
Simple Search Methods for Finding a Nash Equilibrium

Ryan Porter and Eugene Nudelmanand Yoav Shoham
Computer Science Department

Stanford University
Stanford, CA 94305

{rwporter,eugnud,shoham}@cs.stanford.edu

Introduction
Nash equilibrium (NE) is arguably the most important con-
cept in game theory, and yet remarkably little is known about
the problem of computing a sample NE in a normal-form
game. All evidence points to this being a hard problem,
but its precise complexity is unknown. In this work (which
appears as a full paper in (Porter, Nudelman, & Shoham
2004)), we present a pair of simple search methods (one for
2-player games and the other for n-player games) that per-
form well in practice.

Both algorithms are based on the same technique of
searching through the space of support profiles, which spec-
ify the support of each player. While the general problem of
computing a NE is a complementarity program, computing
whether there exists a NE consistent with a support profile
is a relatively easy feasibility program with the following
three types of constraints for each player: (1) he must only
play actions in his support with positive probability, (2) he
must be indifferent between these actions, and (3) he must
not strictly prefer an action outside of his support.

The algorithms decompose the search space by separately
considering support size profiles (which specify the number
of actions in the support of each player), giving precedence
to profiles that are small and balanced. Since it turns out that
games drawn from classes that researchers have focused on
in the past tend to have (at least one) NE with a very small
support, our algorithms are often able to find one quickly.
Thus, this paper is as much about the properties of NE in
games of interest as it is about novel algorithmic insights.

We emphasize, however, that we are not cheating in the
selection of games on which we test. Past algorithms were
tested almost exclusively on “random” games. We tested on
these too (indeed, we will have more to say about how “ran-
dom” games vary along at least one important dimension),
but also on many other distributions (24 in total). To this
end we use GAMUT, a recently introduced computational
testbed for game theory (Nudelman et al. 2004). Our results
are quite robust across all games tested.

For each support size profile, the algorithms use a back-
tracking procedure to search through the space of support
profiles of the specified size. They instantiate each player’s
support separately, and, after each instantiation, they prune
the set of available actions for each uninstantiated support
using iterated removal of strictly dominated strategies. If an

action in an instantiated support is found to be dominated,
then the current set of instantiations cannot be part of an
NE, and the algorithm backtracks to the last instantiation.

Experimental Results
Using games generated by GAMUT, we tested our algo-
rithms against the state of the art: Lemke-Howson (Lemke
& Howson 1964) for 2-player games, and Simplicial Sub-
division (van der Laan, Talman, & van der Heyden 1987)
and Govindan-Wilson (which was developed by (Govindan
& Wilson 2003) and extended and implemented by (Blum,
Shelton, & Koller 2003)) for n-player games.

A distribution of particular importance is the one most
commonly tested on in previous work: the “Uniformly Ran-
dom Game”, in which every payoff in the game is drawn
independently from an identical uniform distribution. Also
important are distributions which fall under a “Covariance
Game” model studied by (Rinott & Scarsini 2000), in which
the payoffs for then agents for each action profile are drawn
from a multivariate normal distribution in which the covari-
anceρ between the payoffs of each pair of agents is iden-
tical. Whenρ = 1, the game is common-payoff, while
ρ = −1

N−1 yields minimal correlation, which occurs in zero-
sum games. Thus, by alteringρ, we can smoothly transition
between these two extreme classes of games.

Our experiments were executed on a cluster of 12
dual-processor, 2.4GHz Pentium machines, running Linux
2.4.20. We capped runs for all algorithms at 1800 seconds.
When describing the statistics used to evaluate the algo-
rithms, we will use “unconditional” to refer to the value of
the statistic when timeouts are counted as 1800 seconds, and
“conditional” to refer to its value excluding timeouts.

Results for Two-Player Games
In the first set of experiments, we compared the performance
of Algorithm 1 (our 2-player algorithm) to that of Lemke-
Howson (implemented in Gambit, which added the prepro-
cessing step of iterated removal of weakly dominated strate-
gies) on 2-player 300-action games drawn from 24 different
GAMUT distributions. Both algorithms were executed on
100 games drawn from each distribution. The time is mea-
sured in seconds and plotted on a logarithmic scale.

