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1 Introduction

An odd number of players have to choose simultaneously one of two rooms.
The players who choose the less crowded room receive a reward of one euro.
The others receive nothing. The game is repeated over time. A version of this
game was introduced by Arthur (1994) under the name El Farol’s Bar problem
(see also Arthur (1999)). In his paper customers have to decide every week-
end whether to go to the bar or stay home. Only customers who make the
minority choice are happy. Arthur’s paper gave rise to a huge literature on
so called minority games. The interest in this class of games came especially
from theoretical physicists working in statistical mechanics (see e.g. Chal-
let and Zhang (1997), Savit et al. (1999)). They focus on the case of many
players and see “these problems as novel examples of frustrated and disor-
dered many-body systems” (Cavagna et al. (1999)). In their models the many
agents have limited memory and act according to some evolutionary paradigm
without taking into account strategic considerations. The reader is referred to
http://www.unifr.ch/econophysics/minority/ for an extensive list of ref-
erences.

In our paper we will consider a repeated minority game and we will look at
it according to the classical rational approach of game theory. Notice that,
if after each stage each player observes the players which are in the room
she selected, then, by the folk theorem, any feasible payoff is an equilibrium
payoff of the repeated game. We study here the following version of a repeated
minority game. At each step the players choose an action (one of two rooms).
After their choice only a public signal (the majority room) is announced to
all players. Therefore they do not observe the actions or the payoffs of the
other players, and the players in the same room do not recognize each other.
The game is infinitely repeated and the payoffs are not discounted. We use
the standard notion of uniform equilibrium, which will turn out to be payoff-
equivalent here to that of almost sure equilibrium (see Lehrer (1992a)). We
characterize the set of equilibrium payoffs.

Our model is a particular case of repeated games with imperfect observa-
tion: The players repeat a known one-shot game and after each stage each
player receives a signal depending on the actions played. The reader is referred
to Sorin (1992) for a survey of repeated games with complete information.
Renault and Tomala (2000) characterized the set of uniform communication
equilibrium payoffs for any repeated game with imperfect monitoring, but no
general characterization exists for (Nash) equilibrium payoffs. Fudenberg and
Maskin (1986) proved a folk theorem for a certain class of repeated games
with discounting. Lehrer (1989, 1992a,b) dealt with two-person undiscounted
repeated games with imperfect observation. Abreu et al. (1991) use statisti-
cal techniques in discounted games with imperfect monitoring. More recently
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Tomala (1998) studied the case of public signals, where all players get the
same signal after each stage. In this setup he characterized the set of pure
uniform equilibrium payoffs. He also provided a characterization of the set
of uniform (possibly mixed) equilibrium payoffs in a certain class of games,
where all payoffs can be deduced from the public signal (Tomala (1999)).

Since we are interested not only in pure equilibria but in all (possibly mixed)
uniform equilibria, the solution to our problem cannot be found in the existing
literature. We will prove that a folk theorem holds for our game, i.e. we will
show that any feasible payoff is an equilibrium payoff. In particular, we will
construct a uniform equilibrium where the payoff of each player is simply zero.
This equilibrium can be considered as particularly inefficient, since all feasible
payoffs are non negative. It contains a main path and punishment phases.
A punishment phase starts when the players suspect that a deviation have
occurred. The identity of the possible deviator is not known by the players and
it is not possible to punish simultaneously all players suspected of deviation, as
done in several recent papers (Tomala (1999); Renault and Tomala (2000)). On
the other hand it is possible to punish the deviator, if any, by replicating some
actions previously played in the main path before the punishment phase. To
our knowledge, this kind of punishment is new in the literature. The technical
parts of our proofs use statistical techniques due to Lehrer (1990, 1992b),
or, more specifically, the variations used by Renault (2000). In our opinion,
the construction of our inefficient equilibrium gives insights concerning the
difficulty of a general characterization of equilibrium payoffs in repeated games
with public signals.

For the sake of simplicity, we first deal with the case of three players. Section 2
contains the model, and the statement of our main result. In Section 3 we
define a particular strategy where all players are, at almost all stages with
great probability, in the same room. In Section 4 we prove that this strategy
is a uniform equilibrium with payoff 0 for each player. In Section 5 we finally
extend our result to the case of any odd number of players. The Appendix
contains the proofs.

2 The model

If E is an event, then Ec is its complementary event. The cardinality of a finite
set A will be denoted by |A|. If C is a subset of an Euclidean space, convC is
the convex hull of C.

There are two rooms: L(eft) and R(ight). At each stage, three players have
to choose simultaneously one of the two rooms. The player who finds herself
in the less crowded room (if any) gains a positive payoff of 1, and the most
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crowded room is publicly announced before going to the next stage.

2.1 The stage game

The set of players is N = {1, 2, 3}. For all i ∈ N , we denote by Ai = {L, R} the
set of actions for player i, and we put A = A1×A2×A3. For a = (a1, a2, a3) ∈ A
define the payoff function gi : A → R of player i as

gi(a) =

0 if there exists j ∈ N \ {i} s.t. aj = ai,

1 otherwise,

It is easy to compute the equilibria of the one-shot game. These are the action
profiles such that one player plays L with probability 1 and another player
plays R with probability 1, and the action profile where each player plays L
and R with equal probability. Consequently, the set of equilibrium payoffs of
the one-shot game is just

E1 = {(1/4, 1/4, 1/4)} ∪ {(x, 1− x, 0) : x ∈ [0, 1]}
∪ {(x, 0, 1− x) : x ∈ [0, 1]} ∪ {(0, x, 1− x) : x ∈ [0, 1]}.

Notice that all payoffs x = (x1, x2, x3) in E1 satisfy x1 + x2 + x3 ≥ 3/4. In
a Nash equilibrium of the one-shot game, the three players are in the same
room with probability at most 1/4.

Since the stage game will be repeated, we also need notations about what
the players observe. We define the set of public signals as U = {L, R}. The
signalling function ` : A → U , giving the most crowded room, is formally
defined by

`(R,R,R) = `(R,R,L) = `(R,L, R) = `(L, R, R) = R,

`(L, L, L) = `(L, L, R) = `(L, R, L) = `(R,L, L) = L.

