p  (this may include copies of the dummy-

seller). Therefore, there is some demand structure  A(p)  for which each pair  (b, i)  can be 

matched to exactly one seller   q,   with  q∈Ab,i(p)  (q  might be the dummy-seller). In 

addition,   every non-dummy seller q  is matched s(q)  times at most. Hence, there is no 

overdemanded set for  A(p).   

If  p∈Rn  is not a competitive equilibrium price for A(M*), then there is no way to 

match each buyer to her  r(b)  most preferred sellers under a feasible matching. This means 

that every demand structure  A(p)  has an overdemanded set. This is a consequence of a 

simple adaptation of Hall’s Theorem to the case where  s(q)  can be greater than one.  (See 

P. Hall (1935), Gale (1960)).ζ 

Now, we can describe the dynamic mechanism. It can be thought of as being an 

auction procedure to sell the objects of the market  A(M*).  Thus, we call the matchmaker 

"auctioneer". We will take all prices and valuations to be integers.  

Step (1): The auctioneer announces an initial price vector,  p(1)= (0,...,0)∈Rn
+. Each 

buyer  b  “bids” by announcing  Bb(1)≡Bb(p(1)).  

Step (t+1): After bids  Bb(t)  are announced, the auctioneer determines all the 

demand structures at  p(t),  using all possible tie-breaking rules. If there is some demand 

structure A(t)≡A(p(t)),  for which it is possible to match each pair  (b, i)  to a seller              

q∈A(b,i)(t),  so that no real seller is matched more times than his quota, the algorithm stops. 

If no such demand structure exists, Hall’s Theorem implies that there is some 

overdemanded set for every demand structure. Then, the auctioneer chooses some demand 

structure that has the minimum number of minimal overdemanded sets, among all demand 

structures. (This corresponds to the choice of a tie-breaking rule). Next, he selects a 

minimal overdemanded set for the demand structure chosen  and raises the price of all 

objects belonging to each seller in the set by one unit. All other prices remain at level p(t). 

This defines  p(t+1).  
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It is clear that the algorithm stops at some step, because, as soon as the price of the 

objects of a given seller becomes higher than any buyer’s valuation for them, the seller will 

not be in the bid of any buyer. It follows from the construction of the algorithm, that the 

final price is a competitive price vector for A(M*). What is less clear is that this algorithm 

yields the same price, independent of the demand structures selected by the auctioneer. We 

will prove this fact in section 4.2, by showing that the price obtained in the algorithm is the 

minimum equilibrium price vector for A(M*). Before we will illustrate the mechanism with 

an example. 

  

4. 1 EXAMPLE 

The following example illustrates the dynamic mechanism. There are four non-

dummy-buyers, 1, 2, 3 and 4, and six non-dummy sellers, q1, q2, ..., q6.  Seller  q1  has two 

identical objects and the other sellers have a quota of one.   The maximum number of 

objects that each buyer can purchase  is given by  3,  2, 1  and  1,  respectively. These 

numbers define the quotas of the buyers. The values of the buyers to the non-null objects 

are given by the following vectors: v1=(7,5,4,4,2,1,0),  v2=(5,4,1,0,2,1,0),  v3=(2,0,0,0,0,1,0)  

and  v4=(3,1,1,1,1,2,0),  where the j-th coordinate of  vi  is the value of any object of seller  

qj  to buyer  i.  

Step 1.  p(1)=(0,0,...,0). The matrix of numbers  vbq-pq(1)  is given in the table 

below, with the entries corresponding to the sellers of the demand sets in boldface  

           q1 q2 q3 q4 q5 q6 0 

                        1 7 5 4 4 2 1 0 

                        2 5 4 1 0 2 1 0 

       3 2 0 0 0 0 1 0 

4 3 1 1 1 1 2 0 

 

The bids of the buyers at  p(1)  are: B1(1)=q1,q2,[q3,q4];  B2(1)=q1,q2;  

B3(1)=B4(1)=q1. There is only one demand structure given by: A1,1(1)={q1},  A1,2(1)={q2},   

A1,3(1)={q3,q4}; A2,1(1)={q1},  A2,2(1)={q2},   A3,1(1)={q1}  and  A4,1(1)={q1}.  It is not 

possible to find a competitive matching. The set  S={q1,q2}  is overdemanded. In fact, the 

set of loyal demanders of  S  is  T={(1,1),(1,2),(2,1),(2,2),(3,1),(4,1)};  S(q1)=min{2,4}=2,  
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S(q2)=min{1,2}=1. Then  6=|T|>2+1=3.  However  {q1,q2}  is not minimal, because  {q1}  

as well as  {q2}  are overdemanded: The set of loyal demanders of  q1  has 4  elements, 

which is greater than  S(q1),  and the set of loyal demanders of  q2  has  2  elements, which 

is greater than  S(q2). It is a matter of verification that there are only two minimal 

overdemanded sets: {q1}  and  {q2}. Suppose the auctioneer chooses  {q2}.  Then, he raises 

the price of the objects of q2  by one unit (actually  q2  has only one object). 