Figure 1(a) compares the unconditional median runtimes
of the two algorithms, and shows that Algorithm 1 performs

better on all distributions.1 However, this does not tell the
whole story. For many distributions, it simply reflects the
fact that there is a greater than50% chance that the distribu-
tion will generate a game with a pure strategy NE, which our
algorithm will then find quickly. Two other important statis-
tics are the percentage of instances solved (Figure 1(b)), and
the average runtime conditional on solving the instance (Fig-
ure 1(c)). Here, we see that Algorithm 1 completes far more
instances on several distributions, and solves fewer on just a
single distribution (6 fewer, on D23). Additionally, even on
distributions for which we solve far more games, our condi-
tional average runtime is 1 to 2 orders of magnitude faster.

Clearly, the hardest distribution for our algorithm is D6,
the “Covariance Game” distribution in which the payoffs in
which the covarianceρ is drawn uniformly at random from
the range[−1, 1]. To further investigate this continuum, we
sampled 300 values forρ in the range[−1, 1], with heavier
sampling in the transition region and at zero. For each such
game, we plotted a point for the runtime of both Algorithm
1 and Lemke-Howson in Figure 1(d).2 The theoretical re-
sults of (Rinott & Scarsini 2000) suggest that the games with
lower covariance should be more difficult for Algorithm 1,
because they are less likely to have a pure strategy Nash
equilibrium. Nevertheless, it is interesting to note the sharp-
ness of the transition that occurs in the[−0.3, 0] interval.
More surprisingly, a similarly sharp transition also occurs
for Lemke-Howson, despite the fact that the two searches
operate in unrelated ways. Finally, it is important to note
that the transition region for Lemke-Howson is shifted to
the right by approximately0.3, and that, on instances in the
easy region for both algorithms, Algorithm 1 is still an order
of magnitude faster.

In the third set of experiments we explore the scaling
behavior of both algorithms on the “Uniformly Random
Game” distribution (D18), as the number of actions in-
creases from 100 to 1000. For each multiple of 100, we
generated 20 games. Because space constraints preclude an
analysis similar to that of Figures 1(a) through 1(c), we in-
stead plot in Figure 1(e) theunconditionalaverage runtime
over 20 instances for each data size, with a timeout counted
as 1800s. While Lemke-Howson failed to solve any game
with more than 600 actions and timed out on some 100-
action games, Algorithm 1 solved all instances, and, without
the help of cutoff times, still had an advantage of 2 orders of
magnitude at 1000 actions.

Results for N-Player Games
Next, we compared Algorithm 2 (ourn-player algorithm) to
Govindan-Wilson and Simplicial Subdivision (also imple-
mented in Gambit, and thus combined with iterated removal
of weakly dominated strategies). First, we tested the algo-
rithms on 100 6-player, 5-action games from each of 22 of
GAMUT’s n-player distributions.

1Obviously, the lines connecting data points across distributions
for a particular algorithm are meaningless– they were only added
to make the graph easier to read.

2The capped instances for Algorithm 1 were perturbed slightly
upward on the graph for clarity.

Once again, Figures 2(a), 2(b), and 2(c) show uncondi-
tional median runtime, percentage of instances solved, and
conditional average runtime, respectively. Algorithm 2 has a
very low unconditional median runtime, for the same reason
that Algorithm 1 did for two-player games, and outperforms
both other algorithms on all distributions. While this domi-
nance does not extend to the other two metrics, the compar-
ison still favors Algorithm 2.

We again investigate the relationship betweenρ and the
hardness of games under the “Covariance Game” model.
For generaln-player games, minimal correlation under this
model occurs whenρ = − 1

n−1 . Thus, we can only study
the range[−0.2, 1] for 6-player games. Figure 2(d) shows
the results for 6-player 5-action games. Algorithm 2, over
the range[−0.1, 0], experiences a transition in hardness that
is even sharper than that of Algorithm 1. Simplicial Sub-
division also undergoes a transition, which is not as sharp,
that begins at a much larger value ofρ (around0.4). How-
ever, the running time of Govindan-Wilson is only slightly
affected by the covariance, as it neither suffers as much for
small values ofρ nor benefits as much from large values.

