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Abstract

We study N-bidders, asymmetric all-pay auctions under incomplete

information. First, we solve for the equilibrium of a parametric model.

Each bidder’s valuation is independently drawn from an uniform [0, αi]

where the parameter αi may vary across bidders. In this game, asymme-

tries are exogenously given. Next, a two-stage game where asymmetries

are endogenously generated is studied. At the first stage, each bidder

chooses the level of an observable, costly, value-enhancing action. The

second stage is the bidding sub-game, whose equilibrium is simply the

equilibrium of the, previously analyzed, game with exogenous asymme-

tries. Finally, natural applications of the all pay-auction in the context of

political lobbying are considered: the effects of excluding bidders, as well

as, the impact of caps on bids.

1 Introduction

All-pay auctions under perfect information are well understood, see

for instance, Baye et. al. (1993, 1996) and Che and Gale (1998). The

main results are: Only high valuation bidders, those bidders who have

the highest or the second-highest valuation, participate. Low valuation

bidders do not participate; in equilibrium, they bid zero. The equilibrium

is unique provided there are only two high valuation bidders. Otherwise,

there is a continuum of equilibria, which are not revenue equivalent.

Amann and Leininger (1996) prove existence and uniqueness of the

equilibrium for two-bidders, all-pay auctions under incomplete, indepen-

dent information.

All-pay auctions under incomplete information, with many bidders

having symmetric, affiliated information were studied by Krishna and
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Morgan (1997). The all-pay auction revenue dominates the first-price

auction but, it is revenue dominated by the War of Attrition.

The novelty of this paper is that it presents a model of incomplete in-

formation, N-bidders, asymmetric all-pay auction. Although, the model is

parametric, valuations are uniformly distributed, the first section presents

a general model; useful to compute the equilibrium for other parameteri-

zations.

The papers is organized as follows. Section 2 lays down the necessary

conditions for the existence of an equilibrium in pure increasing strategies.

Section 3 solves the model when the buyers’ valuations are uniformly

distributed and, it obtains the equilibrium payoffs and revenue. Section

4 performs comparative statics. Section 5 solves the model when bidders’

are allowed to perform observable, value-enhancing investments previously

to the auction. All proofs are collected into the Appendix.

2 A General Model

There are j = 1, . . . , N buyers whose valuations are independent draws

from Fj , which support is [v, v]. We restrict attention to equilibria in

strategies bj that are constant in [v, v∗
j ] and strictly increasing in (v∗

j , v].

The inverse bid functions are denoted by φj . Let b be the lowest bid

placed in equilibrium. The payoff of bidding b > b for a buyer i who has

valuation φ is

Πi(b|φi) = φi

∏

j 6=i

Fj(φj(b)) − b , (1)

and the corresponding first-order condition for buyer i is,

φi

∑

j 6=i

∏

k 6=i,j

Fk(φk(b))fj(φj(b))φ
′
j(b) − 1 = 0 (2)

Let Q = (id, Q2, . . . , QN ) be the tying mapping : Qi(φ) is the type of buyer

i that in equilibrium bids the same amount as the type φ of buyer 1. By

combining the first-order conditions of buyer i and buyer 1, we obtain the

following differential equations,

∑

j 6=1,i

fj(Qj(φ1))

Fj(Qj(φ1))
Q

′
j(φ1) −

φ1fi(Qi(φ1))

Qi(φ1)F1(φ1) − φ1Fi(Qi(φ1))
Q

′
i(φ1) = (3)

=
Qi(φ1)f1(φ1)

φ1Fi(Qi(φ1)) − Qi(φ1)F1(φ1)
for i = 2, . . . , N.

Notice that the above system of N − 1 differential equations is invertible.