Step 2.  p(2)=(0,1,...,0). The matrix of  numbers  vbq-pq(2)  is given in the table 

below, with the entries corresponding to the sellers of the demand sets in boldface . The 

numbers vbq-pq(2)<0  will be replaced by  Z: 

  

   q1 q2 q3 q4 q5 q6 0 

1 7 4 4 4 2 1 0 

2 5 3 1 0 2 1 0 

3 2 Z 0 0 0 1 0 

4 3 0 1 1 1 2 0 

 

Then, B1(2)=q1,[q2,q3,q4];  B2(2)=q1,q2;  B3(2)=B4(2)=q1. Because of the 

indifferences of buyer 1  we have three demand structures. The first one is given by:  

A1,1(2)={q1},  A1,2(2)={q2},   A1,3(2)={q3,q4}; A2,1(2)={q1},  A2,2(2)={q2},   A3,1(2)=q1  and  

A4,1(2)=q1. It is not possible to find a competitive matching. There are two minimal 

overdemanded sets: {q1}  and  {q2}. The second demand structure is given by: 

A'1,1(2)={q1},  A'1,2(2)={q3},   A'1,3(2)={q2,q4}; A'2,1(2)={q1},  A'2,2(2)={q2},   A'3,1(2)=q1  

and  A'4,1(2)=q1. It is not possible to find a competitive matching. There is one minimal 

overdemanded set: {q1}. The third demand structure is given by: A"1,1(2)={q1},  

A"1,2(2)={q4},   A"1,3(2)={q2,q3}; A"2,1(2)={q1},  A"2,2(2)={q2},   A"3,1(2)=q1  and  

A"4,1(2)=q1. It is not possible to find a competitive matching. There is one minimal 

overdemanded set: {q1}. The auctioneer must choose a demand structure with the minimum 

number of minimal overdemanded sets. Suppose the auctioneer chooses  A’. As a result, he 

raises the price of  both objects of  q1  by one unit. (Observe that both objects of  q2  are 

overdemanded).  
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Step 3.  p(3)=(1,1,...,0). The matrix of numbers  vbq-pq(3)  is given in the table 

below, with the entries corresponding to the sellers of the demand sets in boldface .  

 

   

 

  q1 q2 q3 q4 q5 q6 0 

1 6 4 4 4 2 1 0 

2 4 3 1 0 2 1 0 

3 1 Z 0 0 0 1 0 

4 2 0 1 1 1 2 0 

 

Then, B1(3)=q1,[q2,q3,q4];  B2(3)=q1,q2,  B3(3)=B4(3)= [q1,q6]. There are three 

demand structures. The first one is: A1,1(3)={q1},  A1,2(3)={q2},   A1,3(3)={q3,q4}; 

A2,1(3)={q1},  A2,2(3)={q2},   A3,1(3)={q1,q6}  and  A4,1(3)={q1,q6}. It is not possible to find 

a competitive matching. There are two minimal overdemanded sets: {q2}  and  {q1,q6}. The 

second demand structure is: A'
1,1(3)={q1},  A'

1,2(3)={q3},  A'
1,3(3)={q2,q4}, A'2,1(3)={q1},  

A'2,2(3)={q2},   A'3,1(3)={q1,q6}  and  A'
4,1(3)={q1,q6}. The only minimal overdemanded set 

is  {q1,q6}.  The third demand structure is given by: A"
1,1(3)={q1},  A"

1,2(3)={q4},  

A"
1,3(3)={q2,q3}, A"2,1(3)={q1},  A"2,2(3)={q2},   A"3,1(3)={q1,q6}  and  A"4,1(3)={q1,q6}. As 

before, it is not possible to find a competitive matching. The only minimal overdemanded 

set is  {q1,q6}. The auctioneer must choose a demand structure with the minimum number 

of minimal overdemanded sets. Suppose the auctioneer chooses  A’. As a result, he raises 

the price of  all objects of  q1  and  q6  by one unit. 