Finally, Figures 2(e) and 2(f) compare the scaling behav-
ior (measured by the unconditional average runtimes): the
former holds the number of players constant at 6 and varies
the number of actions from 3 to 8, while the latter holds
the number of actions constant at 5, and varies the number
of players from 3 to 8. In both experiments, both Simplicial
Subdivision and Govindan-Wilson solve no instances for the
largest two sizes, while Algorithm 2 solves most games.

References
Blum, B.; Shelton, C. R.; and Koller, D. 2003. A
continuation method for Nash equilibria in structured
games. InProceedingsof theEighteenthInternationalJoint
ConferenceonArtificial Intelligence.
Govindan, S., and Wilson, R. 2003. A global new-
ton method to compute Nash equilibria. InJournalof
EconomicTheory.
Lemke, C., and Howson, J. 1964. Equilibrium points of
bimatrix games.Journalof the Societyfor Industrialand
AppliedMathematics 12:413–423.
Nudelman, E.; Wortman, J.; Shoham, Y.; and Leyton-
Brown, K. 2004. Run the GAMUT: A comprehen-
sive approach to evaluating game-theoretic algorithms. In
AAMAS-04.
Porter, R.; Nudelman, E.; and Shoham, Y. 2004. Sim-
ple search methods for finding a nash equilibrium. In
Proceedingsof the NineteenthNational Conferenceon
Artificial Intelligence.
Rinott, Y., and Scarsini, M. 2000. On the number of
pure strategy Nash equilibria in random games.Games
andEconomicBehavior 33:274–293.
van der Laan, G.; Talman, A.; and van der Heyden, L.
1987. Simplicial variable dimension algorithms for solv-
ing the nonlinear complementarity problem on a product
of unit simplices using a general labelling.Mathematicsof
OperationsResearch.

0.01

0.1

1

10

100

1000

10000
D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

Tim
e(s

)

Alg1
LH

(a) Unconditional median runtime

0
10
20
30
40
50
60
70
80
90

100

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

%
 S
olv
ed

Alg1
LH

(b) Percentage solved

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

Tim
e(s

)

Alg1
LH

(c) Average time on solved instances

0.01

0.1

1

10

100

1000

10000

-1 -0.5 0 0.5 1Covariance

Tim
e(s

)

Alg1
LH

(d) Runtime vs. Covariance

0.01

0.1

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000
Actions

Tim
e(s

)

Alg1
LH

(e) Unconditional average vs. Actions

Figure 1: Comparison of Algorithm 1 and Lemke-Howson on 2-player games. Subfigures (a)-(d) are for 300-action games.

0.001

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

Tim
e(s

)

Alg2
SD
GW

(a) Unconditional median runtimes

0
10
20
30
40
50
60
70
80
90

100

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

%
 S
olv
ed

Alg2
SD
GW

(b) Percentage solved

0.001

0.01

0.1

1

10

100

1000
D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

Tim
e(s

)
Alg2
SD
GW

(c) Average time on solved instances

0.01

0.1

1

10

100

1000

10000

-0.2 0 0.2 0.4 0.6 0.8 1
Covariance

Tim
e(s

)

Alg2
SD
GW

(d) Runtime vs. Covariance

0.1

1

10

100

1000

10000

3 4 5 6 7 8
Actions

Tim
e(s

)

Alg2
SD
GW

(e) Unconditional average runtime vs. Ac-
tions, on 6-player games

0.001

0.01

0.1

1

10

100

1000

10000

3 4 5 6 7
#Players

Tim
e(s

)

Alg2
SD
GW

(f) Unconditional average runtime vs.
Players, on 5-action games

Figure 2: Comparison of Algorithm 2, Simplicial Subdivision, and Govindan-Wilson. Subfigures (a)-(d) are for 6-player,
5-action games.

