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Abstract

We offer a formal framework that enables the analysis of the fascinating phenomenon

whereby individuals who “live in different worlds” agree to a shared course of action. We

define the notion of a course of action which, unlike a (behavioral) strategy profile, does

not require a complete specification of actions in every contingency. We introduce a new

solution concept: a mutually acceptable course of action (MACA). Loosely speaking, an

MACA consists of actions that “make sense” in every player’s (perception of the) game, and

every player takes into account that all players are rational. In particular, an MACA can

be viewed as an (incomplete) contract or a social norm that free rational individuals would

be willing to follow for their own diverse reasons. We show that by varying the degree of

completeness of the underlying course of action, the concept of an MACA can be related to

many of the commonly used solution concepts, such as perfect equilibrium, perfect Bayesian

equilibrium, (rationalizable) self-confirming equilibrium, and rationalizable outcomes. Thus,

our framework also serves to unify “game-theoretic” and “incomplete contracts” viewpoints.
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1 Introduction

We offer a way to formally analyze the fascinating phenomenon whereby individuals who “live

in different worlds” agree to follow a common course of action. The problem of analyzing shared

action among individuals has attracted the attention of sociologists, psychologists, political

scientists, and organizational theorists for a long time. While there are differences in focus

between different research streams, the underlying problem is the same: why, and when, do

rational actors choose to follow a common course of action? Central to this question is the

notion of differences in actors’ perceptions of the situation; their values, beliefs, and views of the

world. There is ample evidence that several political and military situations are best analyzed as

different games viewed by different players. For example, Snyder (1979) and Boudon (1981) argue

that during the first world war, Germany believed that the game being played was a prisoner’s

dilemma type game while Britain believed that the game being played was a coordination type

game. Other examples include the German occupation of France in 1940, the Allied invasion of

Normandy in 1944, and the Middle East war of 1973 (see Section 5.1.2 for a discussion). Finally,

the fact that resources are devoted to diversion and deception1 demonstrates that countries,

politicians, military generals, and other economic agents realize that different players may (be

induced to) analyze different games.

And, there is a rich tradition of the idea of “different worlds” in literature, a few examples

here being: Moliere’s and Shakespeare’s “comedies of errors” where the identities of “players” are

misperceived; Akatagawa’s (1952) “In a wood” (or, its well-known movie version, “Rashomon”,

by Kurosawa) where players’ perceptions of an event they witness differ drastically; and Canetti’s

(1946) “Auto-Da-Fe”,2 where there is no ambiguity concerning the perceptions of the (“physi-

cal”) identities or actions that are actually being taken, but individuals attribute very different

1See Crawford (2003) and Hendricks and McAfee (2003) for several such examples of feints, or ‘strategic

misrepresentation’, from oil drilling to ex-President George Bush’s famous 1988 campaign promise: “Read my

lips: no new taxes”.
2The novel was published in German as “Die Blendung” (The Deception) in 1935; the first US version appeared

under the title “The Tower of Babel” in 1947.
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motivation and interpretations to the actions the other players take.

At first glance, the notion that different individuals may perceive a given situation as

different games may seem like a radical change from “classical” game theory. However, it turns

out that our framework facilitates formal representation of “mainstream” arguments as well,

including those concerning the most fundamental notions in game theory: the Minmax theorem

and the Nash equilibrium. Indeed, von Neumann and Morgenstern themselves used the idea of

worlds apart to justify the minmax value in a two-person zero-sum game. They associated with

such a game two auxiliary games: the majorant game and the minorant game, which correspond

to each player assuming that he moves first, and his choice is observed by the other player.

Thus, each player is analyzing a different (perfect information extensive form) game, where each

player sees himself as the “leader” and the other player as the “follower” (see Section 5 for a

formal discussion).

Indeed, the rules of the game prescribe that each player must make his choice (his

personal move) in ignorance of the outcome of the choice of his adversary. It is

nevertheless conceivable that one of the players, say 2, “finds out” his adversary;

i.e., that he has somehow acquired the knowledge as to what his adversary’s strategy

is. The basis for this knowledge does not concern us; it may (but need not) be

experience from previous plays. At any rate we assume that the player 2 possesses

this knowledge. ... Under these assumptions we may then say that player 2 has

“found out” his adversary. [von Neumann and Morgenstern, 1947, p. 105.]

More recently, Aumann and Brandenburger (1995) interpreted a Nash equilibrium as

players’ choices when each player knows his own payoff functions and strategy choices of the

other players. As they write (ibid, p. 1161): “Suppose that each player is rational, knows his

own payoff function, and knows the strategy choices of the others. Then the players’ choices

constitute a Nash equilibrium in the game being played.” As in von Neumann and Morgenstern’s

interpretation of the minmax value, this argument also implicitly suggests that different players
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perceive and analyze different games.1

There are, however, several fundamental difficulties in formally applying traditional game-

theoretic analysis to situations with divergent perceptions, as such analysis almost always as-

sumes that the players play the same game. That is, following Harsanyi (1967-68), each player is

assumed to be (at least probabilistically) aware of all the available actions and payoffs of all the

other players, and this information as well as the structure of the game is common knowledge.

In particular, all players consider the same “states of Nature”. This assumption prevents the

analysis of situations where different players may perceive different games.

Even when the game is common knowledge, there are two additional limitations of most

of the existing models in game theory that we seek to relax. First, most equilibrium solution

concepts usually employed in applications impose (different degrees of) a stringent requirement:

commonality of beliefs among players regarding other players’ actions, including actions in the

“off-equilibrium” contingencies (that are not supposed to arise if the equilibrium contract is

followed). Second, in the most commonly used equilibrium notions (such as perfect or sequential

equilibrium) players are required, in addition to agreeing on the precise actions to be taken in

every contingency (whether or not it arises), to also agree on the precise way in which players

might deviate (or commit mistakes - known as “trembles”) from these specified actions. Many

game theorists have pointed out the problems with these assumptions (e.g., see Kreps, 1990;

Rubinstein, 1991).

In sum, our analysis of shared action with divergent perceptions enables us to extend the

literature by offering a framework for studying the following situations: a) when players perceive

different games; b) when the game is common knowledge but players’ beliefs may differ off the

equilibrium path; and, c) when the game is common knowledge and the actions to be taken in

every contingency are agreed upon, but players may not necessarily have the same beliefs on

how other players might “tremble” (or make mistakes).

1To be sure, no formal framework is presented by these authors that could accommodate players playing

different games.
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We carry out our analysis using the notion of a “course of action (CA)” which, unlike a

strategy profile, does not require a complete contingent specification of actions in all information

sets. Informally, a course of action is a specification of (possibly probabilistic, or mixed) actions

to be taken in some, but not necessarily all, contingencies. A course of action can be interpreted

as a social norm or an incomplete contract. A contract (or agreement) may be incomplete in the

sense that it does not specify actions in all possible contingencies, and it may be partial in the

sense that players may agree to take certain actions towards resolution of a situation, without

actually fully resolving it. Such partial and incomplete contracts form a large part of everyday

human interactions that form the basis of many social and economic phenomena. However, the

solution concept (“equilibrium”) employed in most game-theoretic analyses is a strategy profile,

which, by definition, provides a complete specification of actions in all possible contingencies.

Thus, the existing models in game theory are not easily amenable to the analysis of incomplete

contracts.

Our solution concept, a mutually acceptable course of action (MACA) is, loosely speaking,

a course of action that “makes sense” in every player’s (perception of the) game. That is, a

course of action is mutually acceptable if no player would wish, in his own world, to deviate from

it. When deciding on whether or not to deviate from a course of action, every player takes into

account that all players are “rational”. In making their decisions, each player analyzes possible

consequences of deviations from the proposed course of action. Players would be willing to

conform to a proposed course of action as long as their conformity does not conflict with rational

behavior. Observe that each player may rationalize his expectations in a different way, as long

as this does not violate the common knowledge of rationality as perceived by each player.

