
Understanding Game-Theoretic Algorithms: The Game Matters

Eugene Nudelman Jennifer Wortman Yoav Shoham
{eugnud;jwortman;shoham}@cs.stanford.edu Stanford University, Stanford, CA 94305

Kevin Leyton-Brown
kevinlb@cs.ubc.ca University of British Columbia, Vancouver, BC V6T 1Z4

1. Introduction

There is growing interest in algorithms for solving com-
putational problems associated with game-theoretic do-
mains, and in particular, algorithms for computing Nash
equilibria. It is often difficult to offer theoretical guaran-
tees about the performance of such algorithms, particu-
larly in the average case. Even the worst-case computa-
tional complexity of computing Nash equilibria remains an
open problem; while all evidence suggests that the prob-
lem is hard (e.g., [2]), the precise complexity class into
which it falls is unknown [7]. In the absence of theo-
retical guarantees, researchers evaluating algorithms for
game-theoretic problems often perform empirical tests.

It has been observed in many problem domains that al-
gorithm performance varies substantially across different
“reasonable” distributions of problem instances, even when
problem size is held constant. When we examine the empir-
ical tests that have been performed on algorithms that take
games as their inputs, we find that they have typically been
small-scale and involved very particular choices of games
(in many cases, only generic games generated uniformly at
random). Such tests can be appropriate for limited proofs-
of-concept, but cannot say much about an algorithm’s ex-
pected performance across a broader range of domains. For
this, a comprehensive body of test data is required.

Our work aims to fill this gap in available test data, iden-
tifying interesting sets of non-generic games comprehen-
sively and with as little bias as possible. We began with
a broad literature survey, examining hundreds of books
and papers by game theorists, economists, computer scien-
tists, political scientists and others from the past 50 years.
After an analysis of common structures in the games we
found—and an extensive software-engineering effort—we
built GAMUT, our game generation software. GAMUT
generates games from 71 parameterized distributions which
range from specific two-by-two matrix games with little
variation (e.g., Chicken) to broad classes extensible in both
number of players and number of actions (e.g., games that
can be encoded compactly in the Graphical Game represen-

Arms Race Grab the Dollar Polymatrix Game
Battle of the Sexes Graphical Game Prisoner’s Dilemma
Bertrand Oligopoly Greedy Game Random Games
Bidirectional LEG Guess 2/3 Average Rapoport’s Distribution

Chicken Hawk and Dove Rock, Paper, Scissors
Collaboration Game Local-Effect Game Shapley’s Game
Compound Game Location Game Simple Inspection Game
Congestion Game Majority Voting Traveler’s Dilemma

Coordination Game Matching Pennies Uniform LEG
Cournot Duopoly Minimum Effort Game War of Attrition
Covariant Game N-Player Chicken Zero Sum Game
Dispersion Game N-Player Pris Dilemma

Table 1. Games in GAMUT

tation). Our software, along with a database listing proper-
ties of and relations between games, is now publicly avail-
able. Figure 1 demonstrates a snapshot of some classes of
games found in our database, where arrows denote the sub-
set relation. Table 1 lists 35 parameterized generators that
support all of the generative sets in our taxonomy.

2. Running the GAMUT

In the remainder of this paper we describe our use of
GAMUT to evaluate the empirical properties of three al-
gorithms for computing Nash equilibria. We demonstrate
that a broad test suite is needed in this domain by show-
ing that algorithm performance varies dramatically across
distributions.1 For two-player games we used the Gambit
[5] implementation of the Lemke-Howson algorithm [4].
Forn-player games we used the Gambit implementation of
Simplicial Subdivision [9], as well as a recently introduced
continuation method by Govindan and Wilson [3] (imple-
mented in the GameTracer package [1]).

One factor that can have a significant effect on an algo-
rithm’s runtime is the size of its input. Since our goal was
to investigate the extent to which runtimes vary as the re-
sult of differences between distributions, we studied fixed-
size games. To make sure that our findings were not artifacts

1 In the full version of this paper [6] we present experimental results
for another problem—reinforcement learning in repeated games—and
also provide more information about the construction and contents of
our game generator.