Step 4.  p(4)=(2,1,0,0,0,1,0). The matrix of numbers  vbq-pq(4)  is given in the table 

below, with the entries corresponding to the objects of the demand sets in boldface .  

 

   q1 q2 q3 q4 q5 q6 0 

1 5 4 4 4 2 0 0 

2 3 3 1 0 2 0 0 

3 0 Z 0 0 0 0 0 

4 1 0 1 1 1 1 0 
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Then, B1(4)=q1,[q2,q3,q4];  B2(4)=[q1, q2];  B3(4)=[ q1,q3,q4, q5,q6,0]  and  B4(4)= 

[q1,q3,q4,q5,q6]. There are several demand structures.  Under  A1,1(4)={q1},  A1,2(4)={q2},   

A1,3(4)={q3,q4}; A2,1(4)={q1},  A2,2(4)={q2};   A3,1(4)={ q1,q3,q4,q5,q6,0}  and  A4,1(4)={ 

q1,q3,q4,q5,q6},  for example, it is not possible to find a competitive matching and the 

minimal overdemanded set is  {q2}. However, under   A’1,1(4)={q1}, A’1,2(4)={q3}, 

A’1,3(4)={q2,q4}   and A'2,1(4)={q1},  A'2,2(4)={q2};   A'3,1(4)={ q1,q3,q4,q5,q6,0}  and  

A'4,1(4)={ q1,q3,q4,q5,q6},  there is a competitive matching  that matches buyer  1  to             

{ q1,q3,q4},  buyer  2  to  { q1,q2},  buyer  3  to  q5  and buyer  4  to  q6.  Therefore, the final 

price is  (2,1,0,0,0,1,0).ζ 

 

Remark 4. It is not hard to prove that a set  S  is minimal overdemanded for  A(M*)  if and 

only if the set of all objects of the sellers in  S  is minimal overdemanded for  M*.  This is 

because for all  q∈S,  the number of (b,i)'s,  loyal demanders of S  with  q∈Ab,i(p),  is 

strictly greater than  s(q),  so  S(q)=s(q). Therefore, our mechanism is able to operate in the 

market  M*: it is enough to change the vector of prices in  Rn  by their extension in  RN
+.ν 

 

4.2 MAIN RESULTS 

In this section, we demonstrate that the dynamic mechanism yields the minimum 

competitive equilibrium price for A(M*).  

  

Theorem 1. Price vector  p  is the minimum competitive price for A(M*). 

Proof: Suppose by way of contradiction that  p  is not the minimum competitive price. 

Then, there is some competitive price  y  such that  p≠y  and  p  is not smaller than  y. For 

each step  t  of the auction denote  U(t)≡{ q∈Q; pq(t)=yq}. We have that  p(1)=(0,...,0), so  

p(1)≤y. Therefore, since we are working with all integers, there is at least one-step  t  of the 

auction such that  U(t)≠φ  and  p(t)≤y. From the competitivity of  y  it follows that there is 

some demand structure for  y  with no overdemanded set. Choose one of such demand 

structures and call it  A*(y).   

We need the following technical results whose proofs are left to the Appendix. 
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Lemma 1. Let  t  be some step of the auction at which  U(t)≠φ  and  p(t)≤y. Let  A(t)  be any 

demand structure at step  t  under price  p(t).  Let  T’={(b,i); Ab,i(t)∩U(t)≠φ}.  Suppose that  

T’≠φ.  Then, there is some demand structure  A’(t), such that  for each  (b,i)∈T’,  there 

exists some  (b,j),  with A*b,j(y)⊆U(t),  and such that  A*b,j(y)=A’b,i(t),  if  i≠r(b)  and 

A*b,j(y)⊆A’b,i(t), otherwise.  Furthermore, A’b,i(t)= Ab,i(t)  for all  (b,i)∉T’. 

 

Lemma 2. Let  t  be some step of the auction at which  U(t)≠φ  and  p(t)≤y. Let  A(t)  be any 

demand structure at step  t  under price  p(t).  Let  T'  and  A’(t)  be defined as in Lemma 1. 

Then, a)  A’(t)  has no minimal overdemanded set containing elements of  U(t); b) every 

minimal overdemanded set for  A’(t),  if any,  is a minimal overdemanded set for  A(t).  

 

Proof of Theorem 1 (continued). Let  t  be the last step of the auction at which  p(t)≤y and 

let  S1={q∈Q; pq(t+1)>yq}.  Then,  S1≠φ.  Since we are working with all integers,  S1⊆U(t). 