In the “classical” case where all players play the same game, and this is common knowledge,

we relate our solution concept to several equilibrium notions frequently used in game-theoretic

analysis and applications, by exploring the implications of different degrees of completeness of

the mutually acceptable course of action. Specifically, we show that when the underlying course

of action is “complete” (i.e., specifies an action in all possible contingencies), the MACA lies

“in-between” perfect equilibrium (Selten, 1971) and perfect Bayesian equilibrium (Fudenberg
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and Tirole, 1991). This is true even in the special cases of normal form3 games, and in games

with perfect information.

If the course of action specifies a “path”, that is, leaves out contingencies if someone

deviates from the specified actions, the MACA refines self-confirming (Fudenberg and Levine,

1993) and rationalizable self-confirming equilibria (Dekel, Fudenberg, and Levine, 1998, 2002).

If the course of action is completely silent, that is, does not specify any actions at any

nodes, the MACA refines rationalizable outcomes in normal form games (Bernheim, 1984;

Pearce, 1984). For extensive form games, the notion of a null MACA provides a new and

attractive (see Example 4.3.2) definition of rationalizability.

As one application of our general framework, we can interpret our results in the language

of contract theory. As noted earlier, a course of action can be seen as a proposed incomplete

contract that does not specify parties’ obligations in all contingencies. An MACA can be viewed

as an incomplete contract that rational individuals would be willing to follow for their own

(possibly diverse) reasons. As a large body of literature in contract theory has argued, rarely,

if ever, does a contract specify actions in all possible contingencies (e.g., see Williamson, 1985;

Grossman and Hart, 1986; Hart and Moore, 1988). Most of this literature sees contractual

incompleteness as resulting from “unforeseen contingencies”, bounded rationality, or certain

“transaction costs” that make it impossible to have a complete contingent contract describing

the terms in each possible state of nature. Thus, there is an implication that loss of contractual

completeness causes some loss of efficiency, that is, all parties could be better off if a complete

contract were possible. One exception to this literature is a recent paper by Bernheim and

Whinston (1998) who show that, in presence of non-verifiable parameters, making a contract

more incomplete can lead to better outcomes even in the absence of any costs of writing (and

enforcing) contracts. We obtain a similar (and stronger) result, that an incomplete MACA

may Pareto-dominate any complete MACA. However, our motivation and framework are very

different (see Example 2.1 and the discussion there).

3Some readers may prefer the term ‘simultaneous-move’ games.
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We will formalize these ideas and demonstrate their usefulness in the rest of the paper.

The paper is organized as follows. For ease of exposition, and to facilitate comparison with

existing game-theoretic notions, we present most of our analysis in the classical case where all

players face the same game which is assumed to be common knowledge. We start in Section 2

with two examples to illustrate the main ideas. Section 3 lays out the basic notation and the key

definitions of a CA and an MACA, and examines some basic properties of an MACA. Section 4

shows how an MACA is related to some of the commonly used equilibrium concepts (definitions

of these concepts are summarized in Appendix 1). Section 5 extends this analysis to the case

where players live in different worlds. Appendix 2 contains all the proofs.

2 Examples

To demonstrate the main ideas, we present two simple examples before a formal analysis. Here,

we restrict ourselves to the classical case where the game is common knowledge. The first

example illustrates that an incomplete contract can Pareto dominate every complete contract

even in a game of perfect information.

Example 2.1: Consider the perfect information game depicted in Figure 2.1. Player 1 (an

entrepreneur) has to decide whether to sell the firm (action L1) or to delegate control to his

son (player 2). Player 2 can then decide to manage the firm himself (action L2) or hire player

3 (CEO) to run the business. The CEO, in turn, may or may not delegate control to player 4

(a subordinate, a manager, or a team of managers represented as a single player). The manager

can, then, either exert effort to manage the business well (action L4), or shirk (action R4).

Assume that the game, actions, and resulting payoffs as depicted in Figure 2.1 are all common

knowledge.4

4Please note that payoffs here are given in utils, so any penalties for the manager for shirking are accounted

for. Our interest here is in partial contracts rather than incentives.
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1

1,1,1,-1

L1 R1

L2 R2

2,2,2,0 3

0,3,3,0

L3 R3

4

L4 R4

0,4,4,1 0,0,0,1

Figure 2.1

There are two subgame perfect equilibria of this game: (L1, R2, R3, L4) and (L1, R2, L3, R4).

Both of them support the action L1whereby the entrepreneur sells the firm. The unique subgame

perfect equilibrium payoff is (1,1,1,-1).

However, we shall now argue that players can do better through an incomplete contract

that does not specify the actions players 3 and 4 are to take at their respective information

sets. Consider the (incomplete) course of action x = (R1, L2) (i.e., the CA specifies that the

entrepreneur would delegate control to his son, who chooses not to delegate further). Note

that x is not a strategy profile as it does not specify an action for each player in all possible

contingencies. We show (somewhat informally, for now) that x constitutes a mutually acceptable

course of action (MACA); that is, all players will rationally choose to abide by this course of

action. Observe that this CA generates the payoff (2,2,2,0), which Pareto dominates the unique

subgame perfect equilibrium payoff (1,1,1,-1).

The reasoning is as follows. If player 4’s information set is reached, it is rational for player

4 to choose either L4 or R4 as he is indifferent between the two. Since the CA (R1, L2) does

not specify an action for player 4, player 3 can rationally choose L3 (if he believes that 4 will
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shirk and choose R4) or R3 (if he believes 4 will work hard). Thus, player 2, contemplating

a deviation from the CA (R1, L2), can reasonably expect that 3 might choose R3 and that 4

might choose R4. Therefore, player 2 will be willing to follow x and hence player 1 will also

be willing to follow x. Note that it is only because the CA x is incomplete that it is mutually

acceptable; no course of action that specifies “rational actions” for the players in all information

sets can support the CA x. In particular, no subgame perfect equilibrium supports the path

(R1, L2) because any such equilibrium requires that all players have the same beliefs regarding

other players’ actions (including those at nodes that are precluded from being reached if the

equilibrium is followed). In contrast, (R1, L2) is an MACA because players 2 and 3 need not

have (or, may not be aware that both, do in fact have) the same beliefs regarding player 4’s

behavior if he is delegated control of the firm.

This example highlights the important observation that the requirement that all play-

ers have the same beliefs regarding other players’ behavior is constraining and may preclude

reasonable, in fact, more plausible, predictions in many applications. Observe that incomplete

contracts arise here even in absence of indescribable contingencies and transaction costs.

This example also illustrates that incomplete contracts may lead to better outcomes than

those achievable through complete contracts. That is, ambiguity about actions at some in-

formation sets may yield Pareto-dominating payoffs. This is in sharp contrast to most of the

literature on contract theory, a notable exception being the recent paper by Bernheim and Whin-

ston (1998). They show that a less complete contract may Pareto dominate a more complete

contract; thus, more contractual ambiguity may be beneficial, in agreement with our argument

above. However, in their model (which differs from ours) a “complete” contract cannot be Pareto

improved. The optimality of incomplete contracts in their setting is conditional on the presence

of non-verifiable parameters that cannot be specified in any contract.

The next example illustrates how incomplete contracts can arise in a game of imperfect

information. The basic insight from Example 2.1 carries over: some (or all) of the players may

benefit by leaving their choice of actions ambiguous in some information sets.
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Example 2.2: 5Consider the imperfect information game depicted in Figure 2.2, which may

represent the following diplomatic “peace-negotiation” scenario. Each of the two warring coun-

tries, 1 and 2, has to decide whether or not to reach a peace agreement, represented by the

path (R1, R2). If the countries fail to reach an agreement, country 3 would “re-evaluate” its

policy, a decision that would affect both countries 1 and 2. Assume that country 3 has no way

to know which of the two countries caused the breakup of the negotiations (otherwise, it could

threaten to retaliate against that country). All it observes is whether or not the negotiations

were successful. As the payoffs in Figure 2.2 indicate, it is in the best interest of country 3 that

the two warring countries sign the peace agreement. This game has a unique (mixed strategy)

Nash equilibrium given by: Player 1 uses the mixed strategy (12 L1,
1
2 R1), player 2 uses the pure

strategy L2, and player 3 uses the mixed strategy (
1
2 L3,

1
2 R3). Player 3’s Nash equilibrium

payoff is, therefore, 1/2.