2.2 The repeated game Γ∞

At each stage t ≥ 1, each player i (simultaneously with the other players)
selects and action ai

t ∈ Ai. If at = (a1
t , a

2
t , a

3
t ) ∈ A is chosen, the stage payoff

of player i is gi(at), and the signal ut = `(at) is publicly announced. Then the
play proceeds to stage t + 1. All the players have perfect recall and the whole
description of Γ∞ is common knowledge.

The game Γ∞ is a game with imperfect monitoring, in that the players do not
observe the actions of their opponents, but only a signal (the majority room).
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2.3 The equilibria of Γ∞

A behavioral strategy of player i is an element σi = (σi
t)t≥1, where for all t

σi
t : (Ai × U)t−1 → ∆(Ai).

Therefore, for each t ≥ 1, σi
t(a

i
1, u1, a

i
2, u2, . . . , a

i
t−1, ut−1) is the lottery played

by player i at stage t if she played ai
1 at stage 1, . . . , ai

t−1 at stage t− 1, and
the signal was u1 at stage 1, . . . , ut−1 at stage t− 1.

We denote by Σi the set of behavioral strategies of player i, and Σ = Σ1×Σ2×
Σ3. A strategy profile σ = (σ1, σ2, σ3) ∈ Σ induces a probability measure Pσ

over the set of plays Ω = (A×U)∞ = {(a1, u1, a2, u2, . . . ),∀t ≥ 1, at ∈ A, ut ∈
U)}. With an abuse of notation we will denote by at the random variable of
the joint action profile in A played at stage t. For all i ∈ N , and for all T ≥ 1,

γi
T (σ) = EPσ

(
1

T

T∑
t=1

gi(at)

)
.

Definition 1. The profile σ is a uniform equilibrium of Γ∞ if

(a) for all i ∈ N , limT→∞ γi
T (σ) exists.

(b) for all ε > 0 there exists T0 such that for all T ≥ T0, σ is an ε-Nash
equilibrium in the finitely repeated game with T stages, i.e. for all i ∈ N ,
for all τ i ∈ Σi, γi

T (τ i, σ−i) ≤ γi
T (σ) + ε.

The vector (x1, x2, x3) = limT→∞(γ1
T (σ), γ2

T (σ), γ3
T (σ)) is called the payoff of

σ.
Definition 2. The vector x ∈ R3 is an equilibrium payoff of Γ∞ if there exists
a uniform equilibrium with payoff x.

We denote by E∞ the set of equilibrium payoffs of Γ∞.

Since all payoffs are nonnegative and g1 + g2 + g3 ≤ 1, it is clear that E∞ is
a subset of the simplex S, where

S =

{
(x1, x2, x3) ∈ R3 : for all i ∈ N, xi ≥ 0, and

3∑
i=1

xi ≤ 1

}
= conv{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

Our main result is the following theorem.
Theorem 3. E∞ = S.

Since repeating at each stage a Nash equilibrium of the one-shot game is a
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uniform equilibrium of Γ∞, we know that E1 ⊂ E∞. Moreover E∞ is convex.
In fact if x and y are equilibrium payoffs, in order to generate 1

2
x + 1

2
y as

equilibrium payoff it is enough to play an equilibrium that induces x at odd
stages and an equilibrium that induces y at even stages. So the only thing we
have to do is to prove the following theorem.
Theorem 4. (0, 0, 0) ∈ E∞.

In order to prove the above theorem we need to construct a strategy σ ∈ Σ
that satisfies the two properties of Definition 1, namely,

(a) for all i ∈ N , limT→∞ γi
T (σ) = 0,

(b) for all ε > 0, there exists T0 such that for all T ≥ T0, for all i ∈ N ,

γi
T (τ i, σ−i) ≤ ε for all τ i ∈ Σi.

Note that since all payoffs are non negative, (a) is a consequence of (b) here.

3 Construction of the strategy for the inefficient payoffs

We first give a heuristic description of the uniform equilibrium, σ = (σ1, σ2, σ3).

To get a payoff of 0, we need all the players to play with high probability
the same action (say L) most of the stages. But if all players play L with
probability 1, the deviation of one player, that consists of playing R, will be
profitable (in terms of payoffs) and will not be detected (the signal will still be
L). Hence some of the players must play R with small but positive probability.

Imagine all players play at each stage R with probability ε, where ε is small but
positive. In order to detect a deviation, we will need a statistical test. If the
frequency of stages where R is the most crowded room is higher than it should
be, all players will consider that a deviation has occurred and a punishment
phase will start. We then need to define an appropriate punishment phase,
the difficulty being that the identity of the deviator (if any) is not known by
the players. Our main idea is then the following. If player i is deviating, then
with great probability at most of the stages where R was the most crowded
room, the situation was the following: Player i played R, and exactly one of
the other players played R, too. So if the players different from i repeat the
actions they have played at the stages where R was the most crowded, at most
stages one of them will play L and the other will play R. This punishes player
i by giving him a payoff of zero.

We now formally construct σ. The set of stages {1, 2, ...} is divided into con-
secutive blocks of increasing lengths B1,...,Bm,..., such that for all m ≥ 1,
|Bm| = m10. This is needed because we need the statistical tests to become

5



more and more accurate. The strategy σ consists of a main path and of pun-
ishment phases, starting from the main path.

When the play is in the main path, at some block Bm, all players play at each
stage t of Bm, independently of what happened before, the mixed action(

1− 1

m

)
L⊕ 1

m
R.

At the end of such a block, all players can compute the empirical frequency
of “R being the most crowded room” in this block

αm =
1

|Bm|
|{t ∈ Bm, `(at) = R}|.

Note that if no player deviates at block Bm, by Tchebychev’s inequality αm

should be close to the expectation of “R being the most crowded room”, which
is equivalent to 3/m2. The statistical test will be the following:

• If αm ≤ 1/(m
√

m), the test will be considered as passed. The play stays in
the main path (and block Bm+1 is played).