More exactly, one has:

Proposition 1 If bidders’ equilibrium strategy is strictly increasing at the

bid b = b1(φ) then the tying function of bidder i = 1, ..., N must satisfy:

∂

∂φ
Qi =

∑

j 6=i
Fj(Qj(φ))

∏

k 6=j
Qk(φ) − (N − 2)Fi(Qi(φ))

∏

k 6=i
Qk(φ)

∑

j 6=1 Fj(Qj(φ))
∏

k 6=j
Qk(φ) − (N − 2) F1(φ)

∏

k 6=1 Qk(φ)

Fi(Qi(φ))

fi(Qi(φ))

f1(φ)

F1(φ)

2



In sum, as in Griesmer, Levitan, and Shubik (1967), see also Amann and

Leininger (1996) and Parreiras (2002), one can solve for the inverse bid

functions recursively: first, the tying map Q is obtained by solving the

system of differential equations given by Proposition 1. Secondly, the

solution is then used to eliminate the φj for j 6= 1, from the first-order

condition (2). The resulting equation is just another differential equation,

which can be solved by direct methods.

3 The Parametric Model

We specialize the model to uniform distributions, Fi ∼ U[0, αi] for

i = 1, . . . , N and, without any loss of generality, we assume that α1 ≥

α2 ≥ . . . ≥ αN . In the uniform model, the system of differential equations

for the inverse bids is,

∂Qi

∂φ1
(φ1) =

∑

j 6=i
α−1

j − (N − 2)α−1
i

∑

j 6=1 α−1
j − (N − 2)α−1

1

Qi(φ1)

φ1
for all i.

Thus, the tying function is given by,

Qi(φ1) = αi

[

φ1

α1

]κi

where κi =

∑

j 6=i
α−1

j − (N − 2)α−1
i

∑

j 6=1 α−1
j − (N − 2)α−1

1

.

Therefore, a necessary and sufficient condition for the above characteri-

zation of the tying function is κi > 0 for all i or, equivalently,

∑

j 6=i
α−1

j

N − 2
> α

−1
i for all i. (4)

Notice that κi > 0 holds whenever buyers are not too asymmetric. Later

on this section, we characterize equilibrium when the asymmetry is high

and so, the above condition fails to hold.

The auxiliary identities:
∑

i6=1 κi =
(N−1)α−1

1
∑

i6=1 α
−1

i
−(N−2)α−1

1

,

1 +
∑

i6=1 κi =
∑

i α
−1

i
∑

i6=1 α
−1

i
−(N−2)α−1

1

, and
∑

i6=1 κi

1+
∑

i6=1 κi
=

(N−1)α−1

1
∑

i α
−1

i

shall be

used in the following computations.

First, notice we can re-write equation 2 as,

φ1(b)
∑

i6=1

∏

j 6=1,i

[

φ1(b)

α1

]κj κiφ
κi−1
1 (b)

α
κi
i

φ
′
1(b) − 1 = 0 =⇒





∑

i6=1

κi





[

φ1(b)

α1

]

∑

i6=1 κj

φ
′
1(b) − 1 = 0
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For simplicity, let κ =
∑

i6=1 κi, then the inverse bid and the equilibrium

bid functions are respectively,

φ1(b) = α1

[

1 + κ

κ

b

α1

]

1

1 + κ = α1

[∑

i
α−1

i

N − 1
b

]

1

1 + κ
and

b1(φ) = α1
κ

1 + κ

[

φ

α1

]1+κ

=
N − 1

∑

i
α−1

i

[

φ

α1

]1+κ

.