2

1

L1 R1

L2 R2

3 3

L3 R3

3,9,0 6,0,1 4,4,4

v

w

L3 R3

0,9,1 9,0,0

v1 v2

h

Figure 2.2

We shall now argue that player 3 may expect a payoff of 4 by not specifying the action

he might take (if information set h were to be reached). That is, the (incomplete) agreement

5This example also appears in Greenberg (2000).
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x = (R1, R2) is an MACA: both players 1 and 2 will choose to follow this course of action.

Indeed, player 1 as well as player 2 may fear that in the event of a deviation from x (i.e.,

breakdown of negotiations), player 3 will retaliate against him.6 Thus, the path (R1, R2) will

be followed because x does not specify player 3’s action. This outcome could not be supported

in any contract that specified player 3’s action, or alternatively, if players 1 and 2 shared the

same beliefs about 3’s action and this was common knowledge.

We now formalize these ideas in the next sections.

3 MACA in a Common World

We start with the classical case where all players face the same game (possibly with imperfect

information), which is assumed to be with perfect recall and common knowledge. We denote

the game by T = (N,V,H, {A(h)}h∈H ,
©
ui
ª
i∈N ), where N = {1, 2, . . . , n} is the set of players,

V is the set of nodes (or vertices), H is the set of information sets, A(h) is the set of pure

actions available at information set h, and ui is player i’s payoff function. For simplicity, we

shall assume that the set of vertices is finite.

A mixed action at information set h is a probability distribution over the pure actions in

A(h). We denote the set of mixed actions at h by ∆(h), and the set of information sets belonging

to player i by Hi. A behavioral strategy for player i is a function that assigns to every h ∈ Hi

a mixed action from ∆(h).7 The set of strategies of player i is denoted by Yi, and the set of

strategy profiles is denoted by Y (i.e., Y = ×i∈NYi). For y ∈ Y, we denote by y(h) the mixed

action of y at h and by y(−h) the profile of mixed actions of y at all information sets other than

h. For y ∈ Y, ui(y) denotes i’s (expected) payoff if y is followed from the root of the game.

6Player 1 will not deviate from x and choose action L1 since he might fear that player 3 might believe that he

is at vertex v1 and therefore may choose action L3, yielding player 1 the payoff of 0. Similarly, player 2 will not

deviate from x and choose action L2 fearing that player 3 might believe that he is at vertex v2 and therefore may

choose action R3, yielding player 2 the payoff of 0.

7Throughout this paper, we will use the term strategy to mean behavioral strategy.
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We can now formalize the basic building blocks in our analysis: the notion of a course of

action and the conditions under which it will be mutually acceptable to all players.

Definition 3.1 A course of action (CA) is a mapping x : H → ∪h∈H∆(h) ∪ {∅}, with x(h) ∈

∆(h) ∪ {∅} for all h ∈ H.

Thus, a course of action may or may not specify a mixed action at an information set.

The interpretation of x(h) = ∅ is that the CA x does not specify which action from ∆(h) player

i would take at h, where h ∈ Hi; otherwise, x(h) specifies player i’s (mixed) action at h. In

particular, a CA x is said to be complete if x(h) 6= ∅ for all h ∈ H. A complete CA is therefore

a strategy profile.

The central question with which we are concerned here is: which course of action would

be followed by free rational individuals? Keeping with the noncooperative approach, a course of

action will be followed if no single player has an incentive to deviate from it. Such a course of

action will be called “mutually acceptable” (we abbreviate it as MACA). Informally, an MACA

is a CA x such that following x is always optimal for every player, who is aware that, like himself,

all other players are “rational”. We first elaborate on the criterion of rationality.

As is customary, we impose the rationality criterion through the requirement that actions

chosen by a player be best responses to his beliefs about opponents’ actions. In order to ensure

that players’ actions are optimal in every contingency, including contingencies that might not

actually arise, we follow Selten’s (1975) idea of “trembles”. Specifically, each player i associates

with strategy yj ∈ Yj of every player j 6= i a “trembling sequence”
n
yjk

o∞
k=1
of totally mixed

strategies8 that converges to yj . Let yjk Ã yj denote such a sequence. A strategy yi ∈ Yi is

player i’s perfect best response to y−i ∈ Y−i if actions specified by yi remain optimal for i along

the trembling sequences.

In most cases, however, player i does not know (or does not have a degenerate point-

expectation about) the precise strategy yj that player j might adopt. Rather, i is likely to
8A totally mixed strategy for a player assigns strictly positive probability to every action at every information

set of that player.
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have a set of strategies, Y j ⊆ Yj that i believes j might adopt. In that case, i assigns some

probability distribution over Y j . By Claim 0 in Appendix 2, for any distribution over Y j ,

there exists an outcome equivalent distribution over Y j that has a finite support (i.e., these two

distributions yield, for any y−j ∈ Y−j , the same distribution over the terminal nodes). That is,

player i believes that player j will choose yjt ∈ Y j with probability λt, t = 1, 2, ...,m. Recall

that perfection requires that player i associates yjt with some sequence y
j
t,k Ã yjt . Thus, λ is

uniquely associated with a sequence
n
yjk

o∞
k=1
of totally mixed strategies of player j such that the

kth element, yjk, along this sequence is outcome-equivalent to choosing y
j
t,k with probability λt,

t = 1, 2, ...,m. We denote by yjk
Y jÃ yj such a sequence with a limit of yj . (Observe that when

Y j = {yj} is a singleton, we have that yjk
Y jÃ yj if and only if yjk Ã yj .) Our rationality criterion

requires that every action chosen by a player be optimal along these “trembling” sequences. More

specifically, we require that for a strategy yi ∈ Y i of player i, there exist yik Ã yi and yjk
Y jÃ yj

for all j 6= i such that, for all h ∈ Hi, and for all k = 1, 2, . . . , ui(y (h) , yk (−h)) ≥ ui(a, yk (−h))

for all a ∈ ∆ (h).

We can now define our main solution concept: a “mutually acceptable course of action”.

As noted earlier, a mutually acceptable course of action is a course of action that rational

individuals agree to follow for their own, possibly different reasons. Players would be willing to

conform to a proposed course of action as long as their conformity does not conflict with rational

behavior.

Definition 3.2 A CA x is a mutually acceptable course of action (MACA) if there exists a set

of strategy profiles Y ≡ Y 1 × Y 2 · · · × Y n that supports x. That is, for every player i and

every yi ∈ Y i there exist yik Ã yi and yjk
Y jÃ yj for all j 6= i such that

(i) for all h ∈ H, y (h) = x(h) whenever x(h) 6= ∅, and

(ii) for all h ∈ Hi and for all k = 1, 2, . . . , ui(y (h) , yk (−h)) ≥ ui(a, yk (−h)) for all

a ∈ ∆ (h).

Remarks: (1) Observe that the chosen sequence {yk}∞k=1 in Definition 3.2 depends on player
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i, because each player can rationalize his choice of yi ∈ Y i using his beliefs, y−i, about the

strategies that the other players might employ. When needed, we shall emphasize this fact by

denoting this sequence as {yk [i]}∞k=1.

(2) Definition 3.2 requires that all players “support” an MACA x by the same set of strategy

profiles, Y ⊆ Y. One could justify this assumption by the fact that as the game T and the

rationality of the players are common knowledge, every inference player i can make about player

j’s plausible choices, can also be made by any other player. However, given our focus on

divergent beliefs, we stress here that the above definition would not change even if we allow

different players to support x with different sets of strategy profiles.9

Before we explore some special cases of interest for our solution concept and its relation

to existing game-theoretic notions, we present two important properties that will be useful in

understanding and establishing our results. First, an intuitively appealing property of an MACA

is that it is not supported by strictly dominated strategies. Moreover, in the case of normal

form games, an MACA is not supported by weakly dominated strategies.

Claim 3.3 Suppose Y supports an MACA in a game T . Then, for each player i, yi ∈ Y i is not

a strictly dominated strategy. Moreover, if T is a game where each player has only one

information set (in particular, if T represents a normal form game), then yi ∈ Y i is not

a weakly dominated strategy.