• If αm > 1/(m
√

m), the test will be considered as failed, and the players
will assume that a deviation has occurred. The play will immediately go
out of the main path and a punishment phase will start. The punishment
phase will last a large number of blocks, but will not be infinite, because
there will always be a chance for the punishment to fail. More precisely, the
punishment phase will last from the first stage of block Bm+1 to the last
stage of block Bm2

. Then, and whatever happens during the punishment
phase, the play will go back to the main path at block Bm2+1.

To complete the definition of σ, we have to define what is played in the pun-
ishment phases.

Let m be a positive integer, and consider a block Bm where the play is in the
main path, such that αm > 1/(m

√
m), namely, the test fails. Define

D = {t ∈ Bm : `(at) = R}. (1)

On the set D we suspect the deviator, if any, to have played R on purpose.
We have |D| = m10αm. In order to play the punishment phase at blocks
Bm+1, . . . , Bm2

, each player will have to remember D and the action she played
at each stage of D. We order the elements of D so that D = {t1, . . . , t|D|},
with t1 < t2 < · · · < t|D|.

Fix m ∈ {m + 1, . . . ,m2}. We now define what σ recommends to play at
such block Bm during a punishment phase. During this phase we will have the

6



players repeating their actions from the phases in D over and over again.

Let d ∈ N be such that

d ≤ |Bm|
|D|

< d + 1.

The block Bm is divided into consecutive sub-blocks Bm
1 , . . . , Bm

d , Bm
d+1 such

that for all d′ ∈ {1, . . . , d}, |Bm
d′ | = |D|. The role of Bm

d+1 will be negligible
since |Bm

d+1| < |D|. Indeed we have

|Bm
d+1|

|Bm|
<
|D|
m10

. (2)

With high probability the right hand side of (2) will be small when m is large,
even in case of deviation. Consequently we can define σ arbitrarily on such a
block Bm

d+1.

Let d′ ∈ {1, . . . , d}. At Bm
d′ the strategy σ recommends the players to mimic

what happened at stages in D. If Bm
d′ = {t′1, . . . , t′|D|} with t′1 < t′2 < · · · < t′|D|,

then σ recommends each player i at each stage t′n ∈ Bm
d′ (with n ∈ {1, . . . , |D|})

to repeat the action she played at stage tn, i.e. to play ai
tn .

Notice that σ recommends to play exactly the same sequence of actions at
each sub-block Bm

1 , . . . , Bm
d .

4 The strategy σ is a uniform equilibrium with payoff (0, 0, 0)

We first informally discuss the proof.

1. Suppose that all players follow σ. Then at each stage of some block Bm

in the main path the probability of R being the most crowded room is
equivalent (as m goes to the infinity) to 3/m2. Consequently, by Tcheby-
chev’s inequality, αm will be close to 3/m2 with high probability. Since
3/m2 < 1/(m

√
m), for m large, the test of block Bm will pass. It will even

be possible, by Borel-Cantelli lemma, to show that the set of blocks m
such that Bm is not in the main path is almost surely finite. Moreover the
(stage) average payoff of some player i at some block Bm in the main path
will be close to the probability that she plays R whereas the others play L,
hence will be close to 1/m. This will ensure that the average payoff of each
player will go to zero as the number of stages goes to infinity.

2. Suppose that some player (e.g. player 1) deviates from σ. In order for player
1 to have a good payoff at some block Bm in the main path, she should
play R a large number of times in this block. We will see that in this
case the empirical frequency of “R being the most crowded room” will be

7



greater than 1/(m
√

m) with high probability. Hence a punishment phase
will start, and the actions of the players in this phase will only depend on
what happened at stages in D = {t ∈ Bm : `(at) = R}.

The set D consists of two kinds of stages: (i) the stages where player
1 played R and exactly one of the other players played R, and (ii) the
stages where both players 2 and 3 played R. We will show that, with high
probability, the stages of type (ii) are negligible. Consequently, for most of
the stages in D, player 2 and player 3 do not play the same action. Hence
for most of the punishment stages, player 1’s payoff will be zero.

Summing up, player 1 cannot have a good payoff on some block in the
main path without being severely punished afterwards with high probabil-
ity. This will ensure that no deviation is profitable.

To show that σ is a uniform equilibrium, we only need to prove Proposition 7
below (whose long proof will be relegated in the Appendix). However we will
first shortly prove the following Proposition 5 to simplify the exposition of our
proof (and because the analogue of Proposition 5 will be needed in Section 5).
Proposition 5. For all i ∈ N ,

lim
T→∞

1

T

T∑
t=1

gi(at) = 0 Pσ-a.s., and lim
T→∞

γi
T (σ) = 0.

To prove Proposition 5 we need the following lemma, whose proof can be found
in the Appendix.
Lemma 6. Let (ζt)t be a bounded sequence of non negative real numbers.
Assume that |Bm|−1∑

t∈Bm ζt goes to zero as m goes to infinity. Then

lim
T→∞

1

T

T∑
t=1

ζt = 0.

Proof of Proposition 5. By symmetry, we only consider the case where i = 1.
Assume that all players play σ. All the probabilities and expectations in the
sequel of the proof are computed according to P = Pσ.

For each block m, we define the following events:

Bm = {the play is in the main path at block Bm},

Am =

{ ∑
t∈Bm

g1(at)

|Bm|
>

2

m

}
.

We will show that when the play is in the main path, (meaning when Bm

holds) there is a small probability that the statistical test will fail and a
punishment phase will begin, and that as long as the game is in the main
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path, the probability that the players will get a payoff of more than 2/m on
the average is very small.

Fix a block number m where Bm holds. At each stage of Bm each player plays
i.i.d. the mixed action (

1− 1

m

)
L⊕ 1

m
R.

So at each stage the probability that R is the most crowded room is

ηm =
1

m3
+ 3

1

m2

(
1− 1

m

)
≤ 3

m2
,

and the probability that player 1 has a payoff of 1 is

1

m

(
1− 1

m

)2

+
(
1− 1

m

)
1

m2
=

1

m

(
1− 1

m

)
.