Pure
Coordination

No pure-
strategy
equilibria

No Dominant
Strategies

Compact
Graphical
Games

Geometric Games

Dominant
Strategies

for All

Dominance-Solvable
Equilibrium

Constant-Sum Games

Complete Opposition

Timing Games

(Strongly)
Symmetric Games

Supermodular
Games

Strict
Equilibrium

Pure-strategy equilibrium

Preemption
Games

Polymatrix
Games

Equilibria Are
Pareto Ordered

Zero-Sum Games

Matching
Pennies

Potential Games /
Congestion Games

(Weakly) Symmetric
Games

Prisoner’s Dilemma
Dispersion

Games

Local-Effect
Games

Unique
Equilibrium

Compound
Games

Arms Races

Location
Games

Road Games

SAT
Games

Simple
Inspection;

Greedy Game

Battle of the Sexes

Ring Structured
Games;

Tree Structured
Games

Bertrand
Oligopoly;

Cournot Duopoly

Evolutionarily
Stable

Strategies

2X2 Symmetric

Coordination
Games

Centipede

generative sets
other sets

underline more subsets in database

generative sets
other sets

underline more subsets in database

Figure 1. GAMUT Taxonomy (Partial)

of any particular problem size we compared results across
several fixed problem sizes. We ran the Lemke-Howson al-
gorithm on games with 2 players, 150 actions and 2 play-
ers, 300 actions. Because Govindan-Wilson is very simi-
lar to Lemke-Howson on two-player games and is not opti-
mized for this case [1], we did not run it on these games. We
ran Govindan-Wilson and Simplicial Subdivision on games
with 6 players, 5 actions and 18 players, 2 actions. For each
problem size and distribution, we generated 100 games.

Both to keep our machine-time demands manageable
and to keep the graphs in this paper from getting too clut-
tered, we chose not to useall of the GAMUT genera-
tors. Instead, we chose a broad and representative slate of
22 distributions from GAMUT. Some of our generators
(e.g., Graphical Games, Polymatrix games, and Local Ef-
fect Games–LEGs) are parameterized by graph structure;
we split these into several sub-distributions based on the
kind of graph used. Suffixes “-CG”, “-RG”, “-SG”, “-SW”
and “-Road” indicate, respectively, complete, random, star-
shaped, small-world, and road-shaped graphs. Another dis-
tribution that we decided to split was the Covariant Game
distribution, which implements the random game model of
[8]. In this distribution, payoffs for each outcome are gen-
erated from a multivariate normal distribution, with corre-
lation between all pairs of players held at some constant
ρ. With ρ = 1 these games are common-payoff, while
ρ = −1

n−1 yields minimum correlation and leads to zero-sum

games in the two-player case. Rinott and Scarsini show that
the probability of the existence of a pure strategy Nash equi-
librium in these games varies as a monotonic function ofρ,
which makes the games computationally interesting. Suf-
fixes “-Pos”, “-Zero”, and “-Rand” indicate whetherρ was
held at0.9, 0, or drawn uniformly at random from[−1

n−1 , 1].
All our experiments were performed using a cluster of

12 dual-CPU 2.4GHz Xeon machines running Linux 2.4.20,
and took about 120 CPU-days to run. We capped runs for all
algorithms at 30 minutes (1800 seconds).

2.1. Experimental Results

Lemke-Howson, Simplicial Subdivision and Govindan-
Wilson are all very complicated path-following numerical
algorithms that offer virtually no theoretical guarantees.
They all have worst-case running times that are at least ex-
ponential, but it is not known whether this bound is tight. On
the empirical side, very little previous work has attempted
to evaluate these algorithms. The best-known empirical re-
sults were obtained for generic games with payoffs drawn
independently uniformly at random (in GAMUT, this would
be therandom generator). Our work may therefore repre-
sent the first systematic attempt to understand the empirical
behavior of these algorithms on non-generic games.

Figure 2 shows each algorithm’s performance across dis-
tributions for two different input sizes. TheY -axis shows