Let  A(t)  be the demand structure chosen by the auctioneer at prices  p(t)  which has 

the minimum number of minimal overdemanded sets. Let  S  be the minimal 

overdemanded set  for  A(t)  whose prices are raised at stage t+1. Thus,  S={q∈Q; 

pq(t+1)>pq(t))},  so  S1= S∩U(t),  and so S∩U(t)≠φ.   

By Lemma 1 and Lemma 2-a, there is some demand structure  A’(t),  defined from  

A(t)  and  A*(y),  that has no minimal overdemanded set containing some element of  U(t). 

Then,  S  is not a minimal overdemanded set for  A’(t).  On the other hand, Lemma 2-b 

asserts that every minimal overdemanded set for  A’(t),  if any,  is a minimal overdemanded 

set for  A(t).  Therefore,  A’(t)  has less minimal overdemanded sets than  A(t),  

contradiction.  Hence,   p  is the minimum competitive price for  A(M*).ζ   

 

Given a competitive price vector  p  for  A(M*),  it is not true that there is an optimal 

matching which is compatible to it. (To see this, consider one buyer  b,  two sellers  1  and  

2,  every agent with quota one and  vb=(4, 5). Price vector  p=(1, 3)  is competitive. Buyer  

b  demands only the object of seller 1, which is allocated to her, and the object of seller  2  

is unsold. Price p  is not a competitive equilibrium price because the price of the unsold 

object is not zero. We can also observe that the only optimal matching assigns the buyer to 
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seller  2  and this matching is not compatible with  p). Hence, not always competitive prices 

are competitive equilibrium prices. However, 

 

Theorem 2.  If  p  is the minimum competitive price for  A(M*),  then there is a matching  

µ*  such that  (p, µ*)  is an equilibrium. 

Proof. Let  µ  be a matching corresponding to  p. Call the objects of seller  q  overpriced if  

q  does not complete his quota under  µ  but  pq>0. Suppose  (p, µ)  is not a competitive 

equilibrium, so there is at least one seller  k  whose objects are overpriced.  We will give a 

procedure for altering  µ  so as to eliminate the overpriced objects of seller  k. For this 

purpose we construct a direct graph whose vertices are  B∪Q.  There are two types of arcs. 

If  q∈µ(b)  and  b  likes  q'  at least as well as  q  for all  q'∈µ(b)  there is an arc from  b  to  

q.  If  q  is in  Bb(p)-µ(b)    there is an arc from  q  to  b. (Observe that, since every buyer is 

matched under  µ   to her favorite set of allowable sellers, it follows that  if there is an arc 

from  q  to  b  and an arc from  b  to  q'  then  b  is indifferent between  q  and  q' ). Then  k  

is in  Bb(p)  for some  b∉µ(k), for if not we could decrease  pk  a little bit and still have 

competitive prices, which contradicts the minimality of  p. Let  B*∪Q*  be all vertices that 

can be reached by a directed path starting from  k, followed by  b1∉µ(k).   

 Case 1:  B*  contains a buyer  b  such that  µ(b)  contains the dummy-seller. Then, 

there is an arc from  b  to  0.  Let  (k=q1, b1,q2,b2,q3,...,qt,b,0=qt+1)  be a path from  k  to  0.  

Then, we may change  µ  by replacing  q2  by  k  in  µ(b1);  q3  by  q2  in  µ(b2); ..., the 

dummy-seller  qt+1  by  qt  in  µ(b). Since  each  bj  is indifferent between  qj  and  qj+1,  for 

all  j=1,...,t,  the matching is still competitive and  k  has less one unsold object, and hence 

he has less one overpriced object.  

Case 2: The dummy-seller is not in  µ(b)  for every  b∈B*. Then, we claim that 

there must be some  q  in  Q*  such that  pq=0,  for suppose not. By definition of  B*∪Q*  

we know that if  b∉B*  then  Q*∩ [Bb(p)- µ(b) ] = φ.  On the other hand, if  b∈B*,  q∉Q*,  

q'∈Q*  and  q  and  q'  are in  µ(b),  then  b  prefers  q  to  q'.  Therefore we can decrease 

the price of the objects of each seller in  Q*  by some positive  ε  and still have 

competitiveness, contradicting the minimality of  p. So choose  q  in  Q*  such that  pq=0  

and let  (k=q1, b1,q2,b2,q3,...,qt,bt,q)  be a path from  k  to  q  where  b1∉µ(k).  Again change  
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µ  by replacing  q2  by  k  in  µ(b1),  q3  by  q2  in  µ(b2), ..., q  by  qt  in  µ(b)  and leaving  

one object of  q  unsold. The resulting matching is still competitive. Again the number of 

unsold objects of  k  has been reduced and so does the number of overpriced objects.ν 