The second property below states that acceptability cannot be lost by making the course of

action less complete. That is, the more stringent a contract is, the less likely it is to be accepted.

It is ambiguity that gives people hope; shared action is made possible by lack of specification

of actions that one or more players are likely to take at some information sets in the game, as

shown in examples 2.1-2.2. Formally,

9To see this, observe that if for every j ∈ N there exits a set Y [j] that supports x, then the (single) set

Y ≡ ×i∈N ∪j∈N Y i [j] also supports x. This is a special case of a more general result (Theorem 3.4) in Greenberg,

Monderer, and Shitovitz (1996).
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Claim 3.4 Let x be an MACA, and let y be a CA such that y(h) = x(h) whenever y(h) 6= ∅.

Then, y is an MACA.

4 Applications in a Common World

We now explore the concept of a course of action in greater detail by looking at a few special cases.

Our objective here is to demonstrate the generality of the notion of an MACA, its relationship

to existing equilibrium notions, and its potential usefulness in a wide range of applications. We

show in this section that a number of different equilibria often employed in applications can be

better understood as variants of our equilibrium notion, depending on the degree of completeness

of the acceptable course of action. Recall that an MACA may range from specifying an action

in all contingencies, to being completely silent, representing different degrees of contractual

completeness. In particular, an MACA need not even specify an entire path. Indeed, we often

witness partial agreements where players agree to take some actions towards a resolution, without

agreeing on the “final outcome”.10 Similarly, contracts may be incomplete to different degrees:

some may specify consequences for most, but not all, deviations from the proposed equilibrium,

while others may not specify any such consequences. Our framework can easily accommodate

such variations. We restrict our analysis here to three special cases:

(i) a complete MACA – a course of action that specifies actions in all possible contingen-

cies; this represents a complete contingent contract or agreement. A complete CA is a strategy

profile.

(ii) a path MACA – a course of action that specifies an action at the root of the game

and at every information set that is reached with positive probability if the CA is followed.

This is a typical representation of an incomplete contract where no contingencies are covered if

10This is a common feature of most political agreements, like the Dayton accord, the Israeli-Palestenian accord

of 1996, arms treaties like Anti-Ballistic Missile treaty. At most, participants in such treaties hope for some

actions towards an intended outcome, but the ‘terminal nodes’ are far from certain. The same is true in most

ongoing (business or personal) relationships.
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someone deviates from the specified contract.

(iii) a null MACA – which does not pin down any actions at any information set; players

can only rely on deductions they can make from the common knowledge of the game and

rationality of all the players to anticipate how the game will play out.

4.1 Complete MACA

A course of action x is complete if x(h) 6= ∅ for all h ∈ H. That is, players specify an action

in every possible contingency they may face. This assumption is the building block of most

game-theoretic analysis, based on the notion of a strategy profile, which, as we have argued

earlier, is quite restrictive. Nevertheless, we proceed in this subsection with the assumption of

a complete course of action, while retaining our focus on divergent perceptions within the same

game that is common knowledge. We will show that even though players agree on a “complete

contract”, they may do so for their own reasons (or beliefs). Since we believe this to be a widely

prevalent characteristic of human interactions, our framework and solution concept may provide

a better way of modeling some situations.

Our first result asserts that a complete contract is an MACA if and only if it is “self

supporting”. However, while all players believe that the complete MACA will be followed, it

may be impossible for the players to believe in the same sequence of trembles that converge to

this MACA. (See Example 4.1.4 below.)

Claim 4.1.1 The CA x is a complete MACA if and only if it is supported by the set Y ≡ {x}.

The following Claim offers an alternative definition for a complete MACA, and also illus-

trates the fact that we allow for divergent beliefs.

Claim 4.1.2 A strategy profile x is a complete MACA if and only if for each player i there

exists a sequence yk[i]Ã x such that, for all h ∈ Hi and for k = 1, 2, . . . ,

ui(x (h) , yk[i] (−h)) ≥ ui(a, yk[i] (−h)) for all a ∈ ∆ (h) .
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Most applications of dynamic games, such as mechanism design and signaling games, use

some variants of perfect equilibrium (Selten, 1975). We shall show that the set of complete

MACA is “in-between” the sets of perfect equilibria and of perfect Bayesian equilibria (Fu-

denberg and Tirole, 1991).11 As every totally mixed Bayesian perfect equilibrium is a perfect

equilibrium, it follows that the only difference between these three notions (perfect, Bayesian

perfect, and complete MACA) lies in the way players may reason in information sets that are

not reached. We will elaborate on these differences below.

Our first result establishes the formal relationship between a complete MACA and perfect

equilibrium.

Claim 4.1.3 Every perfect equilibrium is a complete MACA.

Example 4.1.4 below demonstrates that, in general, a complete MACA need not be a

perfect equilibrium. This is because of the more stringent requirement imposed by the definition

of a perfect equilibrium that all the players must have the same beliefs at all information sets

not only concerning the actions that will be taken there, but also on the way these information

sets were reached. While commonality of beliefs along the equilibrium path can be justified (e.g.,

“past observations”), this requirement is not realistic for information sets off the equilibrium

path, as noted by others as well (e.g., see Kreps 1990, p.166). That is, for shared action to

take place, players have to agree on what that action is going to be, but not necessarily on the

trembles that resulted in an information set being reached off the equilibrium path.

Example 4.1.4: Consider the game depicted in Figure 4.1.4.

11See Appendix 1 for formal definitions of these concepts.
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Define the complete CA x by: x(v∗) = E, x(h) = L2, and x(h0) = R3. We shall now show

that x is an MACA but it is not a perfect equilibrium. It is easy to verify that the condition

in Claim 4.1.2 is satisfied for the following sequences {yk[i]}∞k=1 and, hence, x is an MACA. For

player i, i = 1, 2, 3, define yk[i] as follows:
12
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Observe that the sequence {yk[2]}∞k=1 implies that player 2 believes that if player 1 deviates

from E, then it is more likely that player 1 would choose R1. Sequence {yk[3]}∞k=1 implies that

player 3 believes that if player 1 deviates from E, then it is more likely that player 1 would

choose L1. But perfect (or sequential) equilibrium does not allow for such divergent beliefs

about trembles; all players must hold the same beliefs about the way an information set was

reached. In our example, for player 2 to choose L2 it must be the case that 2 believes that

12Here, for example, (1− 1/k)L2 + (1/k)R2 means that player 2 chooses action L2 with probability (1− 1/k)

and action R2 with probability 1/k.
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player 1 would tremble in such a way that the probability of R1 is not lower than 3/4, but with

these same beliefs player 3 would be better off choosing L3. Thus, x is an MACA but it is not

a perfect (or sequential) equilibrium.

Note that the MACA x in the above example is not totally mixed. (The probability with

which player 1 will use either L1 or R1 is 0, and it is this fact that allows the players to hold

different beliefs about the trembles, even though the MACA is complete.) For a totally mixed

complete MACA, the following holds:

Claim 4.1.5 A totally mixed complete CA is an MACA if and only if it is a perfect equilibrium.

Next, we relate a complete MACA to perfect Bayesian equilibrium.

Claim 4.1.6 Every complete MACA is a perfect Bayesian equilibrium.13

Claims 4.1.3 and 4.1.6 together imply that a complete MACA lies “in-between” perfect and

perfect Bayesian equilibrium. In general, the set of perfect equilibria may be a strict subset of

the set of complete MACAs which, in turn, may be a strict subset of the set of perfect Bayesian

equilibria. Example 4.1.4 demonstrates the validity of the first part of this assertion. To see the

second part, consider the case of normal form games. Note that a perfect Bayesian equilibrium

coincides with a Nash equilibrium; hence, it may involve weakly dominated strategies. However,

by Claim 3.3, a complete MACA never employs weakly dominated strategies in normal form

games. Thus, a complete MACA provides a useful refinement of perfect Bayesian equilibrium.

The same is true for games with perfect information: the set of complete MACAs may be

a strict subset of the set of subgame perfect equilibria and may strictly include the set of Perfect

equilibria. The weak inclusions are implied by Claims 4.1.2 and 4.1.6. To realize the possibility

of the strict inclusions, consider the following two examples.