We have, by Tchebychev’s inequality

P(Am|Bm) ≤ P

∣∣∣∣∣
∑

t∈Bm g1(at)

|Bm|
− 1

m

(
1− 1

m

)∣∣∣∣∣ > 1

m

∣∣∣∣∣∣Bm

 ≤ 1

m8
. (3)

Moreover, for m large enough,

P(Bc
m+1|Bm) = P

αm >
1

m
√

m

∣∣∣∣∣∣Bm


= P

αm − ηm >
1

m
√

m
− ηm

∣∣∣∣∣∣Bm


≤ P

|αm − ηm| >
1

2m
√

m

∣∣∣∣∣∣Bm


≤ 4

m7
,

Again the last inequality is just Tchebychev. Since
∑

m≥1 4/m7 < ∞, by Borel-
Cantelli lemma we obtain

P
(
lim sup(Bm ∩ Bc

m+1)
)

= 0. (4)

Since after a punishment phase the play always comes back to the main path,
(4) implies that with probability 1 there exists a block m1 such that for each
m ≥ m1, Bm holds.

By Borel-Cantelli lemma again and (3), we now have P (lim sup(Am ∩ Bm)) =
0, hence P(lim supAm) = 0. Hence, with probability 1, there exists a block
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m2 such that for all m ≥ m2,∑
t∈Bm g1(at)

|Bm|
≤ 2

m
.

By Lemma 6 we have

lim
T→∞

1

T

T∑
t=1

g1(at) = 0 Pσ-a.s.. (5)

By the bounded convergence theorem we also have that limT→∞ γ1
T (σ) = 0.

Proposition 7. For all ε > 0 there exists T0 such that for all T ≥ T0, for all
i ∈ N

γi
T (τ i, σ−i) ≤ ε for all τ i ∈ Σi.

As in Lehrer (1992a), we can define an almost sure equilibrium payoff as a
vector x = (x1, x2, x3) in R3 such that there exists an (almost sure equilibrium)
strategy profile σ satisfying

∀i ∈ N, lim
T→∞

1

T

T∑
t=1

gi(at) = xi Pσ-a.s., (6)

and

∀i ∈ N,∀τ i ∈ Σi, lim sup
T

(
1

T

T∑
t=1

gi(at)

)
≤ xi Pτ i,σ−i-a.s. (7)

Proposition 8. The strategy σ is an almost sure equilibrium.

The proof of Proposition 8 can be found in the Appendix.

It follows from Proposition 8 that (0, 0, 0) is an almost sure equilibrium payoff.
It is then easy to see that for this game, the set of almost sure equilibrium
payoffs coincides with the set of uniform equilibrium payoffs.

5 An odd number of players

We generalize the model of Section 2 as follows. The set of players is now
N = {1, ..., 2n + 1}, where n is a fixed positive integer. At each stage, each
player gets a payoff of 1 if he is in the minority room, and gets a payoff of 0
otherwise. The signal is again the most crowded room. The previous definitions
of equilibrium and equilibrium payoffs extend unambiguously to this general
model.
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For each subset S of N such that |S| ≤ n, define eS as the payoff in RN where
each player in S gets 1, and each player not in S gets 0. If S = ∅, then eS is
just the null vector. The set of feasible vectors is now

S = conv{eS, S ⊂ N s.t. |S| ≤ n}.

We show that also in this general case the set of uniform equilibrium payoffs
and the set of feasible payoffs coincide.
Theorem 9. E∞ = S.

Again the proof of this theorem is in the Appendix.
Remark 10. The arguments of Proposition 8 can be used here, and one can
easily show that S also is the set of almost sure equilibrium payoffs. There-
fore the set of almost sure equilibrium payoffs, the set of uniform equilibrium
payoffs, and the set of feasible payoffs coincide.

6 Appendix

6.1 Lemma 6

Proof of Lemma 6. Let C be an upper bound for all ζt. Assume that |Bm|−1∑
t∈Bm ζt

goes to zero as m goes to infinity.

Let T be positive and denote by m(T ) the integer such that T ∈ Bm(T ). Notice

that T ≥ ∑m(T )−1
m′=1 m′10. Write:

T∑
t=1

ζt =
∑

m′<m(T )

∑
t∈Bm′

ζt +
∑

t∈Bm(T )

t≤T

ζt.

We have
T∑

t=1

ζt ≤
∑

m′<m(T )

∑
t∈Bm′

ζt + m(T )10C,

and
1

T

T∑
t=1

ζt ≤ A(T ) + B(T )

with

A(T ) =
1

T

∑
m′<m(T )

∑
t∈Bm′

ζt,

and

B(T ) =
1

T
m(T )10C.
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We finally show that A(T ) and B(T ) go to zero.

1) Fix ε > 0. By hypothesis one can find m0 such that: for each m ≥ m0,∑
t∈Bm ζt ≤ εm10. Since m0 is fixed, one can find T0 such that : ∀T ≥ T0,∑m0−1
m′=1 |Bm′| ≤ ε

∑
m′<m(T ) |Bm′|. For T ≥ T0, one has

A(T ) =
1

T

m0−1∑
m′=1

∑
t∈Bm′

ζt +
1

T

m(T )−1∑
m′=m0

∑
t∈Bm′

ζt,

hence

A(T ) ≤ 1

T
Cε

m(T )−1∑
m′=1

|Bm′| +
1

T

m(T )−1∑
m′=m0

ε|Bm′|,

that is

A(T ) ≤ Cε + ε.

2) T ≥ ∑m(T )−1
m′=1 m′10, so

B(T ) ≤ C
m(T )10∑m(T )−1

m′=1 m′10
.

But
∑n

i=1 i10 is equivalent to n11/11 as n goes to infinity. So n10/(
∑n−1

i=1 i10)
goes to zero as n goes to infinity. So B(T ) goes to zero as m(T ) is large, hence
B(T ) goes to zero as T goes to infinity.

6.2 Proposition 7

In the proof of Proposition 7 and the connected lemmata, without loss of gen-
erality, we consider only deviations by player 1. Fix τ 1 ∈ Σ1 in all the sequel,
and assume that (τ 1, σ2, σ3) is played. All the probabilities and expectations
in the sequel will be with respect to P = Pτ1,σ2,σ3 .