The lowest and highest equilibrium bids are respectively,

b = 0 and b = α1
κ

1 + κ
=

N − 1
∑

i
α−1

i

The interim revenue is simply,

R(φ1, ..., φN ) =

N
∑

i=1

bi(φi) =
N − 1
∑

α−1
j

N
∑

i=1

[

φi

αi

]
1+κ
κi

and so, the expected revenue is:

R(α1, ..., αN ) =
N − 1
∑

α−1
j

N
∑

i=1

∑

α−1
j − (N − 1)α−1

i

2
∑

α−1
j − (N − 1)α−1

i

(5)

Buyer i’s interim payoff is,

Πi(φi) = φi

∏

j 6=i

Fj(Qj(Q
−1
i (φi))) − b(φ1) =

[

αi −
N − 1
∑

α−1
j

]

[

φi

αi

]
1+κ
κi

,

(6)

and consequently, i’s expected payoff is

Πi =

[

αi −
N − 1
∑

α−1
j

]

∑

α−1
j − (N − 1)α−1

i

2
∑

α−1
j − (N − 1)α−1

i

. (7)

All previous computations were derived under the provisory assump-

tion, the level of asymmetries among bidders is not too high or, in other

words, that condition (4) holds. Also, observe that condition (4) is likely

to hold when the number of bidders is small. In particular, it always holds

for N = 2, the two bidder case. When the condition fails, the ‘weak-

est’ bidders, bidders likely to have low valuations, will not participate.

That is, in equilibrium, they will always bid zero. The following propo-

sition characterizes precisely the set of non-participating bidders. First,

recall that bidders were ordered in such way that, bidder i likely (first-

order stochastic dominance) has ‘higher’ valuations than bidders j > i :

α1 ≥ α2 ≥ . . . ≥ αN . Secondly, define κK by:

κ
K =

∑K−1
j=1 α−1

j − (K − 2)α−1
K

∑K

j=2 α−1
j − (K − 2)α−1

1

.

Proposition 2 Bidders 1 and 2 always participate. Moreover, whenever

bidder i participates, bidder i − 1 also participates. Exactly K bidders

participate, if and only if, κK > 0 and κK+1 < 0.
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4 Comparative Statics

Assume that N bidders are participating. If i’s valuation is stochas-

tically raised (put simply, αi increases) and, all the other bidders remain

active, it’s straightforward to show that i’s payoff is increasing in αi and

decreasing in αj .

Proposition 3 If κi > 0 then
∂

∂αi

Πi > 0 and
∂

∂αj

Πi < 0.

But, it may happen that, as i’s valuation stochastically increases,

‘weak’ bidders drop out. In this instance, i’s payoff increases continu-

ously; however, it is not differentiable. More exactly,

Proposition 4 At the values of αi where ‘weak’ bidders drop out, the

marginal return of increasing αi decreases discontinuously.

Nevertheless, for the range of αi where competitors do not drop out,

one has that:

Proposition 5 At the values of αi where Πi is differentiable, the marginal

return of αi is increasing.

Figure 1 below illustrates the content of the previous propositions; it

depicts the bidders’ payoffs (for N = 3, α1 = 6 and α2 = 3) as α3 increases

from 1 to 8.

0

0.5

1

1.5

Π

2 3 4 5 6 7 8α

Figure 1: The bidders’ payoffs as functions of α3

5 Raising the Stakes

We now look at the effects of endogenous changes in the distribution of

the buyers’ valuations. Previous to the auction, each buyer i can perform

an investment that stochastically increase his/her own valuation. More

specifically, if bidder i takes the action ai ≥ αi, his/her valuation are

drawn from U[0, ai] and, the cost of action ai is given by c(ai −αi), where

c satisfies the following properties:
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1. ai ≤ αi ⇒ c(ai − αi) = 0;

2. c′ > 0 and c′′ > 0;

3. c′(0) <
1

2
< c′(+∞).

Property 1 says, disinvestments do not yield positive returns. That is, we

interpret αi as being the status-quo. If ai = αi, no investments are made

and the bidder does not incurs any cost. Property 2 is a standard assump-

tion; the cost is increasing and convex. Property 3 rules out uninteresting

cases where: the optimal action is always to not invest (c′(0) > 1
2
); the

optimal action is to invest infinity ( 1
2

> c′(+∞)).

Moreover, Property 3, the convexity of the payoff equilibrium of the

bidding sub-game, Π′′
i > 0, and the fact that Π′′

i < 1
2
, altogether, imply

the existence of an unique optimal level of investment.