Example 4.1.7: In the game depicted in Figure 4.1.7, the strategy (r1, r2) is a subgame perfect

equilibrium. However, the strategy r1 is weakly dominated, for player 1, by the strategy l1.
13See Definition A1.2; the result would hold even if we add the requirement in the definition of PBE that Bayes’

rule is used ‘wherever possible’.
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Hence, by Claim 3.3, the action r1 can never be part of an MACA. Indeed, if player 1 assigns

any trembles to player 2, his unique best response is l1. Therefore, (r1, r2) is not a complete

MACA. The only complete MACA in this game coincides with the unique perfect equilibrium:

(l1, r2).

Figure 4.1.7
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Example 4.1.8: The game depicted in Figure 4.1.8 shows that a complete MACA need not be

a perfect equilibrium. Indeed, consider the strategy profile y = (c1, c2, c3, c4) in this game. We

claim that y is not a perfect equilibrium, but it is a complete MACA. To see the first point,

assume in negation that y is a perfect equilibrium, supported by a sequence {yk} of totally

mixed strategies. Let pk(a) denote the probability of playing an action a under yk. For c2 to

be player 2’s local best response to yk it must be the case that pk(s3) ≥ pk(s4). But then, as

pk(s2) > 0, it follows that player 1’s unique local best response to yk at the root of the game is

action s1, and not c1. Thus, y cannot be a perfect equilibrium.

To realize that y is a complete MACA, by Claim 4.1.2 we need to show that for each

player i, there exists a sequence {yk[i]} such that i’s actions in y = (c1, c2, c3, c4) are his local

best response to this sequence. For player 1, let {yk[1]} be such that pk(s2) + pk(s3) ≤ pk(s4),

and for player 2 let {yk[2]} be such that pk(s3) ≥ pk(s4). Then, {yk[1]} and {yk[2]} satisfy the

inequality in Claim 4.1.2; therefore, y is a complete MACA.
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4.2 Path MACA

A path MACA is a CA x that specifies a (mixed) action at the root of the game and at every

information set that is reached with positive probability if x is followed. That is, unlike a

strategy profile, a path MACA does not specify actions in all contingencies.

In general, a path MACA need not be derived from a Nash equilibrium, as was illustrated

in Example 2.2. Nor is the converse true, not even in normal form games. To realize this

assertion, note that a path MACA in a normal form game is a complete MACA. Let x be a

Nash equilibrium in a normal form game that involves weakly dominated strategies. Assume,

in negation, that x is a path MACA. By Claim 4.1.1, it is supported by Y ≡ {x}. But then, by

Claim 3.3, x cannot involve weakly dominated strategies. Thus, x cannot be a path MACA.

However, as we will now show, every path MACA that satisfies the “unique deviator”

property can be derived from a Nash equilibrium. For a CA x, denote by H(x) the set of

information sets that are reached (with positive probability) if x is followed.14

Definition 4.2.1 (Unique Deviator Property) A path CA, x, has the unique deviator property

if for each h /∈ H(x) there is a unique player i(h) such that no deviation from x by any

other player j 6= i(h) can result in reaching h. That is, if h /∈ H(x), then h /∈ H(y) for

any strategy y such that y(h0) = x(h0) for all h0 ∈ H(x) ∩Hi(h).

Note that every path CA x in a game with perfect information, as well as in any normal

form game, has the unique deviator property. Games with this property (i.e., where every path

in the game has a unique deviator) are called games with observed deviator property (Fudenberg

and Levine, 1993). To realize the difference between these notions, consider an extensive form

game where a player has two choices at the root of the game: action L ends the game, and action

R leads to a proper subgame T 0 which does not have the observed deviator property. Clearly, T

does not have the observed deviator property, but the path {L} does have the unique deviator
14An information set h is said to be reachable from an information set h0 if there is a vertex v in h such that

the path connecting the root of the game with v passes through a vertex w in h0.
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property. We then have the following result.

Claim 4.2.2 Suppose that a path MACA x satisfies the unique deviator property. Then, there

exists a (behavioral) Nash equilibrium y, such that y(h) = x(h) for all h ∈ H(x).

To realize that the unique deviator property is necessary for the validity of this claim, recall

Example 2.2 in Section 2. In the game depicted in Figure 2.2, (R1, R2) is a path MACA since

it is supported by Y ≡ {R1} × {R2} × {L3, R3}. This path does not have the unique deviator

property because both players 1 and 2 can deviate from it and reach player 3’s information set.

The path MACA (R1, R2) is not supported by (the unique) Nash equilibrium in this game.

A path MACA is also related to some of the solution concepts in the literature on “learn-

ing” (e.g., Fudenberg and Levine, 1993; Fudenberg and Kreps, 1995; Kalai and Lehrer, 1993).

These notions are motivated by the fact that in repeated interactions among players, as players

play equilibrium strategies, “off equilibrium choices” are not observed, and hence the require-

ment of commonality of beliefs about the actions that would have been taken in contingencies

that were not realized during the play cannot be justified. Clearly, what players observe are

actions taken along the equilibrium path of the play, and thus observed choices constitute a path

CA. It turns out that viewed in this manner, a path MACA refines the notion of self-confirming

equilibrium (Fudenberg and Levine, 1993) because an MACA requires that players’ conjectures

about their opponents be rational also “off the equilibrium path” (see Definition 3.2). Recall

that in a self-confirming equilibrium (SCE), players learn only the path of play and their beliefs

at information sets that are not reached can be arbitrary. Thus, a path MACA rules out many

unreasonable outcomes. Dekel, Fudenberg, and Levine (1999) recently offered a refinement of

SCE, which they call a “rationalizable self-confirming equilibrium” (RSCE). As the following

claim asserts, our notion of a path MACA refines both concepts.

Claim 4.2.3 Let x be a path MACA supported by the set Y . Then, every y ∈ Y is a rational-

izable self-confirming equilibrium (and, hence, a self-confirming equilibrium).

We now provide two examples that show that path MACA strictly refines the set of
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rationalizable self-confirming equilibria. The reason is that we impose more stringent rationality

restrictions on the players’ reasonings. The first example, taken from Dekel, Fudenberg, and

Levine (1999) is shown in Figure 4.2.4. As they correctly claim, outcome d1 can arise from an

RSCE in this game. However, d1 is not a path MACA because this game has a unique subgame

perfect equilibrium, (r1, r2, r3), and thus this path is the unique path MACA. Example 4.1.7

is another demonstration of the fact that a path MACA provides a strict refinement of RSCE.

Indeed, as we argued above, the unique path MACA in this game is (l1, r2), the path (r1, r2) is

supported by an RSCE.
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4.3 Null MACA

The null CA, i.e., the CA x where x(h) = ∅ for every information set h ∈ H, is the “coarsest”

type of CA. This CA is suitable for analyzing situations where players do not communicate

and have no common background (based on, say, past observations or social norms) that would

imply an (implicit) agreement concerning the actions to be taken in some information sets. That

is, players have no pre-conception about the course of action that might/should be taken, other

than the one they can, individually and separately, deduce from the game. It is not surprising,

therefore, that the null MACA turns out to be closely related to the notion of “rationalizable

strategy profiles”, due to Bernheim (1984) and Pearce (1984). Recall that in a normal form

game, a rationalizable strategy for a player is one that is a best response to some beliefs he might

have about his opponents’ strategies, and beliefs are determined from the common knowledge of

rationality (i.e., a player expects his opponents to also play only those strategies that are best
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responses to some beliefs they might have, and so on; see Appendix 1 for a formal definition).

The null MACA therefore yields a rather intuitive refinement of (normal-form) rationalizability;

in particular, an MACA, by Claim 3.3, excludes weakly dominated strategies.

Claim 4.3.1 Suppose Y supports a null MACA. Then, every strategy profile in Y is (normal-

form) rationalizable.

For general extensive form games, there is no single accepted definition of rationalizability.

The notion of a null MACA offers a new definition for this case, which, as the following example

demonstrates, is quite attractive.