 

We have proved that the matching obtained in the auction mechanism can be chosen 

so that the resulting allocation is a minimum competitive equilibrium for  A(M*). This 

allocation corresponds to a minimum competitive equilibrium for the competitive market  

M*. Hence the following corollary is immediate: 

 

Corollary. The outcome produced by the auction mechanism allocates the objects to the 

buyers according  to the minimum competitive equilibrium for  M*,  which corresponds to 

the B-optimal stable outcome for  M. 

 

Proposition 1 implies that, under the Q-optimal stable outcome  (u,w;µ),  ubq=ubq'  

for all  q  and  q'  in  µ(b).  Then every buyer  b  gets the array of payoffs  (ub,...,ub)  with  

r(b)  repetitions of  ub. Thus, if we change the roles between buyers and sellers in the 

mechanism we get the Q-optimal stable payoff for the cooperative market  M.  

 

5. CONCLUDING REMARKS AND RELATED WORK 

 In the present paper, we developed a generalization of the buyer-seller market game 

of Shapley and Shubik to the case where buyers are interested in sets of different objects 

and sellers own identical objects. For this model we have a nonempty and complete lattice 

formed by the set of stable payoffs (Sotomayor, 1999). Therefore, there is always an 

optimal stable payoff for the buyers and another one for the sellers. We used the game to 

model a related competitive market, proved the existence of competitive equilibria, 

investigated some of their properties and then provided a dynamic procedure in order to 

obtain such allocations. 

 The competitive and noncooperative approaches in Shapley and Shubik model are 

equivalent because a stable payoff is a competitive equilibrium payoff and vice-versa. This 

is not the case of the multiple partners assignment game: the optimal stable payoff for the 

buyers corresponds to the minimum competitive price equilibrium payoff, but the 
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maximum competitive equilibrium payoff cannot be obtained, in general, from the optimal 

stable payoff for the sellers. 

 The allocation mechanism presented herein is a generalization of the multi-item 

auction mechanism of Demange, Gale and Sotomayor (1986). We showed that this 

mechanism converges, in a finite number of steps, to the minimum competitive equilibrium 

price that corresponds to the optimal stable payoff for the buyers. By inverting the roles of 

buyers and sellers, we obtain the optimal stable payoff for the sellers. 

 Competitive equilibria have been used to produce allocations with desirable 

properties of fairness and efficiency. For the one-to-one matching market, a generalization 

of the single-item second-price auction, first described by Vickrey (1961), for the buyer-

seller market game proposed by Shapley and Shubik, is considered by Demange (1982) and 

Leonard (1983). Each buyer submits a sealed bid, listing her valuation for all the items. The 

auctioneer assigns the objects according to the minimum competitive equilibrium price. For 

the same market game, a three-step mechanism is presented by Sotomayor (2003): the 

sellers indicate their reservation prices in the first step, and each buyer, knowing the sellers’ 

choices, selects a value for all the items. The auctioneer then assigns objects according to 

some preset competitive equilibrium price rule. If no ties exist in the selection of optimal 

matching, we will have the final allocation. Otherwise, the buyers participate, in the third 

step, in an auction with a minimum competitive equilibrium price rule, having the price 

obtained in the second step as the reservation price for the objects. The strategic behavior of 

buyers and sellers is analyzed under complete information. 

 The dynamic mechanism of Demange, Gale and Sotomayor (1986) yields a 

minimum competitive equilibrium price. It is a version of the Hungarian algorithm (see 

Dantizig, 1963) and a generalization of the English auction. 

 Alkan (1988) presents a dynamic mechanism for the one-to-one matching market in 

which the utility functions are piecewise linear. He shows that this mechanism finds an 

equilibrium price in finitely many steps and approximates an equilibrium price for general 

continuous utilities. 