6 The Exclusion Principle

7 Caps on Political Contributions

8 Conclusion
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9 Appendix

9.1 Proof of Lemma 2

To prove this lemma a few auxiliary results are needed first:

Remember that when bidder N does not participate, we define κ by

κ =
∑

i6=1,N
κi and κ1 = 1. So, the inverse bid functions when bidder N

does not participate are:

φi(b) = αi

[
∑N−1

j=1 α−1
j

N − 2
b

]

κi
1+κ

Consequently, the first-order condition of bidder N is simply:

φN

∑

i6=N

∏

j 6=i,N

Fj(φj(b))fi(φi(b))φ
′
i(b) − 1 =

φN

∑

i6=N

∏

j 6=i,N

φj(b)

αj

1

αi

φ
′
i(b) − 1 =

φN

∑

i6=N

∏

j 6=i,N

αj

[

∑N−1
k=1 α−1

k

N − 2
b

]

κj
1+κ

αj

1

αi

κi

1 + κ
αi

[

∑N−1
k=1 α−1

k

N − 2

]

κi
1+κ

b
κi

1+κ
−1 − 1 =

φN

1 + κ

1 + κ

∑N−1
k=1 α−1

k

N − 2
b

1+κ
1+κ

−1 − 1 < 0 ⇐⇒

∑

k 6=N
α−1

k

N − 2
< φ

−1
N ⇐=

∑

k 6=N
α−1

k

N − 2
< α

−1
N Q.E.D.

In the case that N participates, κ =
∑

i6=1 κi and κ1 = 1, and the

corresponding inverse bids are φi(b) = αi

[
∑N

j=1 α−1
j

N − 1
b

]

κi
1+κ

first-order condition is:
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φN

∑

i6=N

∏

j 6=i,N

Fj(φj(b))fi(φi(b))φ
′
i(b) − 1 =

φN

∑

i6=N

∏

j 6=i,N

φj(b)

αj

1

αi

φ
′
i(b) − 1 =

φN

∑

i6=N

∏

j 6=i,N

αj

[

∑N

k=1 α−1
k

N − 1
b

]

κj
1+κ

αj

1

αi

κi

1 + κ
αi

[

∑N

k=1 α−1
k

N − 1
b

]

κi
1+κ

−1

− 1 =

φN

1 + κ − κN

1 + κ

[∑

α−1
k

N − 1
b

]

1+κ−κN
1+κ

−1

− 1 =

φN

(

1 −
κN

1 + κ

) [∑

α−1
k

N − 1
b

]−
κN
1+κ

− 1 =

φN

(N − 1)α−1
i

∑

α−1
k

[∑

α−1
k

N − 1
b

]−
κN
1+κ

− 1 = 0 ⇐⇒

φN =
αi

∑

α−1
k

N − 1

[∑

α−1
k

N − 1
b

]

κN
1+κ

9.2 Revenue and Payoffs

The revenue is simply,

R(φ1, ..., φN ) =
N

∑

i=1

bi(φi) =
N

∑

i=1

b1(Q
−1
i (φi)) =

N − 1
∑

α−1
j

N
∑

i=1

[

φi

αi

]
1+κ
κi

and so, the expected revenue is:

R(α1, ..., αN ) =
N − 1
∑

α−1
j

N
∑

i=1

κi

κi + κ + 1
=

N − 1
∑

α−1
j

N
∑

i=1

∑

j 6=i
α−1

j − (N − 2)α−1
i

2
∑

j 6=i
α−1

j − (N − 3)α−1
i

(8)

Buyer i’s interim payoff is,

Πi(φi) = φi

∏

j 6=i

Fj(Qj(Q
−1
i (φi))) − b(φ1) = φi

∏

j 6=i

[

φi

αi

]

κj
κi

−
N − 1
∑

α−1
j

[

φi

αi

]
1+κ
κi

=

=

[

αi −
N − 1
∑

α−1
j

]