Example 4.3.2: Consider the game in Figure 4.3.2. In this game, the null MACA is supported

by the set Y = {(l1, (l2, r2))}. Hence, the only outcome of this game, in the absence of any

contract, is the path l1. This outcome is appealing because the strategy l1 weakly dominates

r1. (Hence, by Claim 3.3, r1 cannot belong to any set that supports an MACA.) In contrast,

the well-known notions of normal-form and extensive-form rationalizability have no predictive

power in this game. In particular, they support outcomes (r1, l2) and (r1, r2) as well.
15
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15There are other solution concepts that yield, in this example, the same outcomes as the null MACA; e.g.,

Asheim and Perea’s (2003) “quasi-perfect rationalizability” and Dekel and Fudenberg’s (1990) “permissibility”.
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5 Worlds Apart

We have seen so far how our framework helps analyze situations with incompletely specified

courses of action that rational individuals may choose to follow for their own diverse reasons

when the game being analyzed is common knowledge. We show in this section that our analysis

can be easily extended to the more general case where players do not perceive the same game.

(Like the proverbial set of blind men touching an elephant, each sees it differently, and believes

that the way he sees it is the way the elephant is. Or like witnesses to an accident, each tells a

complete story, but tells a different one. And, what other interpretation is there for “men are

from Mars and women are from Venus”?)

The requirement that the “structure of the game” or the “model under discussion” be

common knowledge seems to have been an integral part of game and economic theory. Yet, recent

developments have started to doubt whether this is too strong an assumption, and whether a

more plausible analysis could do with less. For example, Aumann and Brandenburger (1995; p.

1176-77) state the following regarding earlier assertions in the literature that common knowledge

of the game or the model being analyzed is required for any economic analysis: “... This seemed

sound when written, but in light of recent developments... it no longer does..... There is nothing

about the real world that must be commonly known among the players.”

As discussed in the Introduction, the situation where players live in different worlds cannot

be described (hence, analyzed) by a single game that is common knowledge. Keeping within

traditional noncooperative game theory, we formalize a single player’s perception of a situation

as Harsanyi’s (1967-68) “types model” game, i.e., an (extensive form) game iT .16 Typically, the

game iT is a game with imperfect information. This game incorporates all of i’s beliefs about

the other players. We do not assume that player i is certain about the “types” of the players

he is facing. Rather, he may well be uncertain about some of the parameters (including the

strategy spaces and the payoff functions of the other players) of the game he is (or thinks he is)

16We use iT rather than T i in order to stress the fact that iT is not a restriction or projection of some underlying

game T .
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playing. Thus, iT completely describes player i’s world.

Society, then, consists of n players, given by the set N = {1, 2, . . . , n} and n games

{1T,2 T, . . . ,n T}. It is important to note that these n games may be very different; they need

not even have the same structure. The classical paradigm where all players face a single game

T that is common knowledge is obtained, in our framework, as a special case by imposing the

(often unrealistic) restriction that for all i, j ∈ N , iT = jT = T . We analyzed this special case

in the previous sections.

The generality of the notion of a course of action and of an MACA introduced in Defi-

nitions 3.1 and 3.2 allows us to straightforwardly extend the analysis to societies with diverse

perceptions. The only modification that has to be introduced is that choices prescribed by a

course of action must be “unambiguously interpretable” in all the n games.

Definition 5.1 x is a course of action (CA) in society {1T,2 T, . . . ,n T} if it is a CA in every

game iT , i ∈ N . A course of action x is mutually acceptable (MACA) in {1T,2 T, . . . ,n T}

if x is an MACA in every iT , i ∈ N .

While Definition 5.1 is a straightforward extension of Definition 3.2, note that it allows

for a wide range of divergent views of the world to be modeled and analyzed. In particular,

there is no limitation on the structure of different games iT : these games could be very different

depending on the extent to which norms, beliefs, and values are shared among different players.

All that is required for shared action is that rational individuals follow that course of action for

their own reasons (because it “makes sense” to them in their own world).

5.1 Applications in Different Worlds

5.1.1 Minmax Value

As stated in the Introduction, the notion that players may not analyze the same game is implicit

in von Neumann and Morgenstern’s (1947) justification of the minmax value in a two-person

25



zero-sum game, as well as in Aumann and Brandenburger’s (1995) defense of Nash equilibrium.

We formally relate the minmax theorem to our framework below.

Let G be a two-person zero-sum game; ∆i and U i, i = 1, 2, are player i’s (mixed) strategy

sets and payoffs functions, respectively. Consider von Neumann and Morgenstern’s argument,

that player i assumes that player j 6= i will somehow acquire the knowledge as to what player

i’s strategy is (see quote in Introduction). This implies in our framework that each player i

analyzes the perfect information extensive form game iT , where player i moves at the root of

the game, followed by player j 6= i who observes i’s choice. Thus, players i and j see different

games. For such games, the following result shows that every possible anticipation of player i,

i = 1, 2, as to how the game might evolve results in i employing a Minmax strategy. Hence the

outcome will be a Minmax play.

Claim 5.1.1 Let Y support an MACA in iT , i = 1, 2. Then, yi ∈ Y i is player i’s Minmax

strategy in the game G.17

The converse of Claim 5.1.1 does not hold. The reason is, again, that perfection imposes

stricter conditions than Nash equilibrium. To realize this point, consider the two person zero-

sum game in Figure 5.1.2(a), which is obtained by slightly modifying the game in Example

4.1.7. Observe that both (U,L) and (D,L) are Minmax (or Nash) equilibria. However, player

1’s strategy U is weakly dominated by D.
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17Observe that the strategy set of player i in iT is ∆i. That is, in the game iT , we have that Yi =∆i.
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Figures 5.1.2(b) and 5.1.2(c) depict respectively the games 1T and 2T associated with

the normal form game in Figure 5.1.2(a). In game 1T, player 1 moves first, followed by player

2’s move. The only choice by player 1 that can be supported in an MACA in game 1T is D.

Indeed, player 1’s only best response if player 2 trembles is the strategy D, thus if Y supports

an MACA in 1T , then every y ∈ Y yields the path (D,L).

5.1.2 Military and Political Games

Examples abound in military conflicts and international politics where players perceived different

games, and such situations readily lend themselves to formal analysis within our framework.

During the second world war, the “Fall of France” to German army in 1940 is widely seen as a

result of the Allied forces’ inability to correctly perceive the likely German attack through the

Ardennes. As discussed in several accounts of the war,18 the Allied forces saw two possibilities

for German attack on France: along the eastern border of France (the Maginot line), or an attack

in the north through Belgium. In particular, the possibility of an attack through the Ardennes

was rejected by the Allied forces as the Ardennes terrain was widely considered by the French to

be unsuitable for tanks. German plans initially shared the French perceptions, and saw a long,

costly encounter and a possible stalemate if the attack were carried out through Belgium or

the Maginot line, as the Germans expected Allied forces to vigorously defend those two fronts.

Being aware that Allied plans had rejected Ardennes as a possibility, Germans assigned a large

force to attack through Ardennes and caught the Allied forces by surprise, leading to a quick

victory for the German army.

Four years later, the Allied invasion of Normandy succeeded, and led to the end of the

second World War, largely due to the successful attempts by the Allied forces to convince the

Germans that the attack was to occur at Calais (see recent game-theoretic analyses of the

Normandy invasion by Hendricks and McAfee, 2003, and Crawford, 2003) . In the Allied view,

Calais was used as a ‘feint’ (complete with a mythical army group of 50 divisions, fake camps,

18See, e.g., Bennett and Dando (1979).
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plywood airplanes and inflatable tanks) to mislead the German army as to the true site of the

invasion. Germans believed Normandy was a feint, and that the true invasion was to come at

Calais; so strong was this belief that the Germans directed all back-up forces to Calais and did not

realize the main attack was occurring at Normandy until several days after the D-Day. Hendricks

and McAfee (2003) analyze this situation, and the general incentive to feint, in a two-person

signaling model. Crawford (2003) extends their model to include the possibility that players

may be boundedly rational by assuming, in the context of a two-person matching pennies game,

that players’ types (‘sophisticated’ or ‘mortal’) are drawn from independent common knowledge

distributions, and the game structure as well as payoffs are common knowledge.