 For a model in which buyers can purchase more than one item, all goods are 

homogeneous and the consumers have decreasing marginal utilities, Ausubel (1995) 

presents an auction that yields the minimum competitive equilibrium price. For the case 
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with heterogeneous goods, a generalization of the mechanism of Demange, Gale and 

Sotomayor (1986) for the many-to-one model (every seller owns only one object and the 

buyers can purchase more than one item) is presented in Gul and Stacchetti (2000). This 

generalization applies to models where the utilities of the buyers satisfy the monotonicity 

property and the gross substitute condition of Kelso and Crawford (1982). Consequently, 

the mechanism proposed by Gul and Stacchetti can be used in many-to-one markets with 

additive utilities. These authors use several different concepts and new definitions to 

determine an overdemanded set, so that its computation, even in quite simple situations 

with additive utilities, may involve a large number of steps. Such difficulties restrict its 

implementation in real auctions. Restricted to these markets, our mechanism represents an 

enormous simplification of the algorithm presented in Gul and Stacchetti. In fact, consider 

for instance four buyers 1, 2, 3 and 4, and six sellers q1, q2, ..., q6,  each of whom owns only 

one object. The quotas of the buyers are given by the following vectors: v1=(7,5,4,4,2,1,0), 

v2= (5,3,1,0,2,1,0), v3=(2,0,0,0,0,1,0) and v4=(3,1,1,1,1,2,0), where the ith coordinate of vj is 

the value of the object qi for buyer j. The initial price is p(0)=(0,0,...,0). Then, buyer 1 is 

indifferent between  {q1,q2,q3}  and  {q1,q2,q4}; buyer 2 wishes {q1,q2} and buyers 3 and 4 

wish  {q1}. It is not possible to meet the demands of every buyer, so the auctioneer has to 

find an overdemanded set. By using our mechanism, every buyer is replicated the number 

of times of her quota. The demand sets, one for each copy, are obtained straightforwardly: 

A11(1)={q1}, A12(1)={q2}, A13(1)={q3,q4}, A21(1)={q1}, A22(1)={q2}, A31(1)={q1}, 

A41(1)={q1}.  There are two overdemanded sets: {q1} and {q2}, both minimal. The 

procedure used by Gul and Stacchetti to determine such sets initially involves the 

computation of four functions, which the authors call "requirement functions," one for each 

object. The specification of the domain of any of these functions requires the determination 

of 64 elements; for each of which it is necessary to compute two more numbers. Thus, at 

the end of the first step of the auction, (64x4)+(64x2)=384 computations will have already 

been made! 

 Nevertheless, the model used in the present paper is quite a special case. We believe 

that the dynamic mechanism proposed by us allows buyers a wider range of preferences. 

Our results suggest that for small enough bid increases, our mechanism will produce prices 
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approximating the minimum competitive equilibrium price. However, our results concern 

only the linear surplus case. 

 

APPENDIX 
In this section we will demonstrate some of the results stated in section 4. The following remark will 

be useful for the proofs. 

 

Remark 5. Let  t  be some step of the auction at which the set  U(t)≠φ  and  p(t)≤y. Let  A(t)  be any 

demand structure at step  t.  Write the set of elements of  Bb(t)  as  F(t)∪G(t)  and the set of elements of  Bb(y)  

as  F(y)∪G(y),  with  G(t)≠φ,  G(y)≠φ,  F(t)∩G(t)=φ,  F(y)∩G(y)=φ, such that  b  is indifferent between any 

two sellers of  G(t)  (respectively  G(y))  at price  p(t) (respectively  y). In addition,  b  strictly prefers any 

object of  F(t)  (respectively  F(y)),  if any, to any object of  G(t)  (respectively  G(y))  at price  p(t)  

(respectively  y) (Observe that  G(t)  as well as  G(y)  may have only one element).  It is clear that, for all  

j≠r(b),  either Ab,j(t)⊆F(t) (respectively A*b,j(y)⊆F(y))  or  Ab,j(t)⊆G(t) (respectively A*b,j(y)⊆G(y)).  Also,  

Ab,r(b)(t)⊆G(t)  (respectively, A*b,r(b)(y)⊆G(y))    and  if  Ab,j(t)⊆F(t) (respectively A*b,j(y)⊆F(y))  then 

|Ab,j(t)|=1  (respectively  |A*b,j(y)|=1). 