[

φi

αi

]
1+κ
κi

,

and consequently, i’s expected payoff is

Πi =

[

αi −
N − 1
∑

α−1
j

]

κi

κi + κ + 1
=

[

αi −
N − 1
∑

α−1
j

]

∑

α−1
j − (N − 1)α−1

i

2
∑

α−1
j − (N − 1)α−1

i

.
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9.3 Comparative Statics

9.3.1 The payoff of bidder i is increasing in αi

∂

∂αi

log (Πi(α)) =
αi

∑

j 6=i
α−1

j

[

4 + 5αi

∑

j 6=i
α−1

j − N + 2α2
i (

∑

j 6=i
α−1

j )2
]

+
(

αi

∑

j 6=i
α−1

j − N + 2
)2 (

2αi

∑

j 6=i
α−1

j − N + 3
)

αi

(

αi

∑

j 6=i
α−1

j − N + 2
) (

2αi

∑

j 6=i
α−1

j − N + 3
) (

1 + αi

∑

j 6=i
α−1

j

)

(9)

As long as κi > 0, both, the denominator and the numerator of (9) are

positive.

∂

∂αj

log (Πi(α)) =
∂

∂αj

∑

j 6=i

α
−1
j ×

×
αi

[

N − (N − 2)2 + 3(N − 1)αi

∑

j 6=i
α−1

j

]

(

αi

∑

j 6=i
α−1

j − N + 2
) (

2αi

∑

j 6=i
α−1

j − N + 3
) (

1 + αi

∑

j 6=i
α−1

j

)

9.3.2 The payoff Πi is not differentiable in αi at the points

where other bidders drop out

Let α = (αj)
N

j=1 be such that all bidders are participating and consider

the critical α∗
i =

1

(N − 2)α−1
N −

∑

j 6=i,N
α−1

j

. If αi is increased but kept

below α∗
i , all bidders still participate. But if αi increases above α∗

i , bidder

N drops out. Bidder N bids zero in equilibrium. The payoff of bidder i

is not differentiable at α∗
i . More exactly,

0 <
∂+

∂αj

log (Πi(α)) −
∂−

∂αj

log (Πi(α)) =

=
(N − 2)

[

3αi

∑

j 6=i
α−1

j − (N − 5)
]

αi(N − 1)
[

αi

∑

j 6=i
α−1

j − (N − 3)
] [

2αi

∑

j 6=i
α−1

j − (N − 4)
] (

αi

∑

j 6=i
α−1

j + 1
) .

Using the fact that αi

∑

j 6=i
α−1

j > N − 2 when N bidders participate,
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it is possible to prove that Πi is locally convex.

0 <
∂2

∂αj∂αj

Πi(α) ×

{[

αi

∑

j 6=i
α−1

j − (N − 3)
] (

αi

∑

j 6=i
α−1

j + 1
)}3

2
∑

j 6=i
α−1

j (N − 1)
=

= − N
3 + 9N

2 + 6αi

∑

j 6=i

α
−1
j N

2 − 26N − 33αi

∑

j 6=i

α
−1
j N − 9



αi

∑

j 6=i

α
−1
j





2

N+

+



αi

∑

j 6=i

α
−1
j





3

N + 27



αi

∑

j 6=i

α
−1
j





2

+ 45αi

∑

j 6=i

α
−1
j + 5



αi

∑

j 6=i

α
−1
j





3

+ 24 =

=







αi

∑

j 6=i

α
−1
j





3

− (N − 3)3



 +



αi

∑

j 6=i

α
−1
j





2 

αi

∑

j 6=i

α
−1
j − (N − 3)



 +

+ (N + 3)



αi

∑

j 6=i

α
−1
j





3

− 8(N − 3)



αi

∑

j 6=i

α
−1
j





2

+ (6N
2 − 33N + 45)



αi

∑

j 6=i

α
−1
j



 +

+ N − 3
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