For each block m we define the following random variables:

Xm =
1

|Bm|
∑

t∈Bm

g1(at), Zm =
1

|Bm|
∑

t∈Bm

1{a2
t =R}∪{a3

t =R},

Um =
1

|Bm|
∑

t∈Bm

1{a2
t =R}∩{a3

t =R}, xm =
1

|Bm|
∑

t∈Bm

1{a1
t =R}.

12



We have Xm ≤ Um + xm. We also define the event

Cm = Bc
m

⋃(
Bm

⋂
Bm+1

⋂{
Xm ≤ 3√

m

})
⋃Bm

⋂
Bc

m+1

⋂ m2⋂
m′=m+1

{
Xm′ ≤ 3√

m

} . (8)

Conditionally on Cm, one of the following three possibilities is true: Either the
play is in a punishment phase, or it is in the main path at Bm, player 1’s
payoff is low, and it will still be in the main path at Bm+1, or an efficient
punishment starts at block Bm+1. We will show that from a certain point on
the probability of Cc

m will be smaller than 2/m6, therefore, for some M2, the
probability of ∪m≥M2 can be made arbitrarily small.

The proof of Proposition 7 will be split into two lemmata. Lemma 11 is the
keystone. The rest is technical, and very close to the end of the proof in
Renault (2000).
Lemma 11. There exists M1, independent from τ 1, such that for all m ≥ M1

P(Cm) ≥ 1− 2

m6
.

Proof of Lemma 11. Consider a block Bm, with m large enough, where the
play is in the main path. Via Tchebychev’s inequality we obtain

P

Zm >
3

m

∣∣∣∣∣∣Bm

 ≤ 1

m8
,

P

Um >
2

m2

∣∣∣∣∣∣Bm

 ≤ 1

m6
.

Hence with high probability player 2 and 3 will not be simultaneously in room
R at the same stages.

We now want to estimate the number of stages where R is the most crowded
room and exactly two players, including player 1, are in R. Define for all
t ∈ Bm

Qt = 1{a1
t =R}, ξt = 1{a2

t =R}∩{a3
t =L} + 1{a2

t =L}∩{a3
t =R}.

The random variables (ξt)t∈Bm are i.i.d. (given Bm) Bernoulli random variables
with expectation

pm = 2
1

m

(
1− 1

m

)
≥ 1

m
,

for m ≥ 2. The variables (Qt)t∈Bm may not be independent and may not be
independent of (ξt)t∈Bm , since player 1 is using an arbitrary strategy τ 1. Never-

13



theless, for each t ∈ Bm, ξt is independent of (ξt′)t′∈Bm,t′<t and (Qt′)t′∈Bm,t′≤t.
Hence we can apply a generalization of Tchebychev’s inequality due to Lehrer
(see Lehrer (1990), Lemma 5.6). For all ε′ > 0

P

∣∣∣∣∣ ∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≥ ε′

∣∣∣∣∣∣Bm

 ≤ 1

m10ε′2
.

The choice of ε′ = 1/(m
√

m) gives

P

∣∣∣∣∣ ∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≥ 1

m
√

m

∣∣∣∣∣∣Bm

 ≤ 1

m7
.

Assume now that there is no punishment phase at block Bm+1, i.e. that Bm+1

holds. This implies

∑
t∈Bm

ξtQt

m10
≤ 1

m
√

m
, and pmxm ≤ 1

m
√

m
+

∣∣∣∣∣pmxm −
∑

t∈Bm

ξtQt

m10

∣∣∣∣∣ .
Assume also that

∣∣∣∣∣pmxm −
∑

t∈Bm

ξtQt

m10

∣∣∣∣∣ ≤ 1

m
√

m
and Um ≤ 2

m2
.

Then pmxm ≤ 2/(m
√

m), so xm ≤ 2/
√

m. Since Xm ≤ Um + xm, we get
Xm ≤ 3/

√
m for m ≥ 2. We have shown that

Bm

⋂
Bm+1

⋂(
Um ≤ 2

m2

)⋂(∣∣∣∣∣pmxm −
∑

t∈Bm

ξtQt

m10

∣∣∣∣∣ ≤ 1

m
√

m

)
⊂
{

Xm ≤ 3√
m

}
.

Consequently

P

Bm+1

⋂(
Um ≤ 2

m2

)⋂{
Xm >

3√
m

} ∣∣∣∣∣∣Bm


≤ P

∣∣∣∣∣pmxm −
∑

t∈Bm

ξtQt

m10

∣∣∣∣∣ > 1

m
√

m

∣∣∣∣∣∣Bm


≤ 1

m7
.

14



We obtain as a first result

P
(
Bm

⋂((
Zm >

3

m

)⋃(
Um >

2

m2

)⋃(
Bm+1

⋂{
Xm >

3√
m

})))

≤ P

(Zm >
3

m

)⋃(
Um >

2

m2

)⋃(
Bm+1

⋂{
Xm >

3√
m

}) ∣∣∣∣∣∣Bm


≤ 1

m8
+

1

m6
+

1

m7

≤ 2

m6
for m ≥ 2.

Therefore if we define the event

Gm = Bc
m

⋃((
Zm ≤ 3

m

)⋂(
Um ≤ 2

m2

)⋂(
Bc

m+1

⋃{
Xm ≤ 3√

m

}))
,

we have

P(Gm) ≥ 1− 2

m6
. (9)

Assume that Gm and Bm hold. Then

• either Bm+1 holds, and this implies that Xm ≤ 3/
√

m,
• or Bc

m+1 holds, and therefore a punishment phase starts at block Bm+1.

Consider D as defined in (1). We have |D| > m8.5. As |D| ≤ m10Zm, the event
(Zm ≤ 3/m), implies |D| ≤ 3m9.

Since (Um ≤ 2/m2), the number of stages in D where player 2 and player 3
play the same action is at most 2m8.

Consider a block Bm with m ∈ {m + 1, . . . ,m2}. Let d be the integer such
that d ≤ |Bm|/|D| < d + 1. At each stage where player 2 plays L and player
3 plays R, or vice versa, players 1’s payoff is 0. So the total payoff of player 1
at block Bm is

m10Xm ≤ d · 2m8 + |D| = d|D|2m
8

|D|
+ |D|.