Our framework offers a more general approach to study such situations. The “Fall of

France” can be easily analyzed as different games viewed by France and Germany. This applies

as well to the Normandy invasion, and similar economic situations where an ‘attacker’ has an

incentive to feint and mislead the ‘defender’. Another example, analyzed below, is the 1973

Middle East war.

Example 5.1.3: On October 6, 1973, Egypt attacked Israel, to Israel’s complete surprise.19

Since the 1967 war, Israel’s military and almost all top Israeli officials had strongly held the be-

lief that Egypt lacked the requisite military and air strength to launch an offensive against Israel,

thus any movements of the Egyptian troops were viewed as ‘routine manoeuvres’ rather than

preparations for war. With this belief, Israel chose not to mobilize its troops, since mobilization

was costly. The Egyptian plans, on the other hand, sought to disguise its troop movements as

manoeuvers, and set a target date of October 1st to see whether Israel mobilized its troops in

response. If Israel mobilized, the plan was to convert troop movements to normal manoeuvers.

The games viewed by Israel and Egypt can be represented as in Figures 5.1.3(a) and (b), re-

spectively. Note that these games have different structures, reflecting the fact that Israel was

unaware of the October 1st deadline. (The first payoff in the games below is for Egypt, second

for Israel.)

19Our example follows Said and Hartley’s (1982) description, who presented a game-theoretic view of the war.
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Figure 5.1.3(a):  Israel’s Game
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Figure 5.1.3(b):  Egypt’s Game

(a<c, f<4, g<2)
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In the game viewed by Israel (IsraelT ), it is a dominant strategy for Egypt not to go to

war, hence, by Claim 3.3, the null MACA in this game predicts (manoeuvers, not mobilize).

In Egypt’s game (EgyptT ), however, Egypt would attack unless Israel mobilizes before October

1st. Any strategy involving the choice (not mobilize) in Egypt’s first information set is strictly

dominated, so, by Claim 3.3, cannot be part of any MACA. Therefore, looking at the two games,

we would expect Israel to not mobilize, and Egypt to mobilize and then go to war, as indeed

was the case.

6 Conclusion

In this paper, we offered a framework to analyze situations where rational individuals with

divergent perceptions agree to follow a common course of action. A course of action need not

specify players’ actions in all possible contingencies, and can be interpreted as a social norm or

an incomplete contract. Players agree to a course of action if it makes sense to them in their

own perceptions of the situation. Following traditional non-cooperative game theory, we first

analyzed situations where all players perceive the same game, which is common knowledge. We

showed that many different equilibrium concepts employed in economic analysis can be derived
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from our solution concept, a mutually acceptable course of action, by varying the degree to

which the course of action specifies actions in various contingencies. In this setting, incomplete

contracts emerge as rational responses by individuals with different beliefs and views of the

world (or on the ‘mistakes’ other players may make), even without considering any transaction

costs. Thus, our framework also serves to unify “game-theoretic” and “incomplete contracts”

viewpoints. We then showed that the framework can easily be extended to situations where

the players may have very different perceptions of the game they think they are playing. Our

analysis provides one useful way of studying such situations which, we believe, are common in

reality, as was demonstrated by the few examples of military conflicts and political games. Many

other economic and social phenomena could be studied within our framework.

30



A Appendix 1: Definitions

Definition A1.1 A perfect equilibrium is a strategy profile y with the property that there exists

yk Ã y such that, for every player i, for all h ∈ Hi, for k = 1, 2, . . . ,

ui(y (h) , yk (−h)) ≥ ui(a, yk (−h)) for all a ∈ ∆ (h) .

Definition A1.2 A perfect Bayesian equilibrium is a strategy profile y with the property that

for each player i and each information set h ∈ Hi, there exists a distribution d(h) over

the vertices in h such that: (i) the restriction of yi to information sets that succeed h is

i’s best response to the restriction of y−i to these information sets, using d(h), and (ii) for

any reachable information set h when y is followed, d(h) is derived from y using Bayes’

rule.

Definition A1.3 A strategy profile y is a rationalizable self-confirming equilibrium (RSCE) if

there exists a collection of subsets of strategies
©
Y i
ª
i∈N such that, for every player i and

every zi ∈ Y i, there exists a strategy zj in the “extensive-form convex hull”20 of Y j (where

j 6= i) such that

1. z has the same distribution over terminal nodes induced by y, and

2. for all information sets h ∈ Hi that are not precluded by zi, the restriction of zi to

information sets that succeed h is i’s best response to the restriction of z−i to these

information sets, using the “sequential consistent” (w.r.t. z) distribution d(h) over

the vertices in h.

Definition A1.4 A collection of subsets of strategies
©
Y i
ª
i∈N is (normal-form) rationaliz-

able if for every player i and every yi ∈ Y i, yi is a best response to some profile in
20A behavioral strategy yj is in the extensive-form convex hull of Y j , if there is an integer m, strategies

{yjt }t∈{1,...,m} in Y j , sequences yjt,k Ã yjt , and a sequence λk → λ of probability distributions on [1, ...,m], such

that the strategies yjk generated by the convex combination of y
j
1,k, ....., y

j
m,k with weights λ1,k, .....,λm,k converge

to yj (cf. Dekel et al. 2002, p. 476).
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×j 6=i∆
¡
Y j
¢
,where ∆

¡
Y j
¢
denotes the set of all strategies yj ∈ Y j such that yj is outcome-

equivalent21 to a distribution over Y j.

B Appendix 2: Proofs

Claim 0 For any non-empty Y j ⊆ Yj, ∆
¡
Y j
¢
= ∆0

¡
Y j
¢
, where ∆

¡
Y j
¢
[∆0

¡
Y j
¢
] denotes

the set of all strategies yj ∈ Yj such that yj is outcome-equivalent to a [finite-support]

distribution over Y j.

Proof: Clearly, ∆
¡
Y j
¢
⊇ ∆0

¡
Y j
¢
. We need to show that ∆

¡
Y j
¢
⊆ ∆0

¡
Y j
¢
. Let yj ∈ ∆

¡
Y j
¢
.

Then, yj is outcome-equivalent to a distribution µ over Y j . Let ψj be the mixed strategy

derived from the same distribution µ over ϕ
¡
Y j
¢
≡
©
ϕ
¡
yj
¢
| yj ∈ Y j

ª
, where ϕ

¡
yj
¢
is the

mixed representation of yj .22 Since ϕ : Y j → ϕ
¡
Y j
¢
is 1-1, by Kuhn’s (1953) theorem and

Pearce’s (1984) Lemma 2, it is easy to see that ψj is outcome-equivalent to yj . By using Pearce’s

(1984) Lemma 1, there exist ϕ
³
yjt

´
∈ ϕ

¡
Y j
¢
, λt ≥ 0 (t = 1, 2, . . . ,m), and

Pm
t=1 λt = 1 such

that ψj =
Pm
t=1 λtϕ

³
yjt

´
. Again by Kuhn’s (1953) theorem, yj is outcome-equivalent to the

finite-support distribution λ over Y j . Q.E.D.

Claim 3.3 Suppose Y supports an MACA in a game T . Then, for each player i, yi ∈ Y i is not

a strictly dominated strategy. Moreover, if T is a game where each player has only one

information set (in particular, if T represents a normal form game), then yi ∈ Y i is not

a weakly dominated strategy.

Proof: For yi ∈ Y i let yik Ã yi and yjk
Y jÃ yj (where j 6= i) satisfy the conditions in Definition

3.2. By condition (ii) in Definition 3.2 and continuity of ui,

ui(y (h) , y (−h)) ≥ ui(a, y (−h)) for all a ∈ ∆ (h) .
21A strategy yj ∈ Yj is outcome-equivalent to a strategy zj ∈ Yj if for any y−j ∈ Y−j the strategy profiles

(yj , y−j) and (zj , y−j) yield the same distribution over the terminal nodes.
22Recall that the mixed representation ϕ

¡
yj
¢
of a strategy yj is the mixed strategy which assigns to a pure

strategy sj the product of all the probabilities assigned by yj to the pure actions that define sj .
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By the one deviation property,23 yi is i’s best response to y−i. Thus, yi is not a strictly dominated

strategy.