0.01

0.1

1

10

100

1000

10000

Ti
me
 (s
):
Le
mk
e-H

ow
son

2-150
2-300

0.01

0.1

1

10

100

1000

10000

Ti
me
 (s
):
Sim

pli
cia
l

Su
bd
ivi
sio
n

6-5
18-2

0.01

0.1

1

10

100

1000

10000

B e r
t r a n

d O
l i g o
p o l
y

B i d
i r e c

t i o n
a l L
E G
- C G

B i d
i r e c

t i o n
a l L
E G
- R G

B i d
i r e c

t i o n
a l L
E G
- S G

C o v
a r i a

n t G
a m
e - P
o s

C o v
a r i a

n t G
a m
e - R
a n d

C o v
a r i a

n t G
a m
e - Z
e r o

D i s
p e r
s i o n

G a m
e

G r a
p h i
c a l G

a m
e - R
G

G r a
p h i
c a l G

a m
e - R
o a d

G r a
p h i
c a l G

a m
e - S
G

G r a
p h i
c a l G

a m
e - S
W

M i n
i m u

m E
f f o r
t G a

m e

P o l
y m
a t r i
x G a

m e -
C G

P o l
y m
a t r i
x G a

m e -
R G

P o l
y m
a t r i
x G a

m e -
R o a

d

P o l
y m
a t r i
x G a

m e -
S W

R a n
d o m

G a m
e

T r a
v e l e

r s D
i l e m

m a

U n i
f o r m

L E G
- C G

U n i
f o r m

L E G
- R G

U n i
f o r m

L E G
- S G

Ti
me
 (s
):
Go
vin

da
n-W

ilso
n

6-5
18-2

Figure 2. Solver Performance on Problems of
Different Sizes

CPU time measured in seconds and plotted on a log scale.
Column height indicates median runtime over 100 in-
stances, with the error bars showing the 25th and 75th per-
centiles. The most important thing to note about this graph
is that each algorithm exhibits highly variable behav-
ior across our distributions. This is less obvious in the case
of the Govindan-Wilson algorithm on 18-player games, be-
cause this algorithm’s runtime exceeds our cap for a ma-
jority of the problems. However, even on this dataset
the error bars demonstrate that the distribution of run-
times varies substantially with the distribution. More-
over, for all three algorithms, we observe that this variation
is not an artifact of one particular problem size.

Figure 3 illustrates runtime differences both across and
among distributions for 6-player 5-action games. Each dot
on the graph corresponds to a single run of an algorithm
on a game. This graph shows that the distribution of algo-
rithm runtimes varies substantially from one distribution to
another, and cannot easily be inferred from 25th/50th/75th
quartile figures such as Figure 2. The highly similar Simpli-
cial Subdivision runtimes for Traveler’s Dilemma and Min-
imum Effort Games are explained by the fact that these
games can be solved by iterated elimination of dominated
strategies—a step not performed by the GameTracer imple-
mentation of Govindan-Wilson. We note that distributions
that are related to each other in our taxonomy usually give
rise to similar—but not identical—algorithmic behavior.

0.01

0.1

1

10

100

1000

10000

1.51

Ti
me
 (s
):
Sim

pli
cia
l S
ub
div

isio
n

0.01

0.1

1

10

100

1000

10000

Ti
me
 (s
):
Go
vin

da
n-W

ilso
n

Be
rtr

an
dO

lig
op
oly

Bi
dir

ect
ion

alL
EG

-C
G

Bi
dir

ect
ion

alL
EG

-R
G

Bi
dir

ect
ion

alL
EG

-SG
Co

va
ria

ntG
am

e-P
os

Co
va
ria

ntG
am

e-R
an
d

Co
va
ria

ntG
am

e-Z
ero

Di
sp
ers

ion
Ga

me
Gr

ap
hic

alG
am

e-R
G

Gr
ap
hic

alG
am

e-R
oa
d

Gr
ap
hic

alG
am

e-S
G

Gr
ap
hic

alG
am

e-S
W

Mi
nim

um
Ef
for

tG
am

e
Po

lym
atr

ixG
am

e-C
G

Po
lym

atr
ixG

am
e-R

G
Po

lym
atr

ixG
am

e-R
oa
d

Po
lym

atr
ixG

am
e-S

W
Ra

nd
om

Ga
me

Tr
av
ele

rsD
ile
mm

a
Un

ifo
rm

LE
G-
CG

Un
ifo
rm

LE
G-
RG

Un
ifo
rm

LE
G-
SG

Figure 3. Runtime Distributions for 6-player,
5-action Games

References

[1] B. Blum, C. Shelton, and D. Koller. A continuation method
for Nash equilibria in structured games. InIJCAI, 2003.

[2] V. Conitzer and T. Sandholm. Complexity results about Nash
equilibria. InIJCAI, 2003.

[3] S. Govindan and R. Wilson. A global Newton method to com-
pute Nash equilibria. InJournal of Economic Theory, 2003.

[4] C. Lemke and J. Howson. Equilibrium points of bimatrix
games. Journal of the Society for Industrial and Applied
Mathematics, 12, 1964.

[5] R. D. McKelvey, A. McLennan, and T. Turocy. Gam-
bit: game theory analysis software and tools, 1992.
http://econweb.tamu.edu/gambit.

[6] E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown.
Run the gamut: A comprehensive approach to evaluating
game-theoretic algorithms. InAAMAS, 2004.

[7] C. Papadimitriou. Algorithms, games, and the internet. In
STOC, 2001.

[8] Y. Rinott and M. Scarsini. On the number of pure strategy
Nash equilibria in random games.Games and Economic Be-
havior, 33, 2000.

[9] G. van der Laan, A. Talman, and L. van der Heyden. Simpli-
cial variable dimension algorithms for solving the nonlinear
complementarity problem on a product of unit simplices us-
ing a general labelling.Mathematics of Operations Research,
1987.