Hence

Xm ≤ d|D|
|Bm|

2√
m

+
3m9

m10
≤ 2√

m
+

3

m
≤ 3√

m
, for m ≥ 9.

This implies that Gm ⊂ Cm. The desired result now follows from (9).
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Lemma 12. For all ε > 0, there exists M2 independent of τ 1, such that for
all m0 ≥ M2

2 ,

E

∑m2
0

m=m0
m10Xm∑m2

0
m=m0

m10

 ≤ 3ε.

Proof of Lemma 12. Fix ε > 0. Since

∞∑
m=1

1

m6
< +∞,

by Lemma 11 one can find M2, independent of τ 1, such that

P

 ⋃
m≥M2

Cc
m

 ≤ ε.

One may also assume that for all m ≥ M2, we have

3/
√

m ≤ ε, (10)

and
|Bm2|∑m2

m′=m m′10
≤ ε. (11)

Fix now m0 ≥ M2
2 , and put

Y =
m2

0∑
m=m0

m10Xm.

Then

E(Y ) = P

 ⋃
m≥M2

Cc
m

E

Y

∣∣∣∣∣∣
⋃

m≥M2

Cc
m

+ P

 ⋂
m≥M2

Cm

E

Y

∣∣∣∣∣∣
⋂

m≥M2

Cm


≤ ε

m2
0∑

m=m0

m10 + E

Y

∣∣∣∣∣∣
⋂

m≥M2

Cm

 .

Assume that for all m ≥ M2, Cm holds. We will show that this implies

Y ≤ 2ε
m2

0∑
m=m0

m10.

By (8) and (10) we have sequences (Xm)m≥M2 and (Bm)m≥M2 such that for all
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m ≥ M2 the following events are true

Bc
m

⋃(
Bm

⋂
Bm+1

⋂
{Xm ≤ ε}

)⋃Bm

⋂
Bc

m+1

⋂ m2⋂
m′=m+1

{Xm′ ≤ ε}

 .

Since m0 ≥ M2
2 , and after a punishment phase the play always comes back to

the main path, there necessarily exists some block number m1 in {M2, . . . ,m0}
such that Bm1 holds.

Two cases are possible:

(I) For all m ≥ m1, Bm holds, and then for all m ≥ m1, Xm ≤ ε and

Y ≤ ε
∑m2

0
m=m0

m10.
(II) There exists a first block number m2 ≥ m1 such that Bm2∩Bc

m2+1 holds.
We have Xm ≤ ε whenever m1 ≤ m < m2.

Two sub-cases of (II) are possible
(i) m2 ≥ m0. For all m such that m2 < m ≤ m2

0, we have Xm ≤ ε
(the punishment starting from Bm2+1 will finish after Bm2

0). So,
by (11),

Y ≤
∑

m∈{m0,...,m2
0
}

m6=m2

m10ε + m10
2 ≤ 2ε

m2
0∑

m=m0

m10.

(ii) m2 < m0. For all m ∈ {m0, . . . ,m
2
2}, Xm ≤ ε, and Bm2

2+1 holds.
We just have to repeat the argument and consider the following

sub-sub-cases.
(a) for all m ≥ m2

2 + 1, Bm holds. Then for all m ∈ {m0, . . . ,m
2
0}

we have Xm ≤ ε and Y ≤ ε
∑m2

0
m=m0

m10.
(b) There exists a first block number m3 ≥ m2

2 + 1 such that
Bm3 ∩ Bc

m3+1 holds.
The only possible block m in {m0, . . . ,m

2
0} where we may

have Xm > ε is block m3. Since m2
2 ≥ m0, we have m2

3 >
(m2

2 +1)2 > (m0 +1)2, hence m2
3 > m2

0. So Y ≤ 2ε
∑m2

0
m=m0

m10.

In the end we obtain

E(Y ) ≤ 3ε
m2

0∑
m=m0

m10,

and Lemma 12 is proved.

Proof of Proposition 7. Fix ε > 0. By Lemma 12, there exists a block number
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M3, independent of τ 1, such that for all m0 ≥ M3

E

∑t∈Bm0∪···∪B
m2

0
g1(at)∑m2

0
m=m0

m10

 ≤ ε,
m0−1∑
m=1

m10 ≤ ε
m2

0∑
m=1

m10,
(m0+1)2∑
m=m2

0+1

m10 ≤ ε
m2

0∑
m=1

m10.

Define T0 = 1+max{BM2
3 } and let T ≥ T0. Define m(T ) via T ∈ Bm(T ). Then

m(T ) ≥ M2
3 + 1. Define l ∈ N such that l ≤

√
m(T )− 1 < l + 1. We have

l ≥ M3, l2 < m(T ), and (l + 1)2 ≥ m(T ).

1

T
E
(

T∑
t=1

g1(at)

)
=

1

T
E

 ∑
t<min{Bl}

g1(at) +
∑

t∈Bl∪···∪Bl2

g1(at) +
∑

t>max{Bl2}

g1(at)


≤ 1

T

 l−1∑
m=1

m10 +
l2∑

m=l

m10ε +
(l+1)2∑

m=l2+1

m10

 ,

≤ ε + ε + ε = 3ε.

Proposition 7 is proved since T0 does not depend on τ 1.

6.3 Proposition 8

Proof of Proposition 8. Take σ to be our inefficient uniform equilibrium just
constructed. We only need to prove (7) with x = (0, 0, 0) (because (6) is proved
in Proposition 5, or because (6) is a consequence of (7) here).

Fix as before a strategy τ 1 of player 1 and define for each m, Cm as in (8).
By Lemma 11 and Borel-Cantelli lemma, with probability one we can find
an integer M4, that may depend on τ 1, such that for all m ≥ M4, Cm holds.
Looking at the proof of Lemma 12, this implies that for every ε > 0, one can
find M4 such that for all m0 ≥ M2

4 ,

m0
2∑

m=m0

m10Xm ≤ 2ε
m0

2∑
m=m0

m10. (12)

Proceeding as in the proof of Proposition 7, we see that (12) implies that for
every η > 0 one can find T0 such that for each T ≥ T0, we have

1

T

T∑
t=1

g1(at) ≤ η + 2ε + η = 2ε + 2η.
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So

lim sup
T

(
1

T

T∑
t=1

g1(at)

)
≤ 2ε Pτ1,σ−1-a.s..