Now, consider a game T where every player has only one information set. By condition

(ii) in Definition 3.2, yi is i’s best response to y−ik . As for all j 6= i, y
j
k is a totally mixed strategy,

it follows that yi is not a weakly dominated strategy. Q.E.D.

Claim 3.4 Let x be an MACA, and let y be a CA such that y(h) = x(h) whenever y(h) 6= ∅.

Then, y is an MACA.

Proof: Since x is an MACA, there exists a set Y that supports x. Then, this Y also supports

y. Q.E.D.

Claim 4.1.1 The CA x is a complete MACA if and only if it is supported by the set Y ≡ {x}.

Proof: Let Y support the complete MACA, x. For yi ∈ Y i let yik Ã yi and yjk
Y jÃ yj (where

j 6= i) satisfy the conditions in Definition 3.2. Since x is complete, condition (i) implies that

yik Ã xi. Therefore, for every player i and every yi ∈ Y i, yi = xi. Hence, Y = {x}. Q.E.D.

Claim 4.1.2 A strategy profile x is a complete MACA if and only if for each player i there

exists a sequence yk[i]Ã x such that, for all h ∈ Hi and for k = 1, 2, . . . ,

ui(x (h) , yk[i] (−h)) ≥ ui(a, yk[i] (−h)) for all a ∈ ∆ (h) .

Proof: By Claim 4.1.1 we have that x is a complete MACA if and only if it is supported by the

set Y = {x}. By Definition 3.2, therefore, x is a complete MACA if and only if for each player
23Let y be a behavioral strategy profile. According to the one deviation property (cf. Osborne and Rubinstein

1994, pp. 98-99), yi is a best response to y−i if the player i has no information set h at which a local change in

y (h) (holding the remainder of y fixed) increases his expected payoff.
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i there exists a “trembling” sequence {yk[i]}∞k=1 such that (by condition (i)) yk[i]Ã x, and (by

condition (ii)), for all h ∈ Hi and for k = 1, 2, . . . ,

ui(x (h) , yk[i] (−h)) ≥ ui(a, yk[i] (−h)) for all a ∈ ∆ (h) . Q.E.D.

Claim 4.1.3 Every perfect equilibrium is a complete MACA.

Proof: Let y be a perfect equilibrium. Then (see Definition A1.1) Y = {y} supports y. Thus,

y is a complete MACA. Q.E.D.

Claim 4.1.5 A totally mixed complete CA is an MACA if and only if it is a perfect equilibrium.

Proof: Let x be a totally mixed complete MACA. By Claim 4.1.1, it suffices to show x is a

perfect equilibrium. By Claim 4.1.2 and the continuity of ui we have that for all players i and

for all h ∈ Hi,

ui(x (h) , x (−h)) ≥ ui(a, x (−h)) for all a ∈ ∆ (h) .

Since x is a totally mixed strategy, the sequence yk ≡ x, k = 1, 2, .., can be chosen as the

trembling sequence for every player i. Hence, x is a perfect equilibrium. Q.E.D.

Claim 4.1.6 Every complete MACA is a perfect Bayesian equilibrium.

Proof: Let x be a complete MACA. By Claim 4.1.2, for each player i, there exists a sequence

yk[i]Ã x. Define the distribution, di(h), over the vertices in an information set h ∈ Hi as follows:

di(h) ≡ limk→∞ dik(h), where dik(h) is the unique distribution over these vertices derived from

yk [i] using Bayes’ rule. By condition (ii) in Definition 3.2 and the one deviation property, it

therefore follows that player i’s strategy xi is a sequential best response to x−i when i’s beliefs

over the vertices in h ∈ Hi are given by di(h). Hence, x is a perfect Bayesian equilibrium.

Q.E.D.
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Claim 4.2.2 Suppose that a path MACA x satisfies the unique deviator property. Then, there

exists a (behavioral) Nash equilibrium y, such that y(h) = x(h) for all h ∈ H(x).

Proof: For each player i, let yk [i] Ã y[i] satisfy the conditions in Definition 3.2. Define the

behavioral strategy y as follows:

y(h) ≡

⎧⎨⎩ x(h), if h ∈ H(x)

y[i(h)](h), if h /∈ H(x)
.

By the unique deviator property, y is well defined. Condition (ii) of Definition 3.2 implies that

y is a Nash equilibrium in behavioral strategies. Q.E.D.

Claim 4.2.3 Let x be a path MACA supported by the set Y . Then, every y ∈ Y is a rational-

izable self-confirming equilibrium (and, hence, a self-confirming equilibrium).

Proof: Let Y support a path MACA, x, and let yi ∈ Y i. Then, there exists a sequence

yk[i] Ã y that satisfies the conditions in Definition 3.2. By condition (i) in Definition 3.2,

the path generated by y coincides with x. Moreover, player i’s strategy yi is a sequential best

response to y−i when i’s beliefs over the vertices in h ∈ Hi are given by di(h) ≡ limk→∞ dik(h),

where dik(h) is the unique distribution over these vertices derived from yk [i] using Bayes’ rule

(see proof of Claim 4.1.6). Therefore, for all information sets h ∈ Hi that are not precluded by

yi, the restriction of yi to information sets that succeed h is i’s best response to the restriction

of y−i to these information sets, using the “sequential consistent” distribution d(h) over the

vertices in h.

To conclude the proof we have to show that for all j 6= i, yj lies in the “extensive-form

convex hull” of Y j as defined by Dekel, Fudenberg and Levine (2002) (see Appendix 1). Indeed,

for all j 6= i, yjk [i]
Y jÃ yj . That is, there exist {yjt }t∈{1,...,m} in Y j and y

j
t,k Ã yjt (t = 1, 2, . . . ,m)

such that the behavioral strategies yjk generated by the convex combination of y
j
1,k, . . . , y

j
m,k

with (the constant) weights λ1, .....,λm converge to y
j . Hence y is a rationalizable self-confirming

equilibrium. Q.E.D.
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Claim 4.3.1 Suppose Y supports a null MACA. Then, every strategy profile in Y is (normal-

form) rationalizable.

Proof: Fix a player i, for any yi ∈ Y i let yik Ã yi and yjk
Y jÃ yj (where j 6= i) satisfy conditions

in Definition 3.2. By condition (ii) of Definition 3.2 and the continuity of ui, ui(y (h) , y (−h)) ≥

ui(a, y (−h)) for all h ∈ Hi and for all a ∈ ∆ (h). By the one deviation property and Claim 0,

yi is a best response to some profile in ×j 6=i∆
¡
Y j
¢
. Q.E.D.

Claim 5.1.1 Let Y support the null MACA in iT , i = 1, 2. Then, yi ∈ Y i is player i’s Minmax

strategy in the game G.

Proof: Consider the game 1T . For y2 ∈ Y 2 let yk Ã y satisfy the conditions in Defini-

tion 3.2. By condition (ii) of Definition 3.2, we have that y(h) is player 2’s best (mixed)

action at every h ∈ H2. Because the game is zero-sum, we have that for any y1 ∈ Y1,

u1(y1, y2) = Minb∈∆2U1(y1, b). It therefore follows that for every y2 ∈ ∆(Y 2) and for any

y1 ∈ Y1, u1(y1, y2) =Minb∈∆2U1(y1, b).

Consider now y1 ∈ Y 1 and let yk Ã y satisfy the conditions in Definition 3.2. By condition

(ii) of Definition 3.2, we have that at the root of 1T player 1’s choice of the (mixed) action, y1,

is player 1’s best response to y2. That is, y1 satisfies: u1(y1, y2) = Maxy1∈Y1u
1(y1, y2). Since

y2 ∈ ∆(Y 2), by our derivation above, we have that u1(y1, y2) = Maxy1∈Y1Minb∈∆2U1(y1, b) =

Maxa∈∆1Minb∈∆2U1(a, b), i.e., y1 is a Minmax strategy in G.

An analogous argument establishes that in the game 2T , y2 is a Minmax strategy in G.

Q.E.D.
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