Now, let  C⊆Q. Suppose that  pq(t)=yq  for all  q∈C,  b  is indifferent between any two elements of  

C  at prices  p(t)  (and so is at prices  y), C⊆G(t)  and  C⊆G(y).  Then,  F(t) (respectively  F(y))  is the set of 

all objects that are strictly preferred by  b  to any object of  C at price  p(t) (respectively  y). Also,  F(t)∪G(t) 

(respectively F(y)∪G(y))  is the set of all objects that are weakly preferred by  b  to any object of  C at price  

p(t) (respectively  y). It can be shown that  

F(y)∪G(y) ⊆ F(t)∪G(t)  and F(y)⊆F(t)                                         (A.1) 

G(y)∩U(t)=G(t)∩U(t)  and  F(y)∩U(t)=F(t)∩U(t).                              (A.2) 

 

Proof of  (A.1). To prove the first inclusion, if   q”∈F(y)∪G(y),  then  vbq” - yq”  ≥ vbq-yq  ∀q∈C.  

Using that  pq(t)=yq  ∀q∈C  and  yq” ≥pq”(t) ,   we get that  vbq” - pq” (t) ≥ vbq”-yq” ≥ vbq-yq = vbq-pq(t)  ∀q∈C,  so 

q”∈ F(t)∪G(t).  Hence, F(y)∪G(y) ⊆ F(t)∪G(t).  The proof of the other inclusion is analogous. 

 

Proof of  (A.2). Observe that, if  q∈G(y)∩U(t),  then the facts that  pq(t)=yq,  b  is indifferent 

between  q   and any element of  C  at price  y,  and  pq’(t)=yq’  for all  q’∈C,  imply that  vbq-pq(t)= vbq-yq= vbq’ 

– yq’ = vbq’ – pq’ (t),  so b  is indifferent between  q  and  any element of  C  at price  p(t),  so  q∈G(t), so  

G(y)∩U(t)⊆ G(t)∩U(t). With an analogous argument we prove that G(t)∩U(t) ⊆ G(y)∩U(t). We also have 

that  F(y)∩U(t) ⊆ F(t)∩U(t),  by  (A.1).  Now, if  q∈F(t)∩U(t)  then  q  is strictly preferred by  b  to any 

object of  C  at price  p(t) (because  C⊆G(t)).  Since  pq(t)=yq,  then  vbq-yq = vbq-pq(t)>vbq’ '-pq'(t)=vbq’ –yq’  for 
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all  q'∈C,  so  b  strictly prefers  q  to any element of  C  at prices  y,  so  q∈F(y)  and so F(t)∩U(t)  ⊆ 

F(y)∩U(t). 

It is also important to point out that,  

if  Ab,i(t)⊆F(t)∩U(t),  for some  (b,i),  then Ab,i(t)= A*b,j(y), for some  (b,j).           (A.3) 

In fact, suppose that  Ab,i(t)⊆F(t)∩U(t),  for some  (b,i).  Then, Ab,i(t)={q}  for some  

q  and q∈F(y)∩U(t),  by  (A.2),  so  A*b,j(y)={q}  for some  (b,j).  ζ 

 

 The original proof of Lemma 1 is very technical and long. The details of this proof are with 

the author, available to the interested readers. We present below a sketch of the proof that shows the main 

steps of it. 

Sketch of the proof of Lemma 1. Define  A'(t)  as follows. If  (b,i)∉T’,  set  A’b,i(t)≡Ab,i(t).  If for all  

(b,i)∈T’  there is some  (b,j),  such that  A*b,j(y)⊆Ab,i(t)∩U(t), define A’b,i(t)≡Ab,i(t)  for all  (b,i)∈T’ and we 

are done.  Otherwise, there is some  (b,i)∈T’,  with   Ab,i(t)≡C∪E,  where  C= Ab,i(t)∩U(t),  such that,  

for all  (b,j),  A*b,j(y)  is not contained in  C . (1) 

We want to show that it is possible to  define  A’(t)  so that, for all  (b,j) )∈T’, with  j≠r(b),  there 

exists some  (b,k)  such that A’b,j(t)=A*b,k(y)⊆U(t);  if  (b,r(b))∈T’,  there exists some  (b,k)  such that 

A*b,k(y)⊆A’b,r(b)(t)∩U(t). The plan of the proof is the following: By defining F(t), G(t), F(y)  and  G(y)  as in 

Remark  5, we first show that  C⊆G(t)  and C⊆G(y),  so we have satisfied all the hypothesis of Remark 5 and 

so  (A.1) and (A.2)  hold.  From  C⊆G(y)  it also follows that  C⊆Bb(y),  so all of C  must be demanded  by  b  

at prices  y,  so every element of  C  must be in some  A*b,j(y)  for some copy  (b,j). Then, by  (1), we conclude 

that such a copy of  b  is  (b,r(b)).  Then,   A*b,r(b)(y)=C ∪D,  with  D∩C=φ  and D≠φ  by  (1).  It is clear that 