Hence

lim sup
T

(
1

T

T∑
t=1

g1(at)

)
= lim

T→∞

(
1

T

T∑
t=1

g1(at)

)
= 0 Pτ1,σ−1-a.s..

Therefore σ is not only a uniform equilibrium; it is also an almost sure equi-
librium, and (0, 0, 0) is an almost sure equilibrium payoff.

6.4 Theorem 9

Proof of Theorem 9. The proof is a generalization of the proof for the three-
player case. If S is a subset of N with exactly n elements, eS is a Nash
equilibrium of the one-shot game, hence eS is also a uniform equilibrium payoff.
By convexity, to prove that the set of uniform equilibrium payoffs is S it is
sufficient to show that for any S with |S| < n, we can construct a uniform
equilibrium with payoff eS. If n = 1, then the only case is |S| = 0, so the only
thing to be proved in this case is that (0, 0, 0) is a Nash equilibrium payoff, as
we did in Section 4.

Fix a subset S of players such that |S| < n. We need to construct a strategy
profile σ = (σi)i∈N such that σ is a uniform equilibrium with payoff eS. The
construction of Section 3 generalizes as follows.

If i ∈ S, σi is very simple: play R at each stage in {1, 2, ...}, independently of
what happened before.

Divide the set of stages {1, 2, ...} into consecutive blocks B1, ..., Bm,... with
|Bm| = m10 for each m, exactly as in Section 3. The strategy σ consists of a
main path and of punishment phases, starting from the main path. When the
play is in the main path at some block Bm, each player i in N \ S plays i.i.d.
at each stage the mixed action

(1− δm)L⊕ δmR, with δm = m
−2

n+1−|S| .

Notice that

0 <
2

n + 1− |S|
≤ 1,

so δm ≥ 1/m and limm→∞ δm = 0.
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At the end of such a block, all players compute as before the empirical fre-
quency of “R being the most crowded room” in this block

αm =
1

|Bm|
|{t ∈ Bm, `(at) = R}|.

Put

θm = m
−2(n+1/2−|S|)

n+1−|S| =
1

m2
m

1
n+1−|S| ∈

]
1

m2
,

1

m
√

m

]
.

The statistical test is the following:

• If αm ≤ θm, the test is passed. The play stays in the main path (and block
Bm+1 is played).

• If αm > θm, the test fails. Define D = {t ∈ Bm, l(at) = R}. A punishment
phase is played from the first stage of block Bm+1 to the last stage of
block Bm2

. Then the play goes back to the main phase at block Bm2+1.
Punishments are similar to the ones in Section 3. Each block Bm, with
m ∈ {m+1, ...,m2} is divided into sub-blocks Bm

1 ,...,Bm
d ,Bm

d+1, with |Bm
1 | =

... = |Bm
d | = |D|. At each sub-block Bm

d′ , with d′ ∈ {1, ..., d}, the players
play again in the same order the actions they have played at D.

Notice that if n = 1 and S = ∅, σ is exactly the strategy constructed in
Section 3. To conclude, we have to prove that σ is a uniform equilibrium with
payoff eS. In the following computations, “if m is large enough” should be
understood as “if m is larger than some constant only depending on n and
|S|.” We will use the following binomial coefficients:

K1 =

(
2n + 1− |S|
n + 1− |S|

)
, K2 =

(
2n− |S|

n + 1− |S|

)
, K3 =

(
2n− |S|
n− |S|

)

A) Assume that all players follow σ. Probabilities are computed according to
P = Pσ.

Fix a block number m where Bm = {the play is in the main path at block Bm}
holds. Consider some stage in this block. For R to be the most crowded room
at this stage we need at least n + 1 − |S| players in N \ S to play R, hence
the probability that R is the most crowded room is

ηm ≤
(

2n + 1− |S|
n + 1− |S|

)
δn+1−|S|
m = K1

1

m2
.

Note that

θm − ηm ≥ 1

m2
(m

1
n+1−|S| −K1) ≥

1

m2
,
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if m is large. Hence by Tchebychev’s inequality and if m is large we get

P(Bc
m+1|Bm) = P (αm > θm|Bm)

≤ P

|αm − ηm| >
1

m2

∣∣∣∣∣∣Bm


≤ 1

m6
.

By Borel-Cantelli lemma we obtain as in Section 3 that with probability 1
there exists m1 such that for each m ≥ m1, Bm holds.

Let i be a player in S. At some stage in the main path, the probability that
player i’s payoff is 1 is the probability that L is the most crowded room, hence
it is at least 1−K1/m

2. Since |1− 1/m− (1−K1/m
2)| > 1/(2m) for m large,

by Tchebychev’s inequality one can prove that

P

 1

|Bm|
∑

t∈Bm

gi(at) < 1− 1

m

∣∣∣∣∣∣Bm

 ≤ 4m2

|Bm|
=

4

m8
.

Again by Borel-Cantelli lemma with probability 1 there will exist a block
number m2 such that for each m ≥ m2,

1

|Bm|
∑

t∈Bm

gi(at) ≥ 1− 1

m
.

From this it follows

lim
T→∞

1

T

T∑
t=1

gi(at) = 1 Pσ-a.s., and lim
T→∞

γi
T (σ) = 1.

Let now i be a player in N \ S. Fix m where Bm holds. At some stage t in
Bm, if player i’s payoff is 1 then either she plays R or R is the most crowded
room, hence

P(gi(at) = 1|Bm) ≤ δm +
K1

m2
≤ 2δm (for m large).

Tchebychev’s inequality then shows that

P

 1

|Bm|
∑

t∈Bm

gi(at) > 3δm

∣∣∣∣∣∣Bm

 ≤ 1

δ2
m|Bm|

≤ 1

m8
.

And as before, limT→∞ γi
T (σ) = 0.

B) It remains to prove that no player can benefit by deviating from σ. Since
1 is the largest possible payoff in the game, we do not have to care about
deviations by players in S. We thus only consider a deviation of some player
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i not in S. By symmetry, we assume that i = 1 /∈ S and fix in all the sequel
a deviation τ 1 of player 1. We use the probability P = Pτ1,σ−1 . For each m,
denote as before the average payoff of player 1 at block Bm as

Xm =
1

|Bm|
∑

t∈Bm

g1(at).

The definition of Cm generalizes as follows

Cm = Bc
m

⋃(
Bm

⋂
Bm+1

⋂{
Xm ≤ 3

√
δm

})
⋃Bm

⋂
Bc

m+1

⋂ m2⋂
m′=m+1

{
Xm′ ≤ 3K2

√
δm

} . (13)

Notice that
lim

m→∞

√
δm = lim

m→∞
m

−1
n+1−|S| = 0.

Once we prove that there exists M1, independent from τ 1, such that for all
m ≥ M1

P(Cm) ≥ 1− 3

m6
. (14)

we can proceed exactly as in the proof of Lemma 12 and as the end of the
proof of Proposition 7, and Theorem 9 will be proved.

Equation (14) is the object of the following lemma.
Lemma 13. There exists M1, independent from τ 1, such that for all m ≥ M1

P(Cm) ≥ 1− 3

m6
.

Proof. For each stage t, we define the random variables ξt and U t with values
in {0, 1} such that

ξt = 1 iff there are exactly n− |S| players in N \ (S ∪ {1}) that play R at stage t.

U t = 1 iff there are at least n + 1− |S| players in N \ (S ∪ {1}) that play R at stage t.

If U t = 1, the most crowded room at stage t is R. If ξt = 1, player 1’s payoff
is 0, and her action determines the most crowded room at stage t.

For each block number m, we also define

ξm =
1

|Bm|
∑

t∈Bm

ξt, Um =
1

|Bm|
∑

t∈Bm

U t, xm =
1

|Bm|
∑

t∈Bm

1{a1
t =R}.

Again we have Xm ≤ Um + xm.

Fix a block number m where Bm holds.
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(ξt)t∈Bm are i.i.d. (given Bm) Bernoulli random variables with expectation

pm =

(
2n− |S|
n− |S|

)
δn−|S|
m (1− δm)n ≥ δn−|S|

m ,

for m large. Putting Qt = 1{a1
t =R} for each stage t, Lemma 5.6 of Lehrer (1990)

gives

P

∣∣∣∣∣ ∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≥ θm

∣∣∣∣∣∣Bm

 ≤ 1

|Bm|θm
2 ≤

1

m6
. (15)

For some stage t in Bm, the conditional probability (given Bm) that at least
n + 1− |S| players in N \ (S ∪ {1}) play R at stage t is at most(

2n− |S|
n + 1− |S|

)
δn+1−|S|
m =

K2

m2
.

Hence we obtain

P

Um >
2K2

m2

∣∣∣∣∣∣Bm

 ≤ m4

K2
2 |Bm|

≤ 1

m6
. (16)

Similarly, the conditional probability (given Bm) that at least n− |S| players
in N \ (S ∪ {1}) play R at stage t is at most

(
2n− |S|
n− |S|

)
δn−|S|
m = K3

(
1

m

) 2(n−|S|)
n+1−|S|

≤ K3

m
.

So we obtain

P

ξm + Um >
2K3

m

∣∣∣∣∣∣Bm

 ≤ 1

K2
3m

8
≤ 1

m8
. (17)

Assume that

Um ≤ 2K2

m2
,

∣∣∣∣∣ ∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≤ θm,

and that there is no punishment after Bm, which implies

∑
t∈Bm

ξtQt

m10
≤ θm.

Then pmxm ≤ 2θm, and

xm ≤ 2θm

δ
n−|S|
m

= 2m
−1

n+1−|S| = 2
√

δm.

23



Since Xm ≤ Um +xm, we obtain that Xm ≤ 3
√

δm for m large. Hence we have

P
(
Bm

⋂((
Um >

2K2

m2

)⋃(
Bm+1

⋂{
Xm > 3

√
δm

})⋃(
ξm + Um >

2K3

m

)))

≤ P

(Um >
2K2

m2

) ∣∣∣∣∣∣Bm

+ P

(Um ≤ 2K2

m2

)⋂
Bm+1

⋂{
Xm > 3

√
δm

} ∣∣∣∣∣∣Bm


+ P

(ξm + Um >
2K3

m

) ∣∣∣∣∣∣Bm


≤ 1

m6
+

1

m6
+

1

m8
≤ 3

m6
,

where the first 1/m6 derives from (16), the second 1/m6 derives from the
previous observations and (15), and the 1/m8 derives from (17).

So with probability at least 1− 3/m6, the following event holds

Gm = Bc
m

⋃((
ξm + Um ≤ 2K3

m

)⋂(
Um ≤ 2K2

m2

)⋂(
Bc

m+1

⋃{
Xm ≤ 3

√
δm

}))
,

Assume finally that both Gm and Bm hold. Then

• either Bm+1 holds, and this implies that Xm ≤ 3
√

δm,
• or Bc

m+1 holds, and therefore a punishment phase starts at block Bm+1. We
have Um ≤ 2K2/m

2 and ξm +Um ≤ 2K3/m. Consider D = {t ∈ Bm, l(at) =
R}. We have |D| ≥ m10θm, and |D| ≤ (ξm + Um)m10, so |D| ≤ 2K3m

9. The
number of stages in D where player 1 may have a payoff of 1 is at most
Umm10 ≤ 2K2m

8. Hence the punishment is efficient.

Consider a punishment block Bm, with m ∈ {m + 1, ...,m2}, and let d be the
integer such that d ≤ |Bm|/|D| < d + 1. The total payoff of player 1 at this
block is

m10Xm ≤ 2dK2m
8 + |D| = d|D|2K2m

8

|D|
+ |D|.

Hence we obtain

Xm ≤ d|D|
|Bm|

2K2

m2θm

+
2K3

m
≤ 2K2

m2θm

+
2K3

m
.

But
1

m2θm

= m
−1

n+1−|S| =
√

δm ≥ 1√
m

.

So for m large enough,

Xm ≤ 3K2

√
δm.

Hence we obtain that Gm ⊂ Cm. This concludes the proof of Lemma 13.
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