A*b,r(b)(y)⊆G(y),  because  (b,r(b))  is the last copy of  b. Now set:   

Γ≡{ (b,j); Ab,j(t)⊆G(t)  and  Ab,j(t)∩U(t)≠φ} 

Γ’≡{ (b,j); A*b,j(y)⊆G(y)  and  A*b,j(y)∩U(t)≠φ} 

ℑ≡{ (b,j); Ab,j(t)⊆G(t)  and  Ab,j(t)∩U(t)=φ} 

ℑ’≡{ (b,j); A*b,j(y)⊆G(y)  and  A*b,j(y)∩U(t)=φ} 

We have that  Γ≠φ,  since  (b,i)∈Γ.    Also, Γ’≠φ,  since  (b,r(b))∈Γ’.  

The next step is to define a one-to-one map  f  from  Γ-{(b,r(b)}  into Γ’-{(b,r(b)}.  This can be done 

by establishing that  |Γ|≤|Γ'|  and  (b,r(b))  ∈Γ. Then, define  

A’b,j(t) ≡ Ab,j(t)  if  Ab,j(t) ⊆ F(t)  or  (b,j) ∈ ℑ. 

A’b,j(t) ≡ A*f(b,j)(y)   if  (b,j)∈ Γ - {(b,r(b))}. 

A’b,r(b)(t) ≡ G(t) -  A’
)(brj≠

∪ b,j(t). 

To see that  A'(t)  is well defined and is the desired demand structure, use (A.1) and (A.2) of Remark 

5.ν 
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Proof of Lemma 2. For part a), suppose by way of contradiction that  S  is a minimal overdemanded 

set for  A’(t)  and S1≡S∩U(t)≠φ.  Let  T  be the set of loyal demanders of  S.  The fact that  S  is overdemanded 

means exactly that  

|T| > |  (1) ∑
∈Sq

qS )(

 We will show that  S-S1  is non-empty and overdemanded for  A’(t), so  S is not a minimal 

overdemanded set for  A’(t), which is a contradiction. To see this, define  T1={(b,i)∈T; A’b,i(t)∩S1≠φ}. Let  

T’  be as defined in Lemma 1. Now, observe that T1⊆T’.  In fact, if  (b,i)∉ T’  then  Ab,i(t)=A'b,i(t),  so  

A'b,i(t)∩U(t)=φ,   and so  (b,i)∉T1. By Lemma 1, for each  (b,i)∈T1  there is some  (b,j),  such that  

A*b,j(y)⊆A’b,i(t)∩U(t).  On the other hand, the fact that  (b,i)∈T  implies that  A’b,i(t)⊆S,  so  A’b,i(t)∩U(t) = 

A’b,i(t)∩S1.  Then, A*b,j(y)⊆A’b,i(t)∩S1,   so A*b,j(y) ⊆S1.   Thus,  since  A'b,i(t)∩A'b,k(t) =φ  if  i≠k, 

|T1|≤|{(b,j); A*b,j(y)⊆S1}|≤ ,            (2) ∑
∈ 1

)(1
Sq

qS

where the last inequality is due to the competitivity of  y.  But then, (1)  and  (2)  imply that  |T-

T1|=|T|-|T1|> , from which follows that  T-T∑ ∑ ∑
∈ ∈ −∈

≥=−
Sq Sq SSq

qSqSqS
1 1

0)()()( 1 1≠φ.  However,  T-

T1={(b,i)∈T; A’b,i(t)⊆S-S1},  so  S-S1  is non-empty and overdemanded for  A’(t), as we wanted to show.  

For part b), suppose that  A’(t)  has overdemanded sets. Let  S  be some minimal overdemanded set 

for  A’(t).  Let  T  be the set of loyal demanders of  S. Let  T’  be as defined in Lemma 1.  By part a),  

S∩U(t)=φ. Then, if  (b,i)∈T,  A’b,i(t)⊆S,  so  A’b,i(t)∩U(t)=φ,  so  (b,i)∉T’.  By Lemma 1,  A’b,i(t)=Ab,i(t).  

Then, for all  (b,i)∈T,  Ab,i(t)⊆S.  Then,  T  is a set of loyal demanders of  S  under  A(t)  and min{s(q), number 

of  (b,i)∈T  with  q∈Ab,i(t)} = min{s(q), number of  (b,i)∈T  with  q∈A'b,i(t)}.  Hence,  S  is also minimal 

overdemanded for  A(t),  and the proof is complete. ζ 
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